repo_name
stringlengths
5
92
path
stringlengths
4
221
copies
stringclasses
19 values
size
stringlengths
4
6
content
stringlengths
766
896k
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
32
997
alpha_frac
float64
0.25
0.96
autogenerated
bool
1 class
ratio
float64
1.5
13.6
config_test
bool
2 classes
has_no_keywords
bool
2 classes
few_assignments
bool
1 class
MarkWh1te/xueqiu_predict
crawler/stock.py
1
2487
from flask import Flask from flask import render_template, request from utils import Base,engine from sqlalchemy.orm import scoped_session, sessionmaker from models import Stock, StockDetail from flask_bootstrap import Bootstrap from flask import Blueprint from flask_paginate import Pagination,get_page_args from sqlalchemy import desc def create_app(): app = Flask(__name__) Bootstrap(app) return app app = create_app() # @app.route('/') # def hello_world(): # return 'Hello, World!' @app.route('/detail/<stock_id>') def detail(stock_id): print(stock_id) page = request.args.get('page', type=int, default=1) per_page = 15 if per_page: stocks = StockDetail.query.filter(StockDetail.stock_id == stock_id).\ order_by(desc(StockDetail.create_time)).limit(per_page) if page: stocks = stocks.offset((page-1)*per_page) pagination = Pagination(page=page, per_page=per_page, # total=stocks.count(), total = StockDetail.query.filter(StockDetail.stock_id == stock_id).count(), record_name='record', format_total=True, format_number=True, css_framework="bootstrap3" ) return render_template('detail.html', stocks=stocks, page=page, per_page=per_page, pagination=pagination) @app.route('/') def index(): # stocks = Stock.query.all() page = request.args.get('page', type=int, default=1) per_page = 15 if per_page: stocks = Stock.query.limit(per_page) if page: stocks = stocks.offset((page-1)*per_page) pagination = Pagination(page=page, per_page=per_page, total=Stock.query.count(), record_name='stocks', format_total=True, format_number=True, css_framework="bootstrap3" ) return render_template('index.html', stocks=stocks, page=page, per_page=per_page, pagination=pagination) if __name__ == "__main__": app.run(host='0.0.0.0')
mit
-7,122,884,169,626,361,000
32.608108
103
0.51347
false
4.295337
false
false
false
jsilter/scipy
scipy/linalg/special_matrices.py
1
27627
from __future__ import division, print_function, absolute_import import math import numpy as np from scipy.lib.six import xrange from scipy.lib.six import string_types __all__ = ['tri', 'tril', 'triu', 'toeplitz', 'circulant', 'hankel', 'hadamard', 'leslie', 'all_mat', 'kron', 'block_diag', 'companion', 'hilbert', 'invhilbert', 'pascal', 'invpascal', 'dft'] #----------------------------------------------------------------------------- # matrix construction functions #----------------------------------------------------------------------------- # # *Note*: tri{,u,l} is implemented in numpy, but an important bug was fixed in # 2.0.0.dev-1af2f3, the following tri{,u,l} definitions are here for backwards # compatibility. def tri(N, M=None, k=0, dtype=None): """ Construct (N, M) matrix filled with ones at and below the k-th diagonal. The matrix has A[i,j] == 1 for i <= j + k Parameters ---------- N : integer The size of the first dimension of the matrix. M : integer or None The size of the second dimension of the matrix. If `M` is None, `M = N` is assumed. k : integer Number of subdiagonal below which matrix is filled with ones. `k` = 0 is the main diagonal, `k` < 0 subdiagonal and `k` > 0 superdiagonal. dtype : dtype Data type of the matrix. Returns ------- tri : (N, M) ndarray Tri matrix. Examples -------- >>> from scipy.linalg import tri >>> tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> tri(3, 5, -1, dtype=int) array([[0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 1, 0, 0, 0]]) """ if M is None: M = N if isinstance(M, string_types): #pearu: any objections to remove this feature? # As tri(N,'d') is equivalent to tri(N,dtype='d') dtype = M M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)), -k) if dtype is None: return m else: return m.astype(dtype) def tril(m, k=0): """ Make a copy of a matrix with elements above the k-th diagonal zeroed. Parameters ---------- m : array_like Matrix whose elements to return k : integer Diagonal above which to zero elements. `k` == 0 is the main diagonal, `k` < 0 subdiagonal and `k` > 0 superdiagonal. Returns ------- tril : ndarray Return is the same shape and type as `m`. Examples -------- >>> from scipy.linalg import tril >>> tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = np.asarray(m) out = tri(m.shape[0], m.shape[1], k=k, dtype=m.dtype.char) * m return out def triu(m, k=0): """ Make a copy of a matrix with elements below the k-th diagonal zeroed. Parameters ---------- m : array_like Matrix whose elements to return k : int, optional Diagonal below which to zero elements. `k` == 0 is the main diagonal, `k` < 0 subdiagonal and `k` > 0 superdiagonal. Returns ------- triu : ndarray Return matrix with zeroed elements below the k-th diagonal and has same shape and type as `m`. Examples -------- >>> from scipy.linalg import triu >>> triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = np.asarray(m) out = (1 - tri(m.shape[0], m.shape[1], k - 1, m.dtype.char)) * m return out def toeplitz(c, r=None): """ Construct a Toeplitz matrix. The Toeplitz matrix has constant diagonals, with c as its first column and r as its first row. If r is not given, ``r == conjugate(c)`` is assumed. Parameters ---------- c : array_like First column of the matrix. Whatever the actual shape of `c`, it will be converted to a 1-D array. r : array_like First row of the matrix. If None, ``r = conjugate(c)`` is assumed; in this case, if c[0] is real, the result is a Hermitian matrix. r[0] is ignored; the first row of the returned matrix is ``[c[0], r[1:]]``. Whatever the actual shape of `r`, it will be converted to a 1-D array. Returns ------- A : (len(c), len(r)) ndarray The Toeplitz matrix. Dtype is the same as ``(c[0] + r[0]).dtype``. See also -------- circulant : circulant matrix hankel : Hankel matrix Notes ----- The behavior when `c` or `r` is a scalar, or when `c` is complex and `r` is None, was changed in version 0.8.0. The behavior in previous versions was undocumented and is no longer supported. Examples -------- >>> from scipy.linalg import toeplitz >>> toeplitz([1,2,3], [1,4,5,6]) array([[1, 4, 5, 6], [2, 1, 4, 5], [3, 2, 1, 4]]) >>> toeplitz([1.0, 2+3j, 4-1j]) array([[ 1.+0.j, 2.-3.j, 4.+1.j], [ 2.+3.j, 1.+0.j, 2.-3.j], [ 4.-1.j, 2.+3.j, 1.+0.j]]) """ c = np.asarray(c).ravel() if r is None: r = c.conjugate() else: r = np.asarray(r).ravel() # Form a 1D array of values to be used in the matrix, containing a reversed # copy of r[1:], followed by c. vals = np.concatenate((r[-1:0:-1], c)) a, b = np.ogrid[0:len(c), len(r) - 1:-1:-1] indx = a + b # `indx` is a 2D array of indices into the 1D array `vals`, arranged so # that `vals[indx]` is the Toeplitz matrix. return vals[indx] def circulant(c): """ Construct a circulant matrix. Parameters ---------- c : (N,) array_like 1-D array, the first column of the matrix. Returns ------- A : (N, N) ndarray A circulant matrix whose first column is `c`. See also -------- toeplitz : Toeplitz matrix hankel : Hankel matrix Notes ----- .. versionadded:: 0.8.0 Examples -------- >>> from scipy.linalg import circulant >>> circulant([1, 2, 3]) array([[1, 3, 2], [2, 1, 3], [3, 2, 1]]) """ c = np.asarray(c).ravel() a, b = np.ogrid[0:len(c), 0:-len(c):-1] indx = a + b # `indx` is a 2D array of indices into `c`, arranged so that `c[indx]` is # the circulant matrix. return c[indx] def hankel(c, r=None): """ Construct a Hankel matrix. The Hankel matrix has constant anti-diagonals, with `c` as its first column and `r` as its last row. If `r` is not given, then `r = zeros_like(c)` is assumed. Parameters ---------- c : array_like First column of the matrix. Whatever the actual shape of `c`, it will be converted to a 1-D array. r : array_like Last row of the matrix. If None, ``r = zeros_like(c)`` is assumed. r[0] is ignored; the last row of the returned matrix is ``[c[-1], r[1:]]``. Whatever the actual shape of `r`, it will be converted to a 1-D array. Returns ------- A : (len(c), len(r)) ndarray The Hankel matrix. Dtype is the same as ``(c[0] + r[0]).dtype``. See also -------- toeplitz : Toeplitz matrix circulant : circulant matrix Examples -------- >>> from scipy.linalg import hankel >>> hankel([1, 17, 99]) array([[ 1, 17, 99], [17, 99, 0], [99, 0, 0]]) >>> hankel([1,2,3,4], [4,7,7,8,9]) array([[1, 2, 3, 4, 7], [2, 3, 4, 7, 7], [3, 4, 7, 7, 8], [4, 7, 7, 8, 9]]) """ c = np.asarray(c).ravel() if r is None: r = np.zeros_like(c) else: r = np.asarray(r).ravel() # Form a 1D array of values to be used in the matrix, containing `c` # followed by r[1:]. vals = np.concatenate((c, r[1:])) a, b = np.ogrid[0:len(c), 0:len(r)] indx = a + b # `indx` is a 2D array of indices into the 1D array `vals`, arranged so # that `vals[indx]` is the Hankel matrix. return vals[indx] def hadamard(n, dtype=int): """ Construct a Hadamard matrix. Constructs an n-by-n Hadamard matrix, using Sylvester's construction. `n` must be a power of 2. Parameters ---------- n : int The order of the matrix. `n` must be a power of 2. dtype : numpy dtype The data type of the array to be constructed. Returns ------- H : (n, n) ndarray The Hadamard matrix. Notes ----- .. versionadded:: 0.8.0 Examples -------- >>> from scipy.linalg import hadamard >>> hadamard(2, dtype=complex) array([[ 1.+0.j, 1.+0.j], [ 1.+0.j, -1.-0.j]]) >>> hadamard(4) array([[ 1, 1, 1, 1], [ 1, -1, 1, -1], [ 1, 1, -1, -1], [ 1, -1, -1, 1]]) """ # This function is a slightly modified version of the # function contributed by Ivo in ticket #675. if n < 1: lg2 = 0 else: lg2 = int(math.log(n, 2)) if 2 ** lg2 != n: raise ValueError("n must be an positive integer, and n must be " "a power of 2") H = np.array([[1]], dtype=dtype) # Sylvester's construction for i in range(0, lg2): H = np.vstack((np.hstack((H, H)), np.hstack((H, -H)))) return H def leslie(f, s): """ Create a Leslie matrix. Given the length n array of fecundity coefficients `f` and the length n-1 array of survival coefficents `s`, return the associated Leslie matrix. Parameters ---------- f : (N,) array_like The "fecundity" coefficients. s : (N-1,) array_like The "survival" coefficients, has to be 1-D. The length of `s` must be one less than the length of `f`, and it must be at least 1. Returns ------- L : (N, N) ndarray The array is zero except for the first row, which is `f`, and the first sub-diagonal, which is `s`. The data-type of the array will be the data-type of ``f[0]+s[0]``. Notes ----- .. versionadded:: 0.8.0 The Leslie matrix is used to model discrete-time, age-structured population growth [1]_ [2]_. In a population with `n` age classes, two sets of parameters define a Leslie matrix: the `n` "fecundity coefficients", which give the number of offspring per-capita produced by each age class, and the `n` - 1 "survival coefficients", which give the per-capita survival rate of each age class. References ---------- .. [1] P. H. Leslie, On the use of matrices in certain population mathematics, Biometrika, Vol. 33, No. 3, 183--212 (Nov. 1945) .. [2] P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, Vol. 35, No. 3/4, 213--245 (Dec. 1948) Examples -------- >>> from scipy.linalg import leslie >>> leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7]) array([[ 0.1, 2. , 1. , 0.1], [ 0.2, 0. , 0. , 0. ], [ 0. , 0.8, 0. , 0. ], [ 0. , 0. , 0.7, 0. ]]) """ f = np.atleast_1d(f) s = np.atleast_1d(s) if f.ndim != 1: raise ValueError("Incorrect shape for f. f must be one-dimensional") if s.ndim != 1: raise ValueError("Incorrect shape for s. s must be one-dimensional") if f.size != s.size + 1: raise ValueError("Incorrect lengths for f and s. The length" " of s must be one less than the length of f.") if s.size == 0: raise ValueError("The length of s must be at least 1.") tmp = f[0] + s[0] n = f.size a = np.zeros((n, n), dtype=tmp.dtype) a[0] = f a[list(range(1, n)), list(range(0, n - 1))] = s return a @np.deprecate def all_mat(*args): return list(map(np.matrix, args)) def kron(a, b): """ Kronecker product. The result is the block matrix:: a[0,0]*b a[0,1]*b ... a[0,-1]*b a[1,0]*b a[1,1]*b ... a[1,-1]*b ... a[-1,0]*b a[-1,1]*b ... a[-1,-1]*b Parameters ---------- a : (M, N) ndarray Input array b : (P, Q) ndarray Input array Returns ------- A : (M*P, N*Q) ndarray Kronecker product of `a` and `b`. Examples -------- >>> from numpy import array >>> from scipy.linalg import kron >>> kron(array([[1,2],[3,4]]), array([[1,1,1]])) array([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) """ if not a.flags['CONTIGUOUS']: a = np.reshape(a, a.shape) if not b.flags['CONTIGUOUS']: b = np.reshape(b, b.shape) o = np.outer(a, b) o = o.reshape(a.shape + b.shape) return np.concatenate(np.concatenate(o, axis=1), axis=1) def block_diag(*arrs): """ Create a block diagonal matrix from provided arrays. Given the inputs `A`, `B` and `C`, the output will have these arrays arranged on the diagonal:: [[A, 0, 0], [0, B, 0], [0, 0, C]] Parameters ---------- A, B, C, ... : array_like, up to 2-D Input arrays. A 1-D array or array_like sequence of length `n`is treated as a 2-D array with shape ``(1,n)``. Returns ------- D : ndarray Array with `A`, `B`, `C`, ... on the diagonal. `D` has the same dtype as `A`. Notes ----- If all the input arrays are square, the output is known as a block diagonal matrix. Examples -------- >>> from scipy.linalg import block_diag >>> A = [[1, 0], ... [0, 1]] >>> B = [[3, 4, 5], ... [6, 7, 8]] >>> C = [[7]] >>> block_diag(A, B, C) [[1 0 0 0 0 0] [0 1 0 0 0 0] [0 0 3 4 5 0] [0 0 6 7 8 0] [0 0 0 0 0 7]] >>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]]) array([[ 1., 0., 0., 0., 0.], [ 0., 2., 3., 0., 0.], [ 0., 0., 0., 4., 5.], [ 0., 0., 0., 6., 7.]]) """ if arrs == (): arrs = ([],) arrs = [np.atleast_2d(a) for a in arrs] bad_args = [k for k in range(len(arrs)) if arrs[k].ndim > 2] if bad_args: raise ValueError("arguments in the following positions have dimension " "greater than 2: %s" % bad_args) shapes = np.array([a.shape for a in arrs]) out = np.zeros(np.sum(shapes, axis=0), dtype=arrs[0].dtype) r, c = 0, 0 for i, (rr, cc) in enumerate(shapes): out[r:r + rr, c:c + cc] = arrs[i] r += rr c += cc return out def companion(a): """ Create a companion matrix. Create the companion matrix [1]_ associated with the polynomial whose coefficients are given in `a`. Parameters ---------- a : (N,) array_like 1-D array of polynomial coefficients. The length of `a` must be at least two, and ``a[0]`` must not be zero. Returns ------- c : (N-1, N-1) ndarray The first row of `c` is ``-a[1:]/a[0]``, and the first sub-diagonal is all ones. The data-type of the array is the same as the data-type of ``1.0*a[0]``. Raises ------ ValueError If any of the following are true: a) ``a.ndim != 1``; b) ``a.size < 2``; c) ``a[0] == 0``. Notes ----- .. versionadded:: 0.8.0 References ---------- .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7. Examples -------- >>> from scipy.linalg import companion >>> companion([1, -10, 31, -30]) array([[ 10., -31., 30.], [ 1., 0., 0.], [ 0., 1., 0.]]) """ a = np.atleast_1d(a) if a.ndim != 1: raise ValueError("Incorrect shape for `a`. `a` must be " "one-dimensional.") if a.size < 2: raise ValueError("The length of `a` must be at least 2.") if a[0] == 0: raise ValueError("The first coefficient in `a` must not be zero.") first_row = -a[1:] / (1.0 * a[0]) n = a.size c = np.zeros((n - 1, n - 1), dtype=first_row.dtype) c[0] = first_row c[list(range(1, n - 1)), list(range(0, n - 2))] = 1 return c def hilbert(n): """ Create a Hilbert matrix of order `n`. Returns the `n` by `n` array with entries `h[i,j] = 1 / (i + j + 1)`. Parameters ---------- n : int The size of the array to create. Returns ------- h : (n, n) ndarray The Hilbert matrix. See Also -------- invhilbert : Compute the inverse of a Hilbert matrix. Notes ----- .. versionadded:: 0.10.0 Examples -------- >>> from scipy.linalg import hilbert >>> hilbert(3) array([[ 1. , 0.5 , 0.33333333], [ 0.5 , 0.33333333, 0.25 ], [ 0.33333333, 0.25 , 0.2 ]]) """ values = 1.0 / (1.0 + np.arange(2 * n - 1)) h = hankel(values[:n], r=values[n - 1:]) return h def invhilbert(n, exact=False): """ Compute the inverse of the Hilbert matrix of order `n`. The entries in the inverse of a Hilbert matrix are integers. When `n` is greater than 14, some entries in the inverse exceed the upper limit of 64 bit integers. The `exact` argument provides two options for dealing with these large integers. Parameters ---------- n : int The order of the Hilbert matrix. exact : bool If False, the data type of the array that is returned is np.float64, and the array is an approximation of the inverse. If True, the array is the exact integer inverse array. To represent the exact inverse when n > 14, the returned array is an object array of long integers. For n <= 14, the exact inverse is returned as an array with data type np.int64. Returns ------- invh : (n, n) ndarray The data type of the array is np.float64 if `exact` is False. If `exact` is True, the data type is either np.int64 (for n <= 14) or object (for n > 14). In the latter case, the objects in the array will be long integers. See Also -------- hilbert : Create a Hilbert matrix. Notes ----- .. versionadded:: 0.10.0 Examples -------- >>> from scipy.linalg import invhilbert >>> invhilbert(4) array([[ 16., -120., 240., -140.], [ -120., 1200., -2700., 1680.], [ 240., -2700., 6480., -4200.], [ -140., 1680., -4200., 2800.]]) >>> invhilbert(4, exact=True) array([[ 16, -120, 240, -140], [ -120, 1200, -2700, 1680], [ 240, -2700, 6480, -4200], [ -140, 1680, -4200, 2800]], dtype=int64) >>> invhilbert(16)[7,7] 4.2475099528537506e+19 >>> invhilbert(16, exact=True)[7,7] 42475099528537378560L """ from scipy.special import comb if exact: if n > 14: dtype = object else: dtype = np.int64 else: dtype = np.float64 invh = np.empty((n, n), dtype=dtype) for i in xrange(n): for j in xrange(0, i + 1): s = i + j invh[i, j] = ((-1) ** s * (s + 1) * comb(n + i, n - j - 1, exact) * comb(n + j, n - i - 1, exact) * comb(s, i, exact) ** 2) if i != j: invh[j, i] = invh[i, j] return invh def pascal(n, kind='symmetric', exact=True): """ Returns the n x n Pascal matrix. The Pascal matrix is a matrix containing the binomial coefficients as its elements. Parameters ---------- n : int The size of the matrix to create; that is, the result is an n x n matrix. kind : str, optional Must be one of 'symmetric', 'lower', or 'upper'. Default is 'symmetric'. exact : bool, optional If `exact` is True, the result is either an array of type numpy.uint64 (if n < 35) or an object array of Python long integers. If `exact` is False, the coefficients in the matrix are computed using `scipy.special.comb` with `exact=False`. The result will be a floating point array, and the values in the array will not be the exact coefficients, but this version is much faster than `exact=True`. Returns ------- p : (n, n) ndarray The Pascal matrix. See Also -------- invpascal Notes ----- See http://en.wikipedia.org/wiki/Pascal_matrix for more information about Pascal matrices. .. versionadded:: 0.11.0 Examples -------- >>> from scipy.linalg import pascal >>> pascal(4) array([[ 1, 1, 1, 1], [ 1, 2, 3, 4], [ 1, 3, 6, 10], [ 1, 4, 10, 20]], dtype=uint64) >>> pascal(4, kind='lower') array([[1, 0, 0, 0], [1, 1, 0, 0], [1, 2, 1, 0], [1, 3, 3, 1]], dtype=uint64) >>> pascal(50)[-1, -1] 25477612258980856902730428600L >>> from scipy.special import comb >>> comb(98, 49, exact=True) 25477612258980856902730428600L """ from scipy.special import comb if kind not in ['symmetric', 'lower', 'upper']: raise ValueError("kind must be 'symmetric', 'lower', or 'upper'") if exact: if n >= 35: L_n = np.empty((n, n), dtype=object) L_n.fill(0) else: L_n = np.zeros((n, n), dtype=np.uint64) for i in range(n): for j in range(i + 1): L_n[i, j] = comb(i, j, exact=True) else: L_n = comb(*np.ogrid[:n, :n]) if kind is 'lower': p = L_n elif kind is 'upper': p = L_n.T else: p = np.dot(L_n, L_n.T) return p def invpascal(n, kind='symmetric', exact=True): """ Returns the inverse of the n x n Pascal matrix. The Pascal matrix is a matrix containing the binomial coefficients as its elements. Parameters ---------- n : int The size of the matrix to create; that is, the result is an n x n matrix. kind : str, optional Must be one of 'symmetric', 'lower', or 'upper'. Default is 'symmetric'. exact : bool, optional If `exact` is True, the result is either an array of type `numpy.int64` (if `n` <= 35) or an object array of Python integers. If `exact` is False, the coefficients in the matrix are computed using `scipy.special.comb` with `exact=False`. The result will be a floating point array, and for large `n`, the values in the array will not be the exact coefficients. Returns ------- invp : (n, n) ndarray The inverse of the Pascal matrix. See Also -------- pascal Notes ----- .. versionadded:: 0.16.0 References ---------- .. [1] "Pascal matrix", http://en.wikipedia.org/wiki/Pascal_matrix .. [2] Cohen, A. M., "The inverse of a Pascal matrix", Mathematical Gazette, 59(408), pp. 111-112, 1975. Examples -------- >>> from scipy.linalg import invpascal, pascal >>> invp = invpascal(5) >>> invp array([[ 5, -10, 10, -5, 1], [-10, 30, -35, 19, -4], [ 10, -35, 46, -27, 6], [ -5, 19, -27, 17, -4], [ 1, -4, 6, -4, 1]]) >>> p = pascal(5) >>> p.dot(invp) array([[ 1., 0., 0., 0., 0.], [ 0., 1., 0., 0., 0.], [ 0., 0., 1., 0., 0.], [ 0., 0., 0., 1., 0.], [ 0., 0., 0., 0., 1.]]) An example of the use of `kind` and `exact`: >>> invpascal(5, kind='lower', exact=False) array([[ 1., -0., 0., -0., 0.], [-1., 1., -0., 0., -0.], [ 1., -2., 1., -0., 0.], [-1., 3., -3., 1., -0.], [ 1., -4., 6., -4., 1.]]) """ from scipy.special import comb if kind not in ['symmetric', 'lower', 'upper']: raise ValueError("'kind' must be 'symmetric', 'lower' or 'upper'.") if kind == 'symmetric': if exact: if n > 34: dt = object else: dt = np.int64 else: dt = np.float64 invp = np.empty((n, n), dtype=dt) for i in range(n): for j in range(0, i + 1): v = 0 for k in range(n - i): v += comb(i + k, k, exact=exact) * comb(i + k, i + k - j, exact=exact) invp[i, j] = (-1)**(i - j) * v if i != j: invp[j, i] = invp[i, j] else: # For the 'lower' and 'upper' cases, we computer the inverse by # changing the sign of every other diagonal of the pascal matrix. invp = pascal(n, kind=kind, exact=exact) if invp.dtype == np.uint64: # This cast from np.uint64 to int64 OK, because if `kind` is not # "symmetric", the values in invp are all much less than 2**63. invp = invp.view(np.int64) # The toeplitz matrix has alternating bands of 1 and -1. invp *= toeplitz((-1)**np.arange(n)).astype(invp.dtype) return invp def dft(n, scale=None): """ Discrete Fourier transform matrix. Create the matrix that computes the discrete Fourier transform of a sequence [1]_. The n-th primitive root of unity used to generate the matrix is exp(-2*pi*i/n), where i = sqrt(-1). Parameters ---------- n : int Size the matrix to create. scale : str, optional Must be None, 'sqrtn', or 'n'. If `scale` is 'sqrtn', the matrix is divided by `sqrt(n)`. If `scale` is 'n', the matrix is divided by `n`. If `scale` is None (the default), the matrix is not normalized, and the return value is simply the Vandermonde matrix of the roots of unity. Returns ------- m : (n, n) ndarray The DFT matrix. Notes ----- When `scale` is None, multiplying a vector by the matrix returned by `dft` is mathematically equivalent to (but much less efficient than) the calculation performed by `scipy.fftpack.fft`. .. versionadded:: 0.14.0 References ---------- .. [1] "DFT matrix", http://en.wikipedia.org/wiki/DFT_matrix Examples -------- >>> np.set_printoptions(precision=5, suppress=True) >>> x = np.array([1, 2, 3, 0, 3, 2, 1, 0]) >>> m = dft(8) >>> m.dot(x) # Comute the DFT of x array([ 12.+0.j, -2.-2.j, 0.-4.j, -2.+2.j, 4.+0.j, -2.-2.j, -0.+4.j, -2.+2.j]) Verify that ``m.dot(x)`` is the same as ``fft(x)``. >>> from scipy.fftpack import fft >>> fft(x) # Same result as m.dot(x) array([ 12.+0.j, -2.-2.j, 0.-4.j, -2.+2.j, 4.+0.j, -2.-2.j, 0.+4.j, -2.+2.j]) """ if scale not in [None, 'sqrtn', 'n']: raise ValueError("scale must be None, 'sqrtn', or 'n'; " "%r is not valid." % (scale,)) omegas = np.exp(-2j * np.pi * np.arange(n) / n).reshape(-1, 1) m = omegas ** np.arange(n) if scale == 'sqrtn': m /= math.sqrt(n) elif scale == 'n': m /= n return m
bsd-3-clause
4,770,515,006,507,963,000
27.07622
79
0.508452
false
3.246798
false
false
false
rthouvenin/meteography
meteography/neighbors.py
1
2176
# -*- coding: utf-8 -*- """ Wrapper around sklearn k-neighbors estimators that can work in batches on pytables arrays (or other disk-backed arrays that support slicing) """ import numpy as np from sklearn.neighbors import NearestNeighbors as SKNN from meteography.dataset import PIXEL_TYPE class NearestNeighbors: BATCH_SIZE = 20 * 1024 * 1024 # 20 Mb def __init__(self, **kwargs): self.sknn = SKNN(1, algorithm='brute', **kwargs) def fit(self, X, y=None): self.X = X self.y = y self.batch_len = max(1, self.BATCH_SIZE // X.shape[1]) self.nb_batch = 0 self.batch = None if len(X) > 0: self._reset_nb_batch() def _reset_nb_batch(self): old = self.nb_batch self.nb_batch = len(self.X) // self.batch_len if len(self.X) % self.batch_len: self.nb_batch += 1 oldincr = (old > 1) incr = (self.nb_batch > 1) if self.batch is None or oldincr != incr: self.batch = np.empty((self.batch_len+incr, self.X.shape[1]), dtype=PIXEL_TYPE) return self.nb_batch def _get_batch(self, b, extra_row): start = b * self.batch_len end = min(start+self.batch_len, len(self.X)) actual_len = end - start self.batch[:actual_len] = self.X[start:end] has_extra = 0 if extra_row is not None: has_extra = 1 self.batch[actual_len] = self.X[extra_row] if actual_len+has_extra == self.batch.shape[0]: return self.batch else: return self.batch[:actual_len+has_extra] def predict(self, input_row): self._reset_nb_batch() nearest = None for b in range(self.nb_batch): batch = self._get_batch(b, nearest) self.sknn.fit(batch) i_batch = self.sknn.kneighbors([input_row], return_distance=False) i_batch = i_batch[0][0] if i_batch != (batch.shape[0]-1) or b == 0: nearest = b * self.batch_len + i_batch if self.y is None: return nearest return self.y[nearest]
mit
2,629,343,150,644,379,000
30.536232
78
0.554688
false
3.410658
false
false
false
nickretallack/babel
babel/messages/pofile.py
1
17024
# -*- coding: utf-8 -*- # # Copyright (C) 2007-2011 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://babel.edgewall.org/wiki/License. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://babel.edgewall.org/log/. """Reading and writing of files in the ``gettext`` PO (portable object) format. :see: `The Format of PO Files <http://www.gnu.org/software/gettext/manual/gettext.html#PO-Files>`_ """ import os import re from babel.messages.catalog import Catalog, Message from babel.util import wraptext from babel._compat import text_type __all__ = ['read_po', 'write_po'] def unescape(string): r"""Reverse `escape` the given string. >>> print unescape('"Say:\\n \\"hello, world!\\"\\n"') Say: "hello, world!" <BLANKLINE> :param string: the string to unescape :return: the unescaped string """ def replace_escapes(match): m = match.group(1) if m == 'n': return '\n' elif m == 't': return '\t' elif m == 'r': return '\r' # m is \ or " return m return re.compile(r'\\([\\trn"])').sub(replace_escapes, string[1:-1]) def denormalize(string): r"""Reverse the normalization done by the `normalize` function. >>> print denormalize(r'''"" ... "Say:\n" ... " \"hello, world!\"\n"''') Say: "hello, world!" <BLANKLINE> >>> print denormalize(r'''"" ... "Say:\n" ... " \"Lorem ipsum dolor sit " ... "amet, consectetur adipisicing" ... " elit, \"\n"''') Say: "Lorem ipsum dolor sit amet, consectetur adipisicing elit, " <BLANKLINE> :param string: the string to denormalize :return: the denormalized string :rtype: `unicode` or `str` """ if '\n' in string: escaped_lines = string.splitlines() if string.startswith('""'): escaped_lines = escaped_lines[1:] lines = map(unescape, escaped_lines) return ''.join(lines) else: return unescape(string) def read_po(fileobj, locale=None, domain=None, ignore_obsolete=False, charset=None): """Read messages from a ``gettext`` PO (portable object) file from the given file-like object and return a `Catalog`. >>> from datetime import datetime >>> from StringIO import StringIO >>> buf = StringIO(''' ... #: main.py:1 ... #, fuzzy, python-format ... msgid "foo %(name)s" ... msgstr "quux %(name)s" ... ... # A user comment ... #. An auto comment ... #: main.py:3 ... msgid "bar" ... msgid_plural "baz" ... msgstr[0] "bar" ... msgstr[1] "baaz" ... ''') >>> catalog = read_po(buf) >>> catalog.revision_date = datetime(2007, 04, 01) >>> for message in catalog: ... if message.id: ... print (message.id, message.string) ... print ' ', (message.locations, message.flags) ... print ' ', (message.user_comments, message.auto_comments) (u'foo %(name)s', u'quux %(name)s') ([(u'main.py', 1)], set([u'fuzzy', u'python-format'])) ([], []) ((u'bar', u'baz'), (u'bar', u'baaz')) ([(u'main.py', 3)], set([])) ([u'A user comment'], [u'An auto comment']) .. versionadded:: 1.0 Added support for explicit charset argument. :param fileobj: the file-like object to read the PO file from :param locale: the locale identifier or `Locale` object, or `None` if the catalog is not bound to a locale (which basically means it's a template) :param domain: the message domain :param ignore_obsolete: whether to ignore obsolete messages in the input :param charset: the character set of the catalog. :return: a catalog object representing the parsed PO file :rtype: `Catalog` """ catalog = Catalog(locale=locale, domain=domain, charset=charset) counter = [0] offset = [0] messages = [] translations = [] locations = [] flags = [] user_comments = [] auto_comments = [] obsolete = [False] context = [] in_msgid = [False] in_msgstr = [False] in_msgctxt = [False] def _add_message(): translations.sort() if len(messages) > 1: msgid = tuple([denormalize(m) for m in messages]) else: msgid = denormalize(messages[0]) if isinstance(msgid, (list, tuple)): string = [] for idx in range(catalog.num_plurals): try: string.append(translations[idx]) except IndexError: string.append((idx, '')) string = tuple([denormalize(t[1]) for t in string]) else: string = denormalize(translations[0][1]) if context: msgctxt = denormalize('\n'.join(context)) else: msgctxt = None message = Message(msgid, string, list(locations), set(flags), auto_comments, user_comments, lineno=offset[0] + 1, context=msgctxt) if obsolete[0]: if not ignore_obsolete: catalog.obsolete[msgid] = message else: catalog[msgid] = message del messages[:]; del translations[:]; del context[:]; del locations[:]; del flags[:]; del auto_comments[:]; del user_comments[:]; obsolete[0] = False counter[0] += 1 def _process_message_line(lineno, line): if line.startswith('msgid_plural'): in_msgid[0] = True msg = line[12:].lstrip() messages.append(msg) elif line.startswith('msgid'): in_msgid[0] = True offset[0] = lineno txt = line[5:].lstrip() if messages: _add_message() messages.append(txt) elif line.startswith('msgstr'): in_msgid[0] = False in_msgstr[0] = True msg = line[6:].lstrip() if msg.startswith('['): idx, msg = msg[1:].split(']', 1) translations.append([int(idx), msg.lstrip()]) else: translations.append([0, msg]) elif line.startswith('msgctxt'): if messages: _add_message() in_msgid[0] = in_msgstr[0] = False context.append(line[7:].lstrip()) elif line.startswith('"'): if in_msgid[0]: messages[-1] += u'\n' + line.rstrip() elif in_msgstr[0]: translations[-1][1] += u'\n' + line.rstrip() elif in_msgctxt[0]: context.append(line.rstrip()) for lineno, line in enumerate(fileobj.readlines()): line = line.strip() if not isinstance(line, text_type): line = line.decode(catalog.charset) if line.startswith('#'): in_msgid[0] = in_msgstr[0] = False if messages and translations: _add_message() if line[1:].startswith(':'): for location in line[2:].lstrip().split(): pos = location.rfind(':') if pos >= 0: try: lineno = int(location[pos + 1:]) except ValueError: continue locations.append((location[:pos], lineno)) elif line[1:].startswith(','): for flag in line[2:].lstrip().split(','): flags.append(flag.strip()) elif line[1:].startswith('~'): obsolete[0] = True _process_message_line(lineno, line[2:].lstrip()) elif line[1:].startswith('.'): # These are called auto-comments comment = line[2:].strip() if comment: # Just check that we're not adding empty comments auto_comments.append(comment) else: # These are called user comments user_comments.append(line[1:].strip()) else: _process_message_line(lineno, line) if messages: _add_message() # No actual messages found, but there was some info in comments, from which # we'll construct an empty header message elif not counter[0] and (flags or user_comments or auto_comments): messages.append(u'') translations.append([0, u'']) _add_message() return catalog WORD_SEP = re.compile('(' r'\s+|' # any whitespace r'[^\s\w]*\w+[a-zA-Z]-(?=\w+[a-zA-Z])|' # hyphenated words r'(?<=[\w\!\"\'\&\.\,\?])-{2,}(?=\w)' # em-dash ')') def escape(string): r"""Escape the given string so that it can be included in double-quoted strings in ``PO`` files. >>> escape('''Say: ... "hello, world!" ... ''') '"Say:\\n \\"hello, world!\\"\\n"' :param string: the string to escape :return: the escaped string """ return '"%s"' % string.replace('\\', '\\\\') \ .replace('\t', '\\t') \ .replace('\r', '\\r') \ .replace('\n', '\\n') \ .replace('\"', '\\"') def normalize(string, prefix='', width=76): r"""Convert a string into a format that is appropriate for .po files. >>> print normalize('''Say: ... "hello, world!" ... ''', width=None) "" "Say:\n" " \"hello, world!\"\n" >>> print normalize('''Say: ... "Lorem ipsum dolor sit amet, consectetur adipisicing elit, " ... ''', width=32) "" "Say:\n" " \"Lorem ipsum dolor sit " "amet, consectetur adipisicing" " elit, \"\n" :param string: the string to normalize :param prefix: a string that should be prepended to every line :param width: the maximum line width; use `None`, 0, or a negative number to completely disable line wrapping :return: the normalized string """ if width and width > 0: prefixlen = len(prefix) lines = [] for line in string.splitlines(True): if len(escape(line)) + prefixlen > width: chunks = WORD_SEP.split(line) chunks.reverse() while chunks: buf = [] size = 2 while chunks: l = len(escape(chunks[-1])) - 2 + prefixlen if size + l < width: buf.append(chunks.pop()) size += l else: if not buf: # handle long chunks by putting them on a # separate line buf.append(chunks.pop()) break lines.append(u''.join(buf)) else: lines.append(line) else: lines = string.splitlines(True) if len(lines) <= 1: return escape(string) # Remove empty trailing line if lines and not lines[-1]: del lines[-1] lines[-1] += '\n' return u'""\n' + u'\n'.join([(prefix + escape(l)) for l in lines]) def write_po(fileobj, catalog, width=76, no_location=False, omit_header=False, sort_output=False, sort_by_file=False, ignore_obsolete=False, include_previous=False): r"""Write a ``gettext`` PO (portable object) template file for a given message catalog to the provided file-like object. >>> catalog = Catalog() >>> catalog.add(u'foo %(name)s', locations=[('main.py', 1)], ... flags=('fuzzy',)) <Message...> >>> catalog.add((u'bar', u'baz'), locations=[('main.py', 3)]) <Message...> >>> from io import BytesIO >>> buf = BytesIO() >>> write_po(buf, catalog, omit_header=True) >>> print buf.getvalue() #: main.py:1 #, fuzzy, python-format msgid "foo %(name)s" msgstr "" <BLANKLINE> #: main.py:3 msgid "bar" msgid_plural "baz" msgstr[0] "" msgstr[1] "" <BLANKLINE> <BLANKLINE> :param fileobj: the file-like object to write to :param catalog: the `Catalog` instance :param width: the maximum line width for the generated output; use `None`, 0, or a negative number to completely disable line wrapping :param no_location: do not emit a location comment for every message :param omit_header: do not include the ``msgid ""`` entry at the top of the output :param sort_output: whether to sort the messages in the output by msgid :param sort_by_file: whether to sort the messages in the output by their locations :param ignore_obsolete: whether to ignore obsolete messages and not include them in the output; by default they are included as comments :param include_previous: include the old msgid as a comment when updating the catalog """ def _normalize(key, prefix=''): return normalize(key, prefix=prefix, width=width) def _write(text): if isinstance(text, text_type): text = text.encode(catalog.charset, 'backslashreplace') fileobj.write(text) def _write_comment(comment, prefix=''): # xgettext always wraps comments even if --no-wrap is passed; # provide the same behaviour if width and width > 0: _width = width else: _width = 76 for line in wraptext(comment, _width): _write('#%s %s\n' % (prefix, line.strip())) def _write_message(message, prefix=''): if isinstance(message.id, (list, tuple)): if message.context: _write('%smsgctxt %s\n' % (prefix, _normalize(message.context, prefix))) _write('%smsgid %s\n' % (prefix, _normalize(message.id[0], prefix))) _write('%smsgid_plural %s\n' % ( prefix, _normalize(message.id[1], prefix) )) for idx in range(catalog.num_plurals): try: string = message.string[idx] except IndexError: string = '' _write('%smsgstr[%d] %s\n' % ( prefix, idx, _normalize(string, prefix) )) else: if message.context: _write('%smsgctxt %s\n' % (prefix, _normalize(message.context, prefix))) _write('%smsgid %s\n' % (prefix, _normalize(message.id, prefix))) _write('%smsgstr %s\n' % ( prefix, _normalize(message.string or '', prefix) )) messages = list(catalog) if sort_output: messages.sort() elif sort_by_file: messages.sort(lambda x,y: cmp(x.locations, y.locations)) for message in messages: if not message.id: # This is the header "message" if omit_header: continue comment_header = catalog.header_comment if width and width > 0: lines = [] for line in comment_header.splitlines(): lines += wraptext(line, width=width, subsequent_indent='# ') comment_header = u'\n'.join(lines) _write(comment_header + u'\n') for comment in message.user_comments: _write_comment(comment) for comment in message.auto_comments: _write_comment(comment, prefix='.') if not no_location: locs = u' '.join([u'%s:%d' % (filename.replace(os.sep, '/'), lineno) for filename, lineno in message.locations]) _write_comment(locs, prefix=':') if message.flags: _write('#%s\n' % ', '.join([''] + sorted(message.flags))) if message.previous_id and include_previous: _write_comment('msgid %s' % _normalize(message.previous_id[0]), prefix='|') if len(message.previous_id) > 1: _write_comment('msgid_plural %s' % _normalize( message.previous_id[1] ), prefix='|') _write_message(message) _write('\n') if not ignore_obsolete: for message in catalog.obsolete.values(): for comment in message.user_comments: _write_comment(comment) _write_message(message, prefix='#~ ') _write('\n')
bsd-3-clause
6,471,569,443,023,267,000
34.101031
84
0.520266
false
4.112077
false
false
false
IDNoise/NoiseIDE
NoiseIDEPython/idn_snippet_completer.py
1
1650
import os from idn_completer import Completer import core import yaml class SnippetCompleter(Completer): def __init__(self, stc): Completer.__init__(self, stc) self.snippets = [] for path in [os.path.join(core.MainFrame.cwd, "data", "erlang", "ide_snippets.yaml"), os.path.join(core.MainFrame.cwd, "data", "erlang", "user_snippets.yaml"), os.path.join(core.Project.projectDir, "snippets.yaml")]: if os.path.exists(path): stream = file(path, 'r') data = yaml.load(stream) if data: self.snippets += data def OnUpdate(self, text, nextChar = None): self.list.Clear() core.Log(text) i = len(text) - 1 while i >= 0 and text[i].isalpha(): self.prefix += text[i] i -= 1 self.prefix = self.prefix[::-1] core.Log(self.prefix) for snippet in self.snippets: if self.prefix == "" or snippet['id'].startswith(self.prefix): self.list.Append(snippet['id'], snippet['desc'] + "<br/><br/>" + snippet['snippet']) def AutoComplete(self, text): snippet = "" for m in self.snippets: if m['id'] == text: snippet = m['snippet'] if not snippet: return startPos = self.stc.GetCurrentPos() - len(self.prefix) self.stc.SetSelectionStart(startPos) self.stc.SetSelectionEnd(self.stc.GetCurrentPos()) self.stc.ReplaceSelection(snippet) self.HideCompleter() self.stc.StartSnippetEditing(startPos, snippet)
gpl-2.0
3,293,013,052,869,466,000
32
100
0.555152
false
3.810624
false
false
false
activityhistory/TracesVisualizer
dayview/scripts/extract.py
1
8057
#!/usr/bin/python # -*- coding: utf-8 -*- # TESTING FILE made.by.a.fox. 12.2.15 # Updated by acrule 01.21.16 #FEATURE LIST # Y connect to db # Y write to file # Y Write JSON format # Accept input date parameter #KNOWN ISSUES # 2. no formatting or conversion of datetime stamps import re import os import sys import json import sqlite3 as lite import collections import time import datetime db_file = os.path.expanduser('~/.traces/traces.sqlite') #looks for db under ~/.traces con = lite.connect(db_file) with con: data = [] #master data container apps = [] #list of apps windows = [] # list of windows urls = [] appevents = [] #list of application events windowevents = [] #list of window events urlevents = [] exps = [] #list of experiences images = [] #list of screenshots words = [] #list of keywords cur = con.cursor() #SQL query strings appsSQL = "SELECT * FROM app" windowsSQL = "SELECT * FROM window" urlSQL = "SELECT * FROM url" activeappSQL = "SELECT a.id, a.app_id, a.event, a.time as startt, min(b.time) AS endt FROM appevent a, appevent b WHERE a.app_id = b.app_id AND a.event = 'Active' AND b.event in ('Inactive', 'Close') AND a.time < b.time AND a.time IS NOT NULL AND b.time IS NOT NULL GROUP BY startt" activewindowSQL = "SELECT a.id, a.window_id, a.event, a.time as startt, min(b.time) AS endt FROM windowevent a, windowevent b WHERE a.window_id = b.window_id AND a.event = 'Active' AND b.event in ('Inactive', 'Close') AND a.time < b.time AND a.time IS NOT NULL AND b.time IS NOT NULL GROUP BY startt" activeurlSQL = "SELECT a.id, a.url_id, a.app_id, a.window_id, a.event, a.time as startt, min(b.time) AS endt FROM urlevent a, urlevent b WHERE a.url_id = b.url_id AND a.window_id = b.window_id AND a.app_id = b.app_id AND a.event = 'Active' AND b.event in ('Inactive', 'Close') AND a.time < b.time AND a.time IS NOT NULL AND b.time IS NOT NULL GROUP BY startt" experienceSQL = "SELECT * FROM experience" wordsSQL = "SELECT * FROM keys" #GET list of applications cur.execute(appsSQL) rows = cur.fetchall() for row in rows: a = collections.OrderedDict() a['id'] = row[0] a['time'] = row[1] a['name'] = row[2] apps.append(a) #GET list of windows cur.execute(windowsSQL) rows = cur.fetchall() for row in rows: w = collections.OrderedDict() w['id'] = row[0] w['time'] = row[1] w['name'] = row[2] w['app'] = row[3] windows.append(w) #GET list of urls cur.execute(urlSQL) rows = cur.fetchall() for row in rows: u = collections.OrderedDict() u['id'] = row[0] u['time'] = row[1] u['title'] = row[2] u['url'] = row[3] u['host'] = row[4] urls.append(u) #GET list intervals for primary application cur.execute(activeappSQL) rows = cur.fetchall() for row in rows: a = collections.OrderedDict() a['id'] = row[0] a['appid'] = row[1] a['event'] = row[2] a['start'] = row[3] a['end'] = row[4] appevents.append(a) #GET list intervals for primary window cur.execute(activewindowSQL) rows = cur.fetchall() for row in rows: w = collections.OrderedDict() w['id'] = row[0] w['windowid'] = row[1] w['appid'] = (item for item in windows if item["id"] == row[1]).next()['app'] w['event'] = row[2] w['start'] = row[3] w['end'] = row[4] windowevents.append(w) #GET list intervals for urls cur.execute(activeurlSQL) rows = cur.fetchall() for row in rows: u = collections.OrderedDict() u['id'] = row[0] u['urlid'] = row[1] u['appid'] = row[2] u['windowid'] = row[3] u['event'] = row[4] u['start'] = row[5] u['end'] = row[6] urlevents.append(u) #GET list of experiences cur.execute(experienceSQL) rows = cur.fetchall() for row in rows: a = collections.OrderedDict() a['id'] = row[0] a['text'] = row[2] exps.append(a) #GET list of screenshots image_dir = os.path.expanduser('~/.traces/screenshots') #looks for db under ~/.traces for y in os.listdir(image_dir): y_dir = os.path.join(image_dir,y) if not os.path.isdir(y_dir): continue for m in os.listdir(y_dir): m_dir = os.path.join(y_dir, m) if not os.path.isdir(m_dir): continue for d in os.listdir(m_dir): d_dir = os.path.join(m_dir, d) if not os.path.isdir(d_dir): continue for h in os.listdir(d_dir): h_dir = os.path.join(d_dir, h) if not os.path.isdir(h_dir): continue h_images = os.listdir(h_dir) for image in h_images: #make sure the file is an image if image[-4:] == '.jpg': i = collections.OrderedDict() image_time = datetime.datetime.strptime(image[0:19], '%y%m%d-%H%M%S%f') i['time'] = (image_time - datetime.datetime(1970,1,1)).total_seconds() + time.timezone #add timezone offset i['image'] = os.path.join("screenshots", y, m, d, h, image) images.append(i) #GET keywords cmd_rows = [] newWord = ['Enter','Left','Right','Up','Down','Tab','Escape', ' '] starttime = 0.0 app = 0 window = 0 s = '' cur.execute(wordsSQL) rows = cur.fetchall() for row in rows: if 'Cmd' in row[3]: cmd_rows.append(row) else: text = str(row[2]) # if its a char indicating a new word, save our text token if text in newWord: # save our data if len(s) > 0: k = collections.OrderedDict() k['time'] = starttime #datetime.datetime.fromtimestamp(starttime).strftime("%H:%M %m/%d/%y") k['text'] = s #just pass the whole string for now k['app'] = app k['window'] = window words.append(k) #reset tracking time starttime = float(row[1]) s = '' # if its a regular char on the same window, just keep building the string elif int(row[5]) == window: # and float(row[1]) - time <= 300.0: if text == 'Backspace': s = s[:-1] else: s += row[2] #else its a regular char but we switched windows, save the data else: if len(s) > 0: k = collections.OrderedDict() k['time'] = starttime #datetime.datetime.fromtimestamp(starttime).strftime("%H:%M %m/%d/%y") k['text'] = s #just pass teh whole string for now k['app'] = app k['window'] = window words.append(k) #reset tracking variables window = int(row[5]) app = int(row[4]) starttime = float(row[1]) #write the character to start the next word if text in newWord or text == 'Backspace': s = '' else: s = row[2] #ASSEMBLE apps and experince into json d = collections.OrderedDict() d['apps']=apps d['window']=windows d['url']=urls d['appevents']=appevents d['windowevents']=windowevents d['urlevents']=urlevents d['exps']=exps d['images']=images d['words']=words data = d #WRITE file file = 'extract.json' z = open(file,'w') z.writelines(json.dumps(data))
gpl-2.0
-7,282,651,105,888,489,000
32.995781
363
0.52563
false
3.550903
false
false
false
solanolabs/rply
rply/parser.py
1
2619
from rply.errors import ParsingError class LRParser(object): def __init__(self, lr_table, error_handler): self.lr_table = lr_table self.error_handler = error_handler def parse(self, tokenizer, state=None): from rply.token import Token lookahead = None lookaheadstack = [] statestack = [0] symstack = [Token("$end", None)] current_state = 0 while True: if lookahead is None: if lookaheadstack: lookahead = lookaheadstack.pop() else: lookahead = tokenizer.next() if lookahead is None: lookahead = Token("$end", None) ltype = lookahead.gettokentype() if ltype in self.lr_table.lr_action[current_state]: t = self.lr_table.lr_action[current_state][ltype] if t > 0: statestack.append(t) current_state = t symstack.append(lookahead) lookahead = None continue elif t < 0: # reduce a symbol on the stack and emit a production p = self.lr_table.grammar.productions[-t] pname = p.name plen = p.getlength() start = len(symstack) + (-plen - 1) assert start >= 0 targ = symstack[start:] del targ[0] start = len(symstack) + (-plen) assert start >= 0 del symstack[start:] del statestack[start:] if state is None: value = p.func(targ) else: value = p.func(state, targ) symstack.append(value) current_state = self.lr_table.lr_goto[statestack[-1]][pname] statestack.append(current_state) continue else: n = symstack[-1] return n else: # TODO: actual error handling here if self.error_handler is not None: if state is None: self.error_handler(lookahead) else: self.error_handler(state, lookahead) raise AssertionError("For now, error_handler must raise.") else: raise ParsingError(lookahead.getsourcepos())
bsd-3-clause
457,821,966,247,470,600
35.887324
80
0.450554
false
5.196429
false
false
false
cortesi/pry
libpry/explain.py
1
3089
""" A module for printing "nice" messages from assertion statements. """ import tokenize, parser class _Wrap: def __init__(self, *lines): self.lines = list(lines) def __call__(self): if not self.lines: raise StopIteration else: return self.lines.pop(0) class Expression: def __init__(self, s): self.s = s.strip() def show(self, glob, loc): try: return repr(eval(self.s, glob, loc)) except SyntaxError, v: return "<could not be evaluated>" def __eq__(self, other): return self.s == other.s class Explain: _specialOps = set(["==", "!=", "<", ">", ]) _specialNames = set(["not", "and", "or"]) def __init__(self, expr=None, glob=None, loc=None): self.expr, self.glob, self.loc = expr, glob, loc if self.expr: self.parsed, self.expr = self.parseExpression(self.expr) def parseExpression(self, expr): """ Parses an expression into components. It understands the following delimiters: ==, !=, >, <, not, and, or In each of these cases, the variables "x" and "y" will be evaluated. Discards the second (message) clause of an assertion expression. Returns None if the expression could not be interpreted. """ nest = 0 rem = expr # A list of (str, start, end) tuples. delimiters = [] try: for i in list(tokenize.generate_tokens(_Wrap(expr))): name, txt = tokenize.tok_name[i[0]], i[1] start, end = i[2][1], i[3][1] if name == "OP" and (txt == "(" or txt == "["): nest += 1 elif name == "OP" and (txt == ")" or txt == "]"): nest -= 1 elif nest == 0: if name == "OP" and txt in self._specialOps: delimiters.append((txt, start, end)) elif name == "NAME" and txt in self._specialNames: delimiters.append((txt, start, end)) elif name == "OP" and txt == ",": rem = expr[:start] break except tokenize.TokenError: return None, None if delimiters: ret = [] cur = 0 for s, start, end in delimiters: if start > cur: ret.append(Expression(rem[cur:start])) ret.append(s) cur = end ret.append(Expression(rem[end:])) return ret, rem else: return [Expression(rem)], rem def __str__(self): l = [] l.append(" :: Re-evaluating expression:\n") l.append(" :: %s\n"%self.expr) l.append(" ::") for i in self.parsed: if isinstance(i, Expression): l.append(i.show(self.glob, self.loc)) else: l.append(i) return " ".join(l)
mit
6,707,783,616,712,852,000
31.861702
80
0.471997
false
4.179973
false
false
false
ThomasMarcel/selection-naturelle
user/models.py
1
1507
import json import logging from google.appengine.ext import ndb from lib import tools default_permissions = {'reader': 0, 'administrator': 0} class User(ndb.Model): username = ndb.StringProperty() email = ndb.StringProperty() password=ndb.StringProperty() first_name = ndb.StringProperty() last_name = ndb.StringProperty() permissions = ndb.JsonProperty(default=json.dumps(default_permissions)) active = ndb.BooleanProperty(default=False) notes = ndb.TextProperty() created = ndb.DateTimeProperty(auto_now_add=True) modified = ndb.DateTimeProperty(auto_now=True) @classmethod def get_by_username(cls, username): return cls.query(cls.username == username).get() @classmethod def get_by_email(cls, email): return cls.query(cls.email == email).get() @classmethod def reset_permissions(cls): cls.permissions = json.dumps(default_permissions) @classmethod def get_by_urlkey(cls, userkey): return cls.query(User.key == ndb.Key(urlsafe = userkey)).get() def to_dict(cls): return { 'key': cls.key, 'username': cls.username, 'email': cls.email, 'password': cls.password, 'first_name': cls.first_name, 'last_name': cls.last_name, 'permissions': cls.permissions, 'active': cls.active, 'notes': cls.notes, 'created': cls.created, 'modified': cls.modified }
apache-2.0
-5,442,921,198,355,938,000
28
75
0.624419
false
3.924479
false
false
false
viz4biz/PyDataNYC2015
enaml/mpl_canvas.py
1
2532
#------------------------------------------------------------------------------ # Copyright (c) 2013, Nucleic Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #------------------------------------------------------------------------------ from atom.api import Typed, ForwardTyped, Bool, observe, set_default, Value, List, Enum from enaml.core.declarative import d_ from .control import Control, ProxyControl #: Delay the import of matplotlib until needed. This removes the hard #: dependecy on matplotlib for the rest of the Enaml code base. def Figure(): from matplotlib.figure import Figure return Figure class ProxyMPLCanvas(ProxyControl): """ The abstract definition of a proxy MPLCanvas object. """ #: A reference to the MPLCanvas declaration. declaration = ForwardTyped(lambda: MPLCanvas) def set_figure(self, figure): raise NotImplementedError def set_toolbar_visible(self, visible): raise NotImplementedError def set_toolbar_location(self, location): raise NotImplementedError def set_event_actions(self, actions): raise NotImplementedError def draw(self): raise NotImplementedError class MPLCanvas(Control): """ A control which can be used to embded a matplotlib figure. """ #: The matplotlib figure to display in the widget. figure = d_(ForwardTyped(Figure)) #: Whether or not the matplotlib figure toolbar is visible. toolbar_visible = d_(Bool(False)) toolbar_location = d_(Enum('top', 'bottom')) event_actions = d_(List(Value())) #: Matplotlib figures expand freely in height and width by default. hug_width = set_default('ignore') hug_height = set_default('ignore') #: A reference to the ProxyMPLCanvas object. proxy = Typed(ProxyMPLCanvas) def draw(self): """ Request draw on the Figure """ if self.proxy_is_active: self.proxy.draw() #-------------------------------------------------------------------------- # Observers #-------------------------------------------------------------------------- @observe('figure', 'toolbar_visible', 'toolbar_location', 'event_actions') def _update_proxy(self, change): """ An observer which sends state change to the proxy. """ # The superclass handler implementation is sufficient. super(MPLCanvas, self)._update_proxy(change)
apache-2.0
-4,969,528,589,405,369,000
31.050633
87
0.600711
false
4.813688
false
false
false
LiGhT1EsS/cobra
cobra/scheduler/report.py
1
4364
# -*- coding: utf-8 -*- """ scheduler.report ~~~~~~~~~~~~~~~~ Implements automation report Cobra data :author: Feei <feei@feei.cn> :homepage: https://github.com/wufeifei/cobra :license: MIT, see LICENSE for more details. :copyright: Copyright (c) 2017 Feei. All rights reserved """ import os import subprocess import base64 import datetime from cobra.utils.log import logging from cobra.utils.config import Config import smtplib from smtplib import SMTPException from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart logging = logging.getLogger(__name__) phantomjs = '/usr/local/bin/phantomjs' time_types = ['w', 'm', 'q'] time_type_des = { 'w': '周', 'm': '月', 'q': '季' } class Report(object): def __init__(self, time_type, month=None): if time_type not in time_types: logging.critical('Time type exception') return self.time_type_de = time_type_des[time_type] # mail mark = '' if month is None: c_month = int(datetime.datetime.today().strftime("%m")) else: c_month = int(month) if time_type == 'w': c_week = int(datetime.datetime.today().strftime("%U")) mark = 'W{week}'.format(week=c_week) elif time_type == 'm': mark = 'M{month}'.format(month=c_month) elif time_type == 'q': c_quarter = 0 if c_month in [1, 2, 3]: c_quarter = 1 elif c_month in [4, 5, 6]: c_quarter = 2 elif c_month in [7, 8, 9]: c_quarter = 3 elif c_month in [10, 11, 12]: c_quarter = 4 mark = 'Q{quarter}'.format(quarter=c_quarter) self.subject = '[Cobra] 代码安全{0}报({mark})'.format(self.time_type_de, mark=mark) self.user = Config('email', 'user').value self.name = Config('email', 'name').value self.to = Config('report', 'to').value self.host = Config('email', 'host').value self.port = Config('email', 'port').value self.password = Config('email', 'password').value self.param = [phantomjs, os.path.join(Config().project_directory, 'scheduler', 'report.js'), Config().project_directory, time_type] if month is not None: self.param.append(month) def run(self): capture = self.capture() if capture is False: logging.critical('Capture failed') return False # send notification if self.notification(capture): return True else: logging.critical('Notification failed') return False def capture(self): """ Use PhantomJS to capture report page :return: boolean """ capture = None p = subprocess.Popen(self.param, stdout=subprocess.PIPE) result, err = p.communicate() if 'Critical' in result: logging.critical('Capture exception') return False lines = result.split('\n') for l in lines: if 'reports' in l: capture = l.split(':')[1].strip() if capture is None: logging.critical('get capture image file failed') return False else: return os.path.join(Config().project_directory, capture) def notification(self, capture_path): """ Email notification :param capture_path: :return: boolean """ msg = MIMEMultipart() msg['Subject'] = self.subject msg['From'] = '{0}<{1}>'.format(self.name, self.user) msg['To'] = self.to with open(capture_path, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()) text = MIMEText('<img src="data:image/png;base64,{0}">'.format(encoded_string), 'html') msg.attach(text) try: s = smtplib.SMTP(self.host, self.port) s.ehlo() s.starttls() s.ehlo() s.login(self.user, self.password) s.sendmail(self.user, self.to, msg.as_string()) s.quit() return True except SMTPException: logging.critical('Send mail failed') return False
mit
8,891,019,861,325,576,000
29.405594
139
0.548298
false
3.844385
true
false
false
AlexStarov/Shop
applications/delivery2/migrations/0002_auto_20161124_2123.py
1
4727
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import applications.delivery2.models class Migration(migrations.Migration): dependencies = [ ('delivery2', '0001_initial'), ] operations = [ migrations.CreateModel( name='EmailImageTemplate', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('url', models.CharField(max_length=256, verbose_name='\u041f\u0443\u0442\u044c')), ('image', models.ImageField(upload_to=applications.delivery2.models.upload_to, null=True, verbose_name='\u0418\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u0435', blank=True)), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='\u0414\u0430\u0442\u0430 \u0441\u043e\u0437\u0434\u0430\u043d\u0438\u044f', null=True)), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='\u0414\u0430\u0442\u0430 \u043e\u0431\u043d\u043e\u0432\u043b\u0435\u043d\u0438\u044f', null=True)), ], options={ 'ordering': ['-created_at'], 'db_table': 'Delivery2_EmailImageTemplate', 'verbose_name': '\u0418\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u0435 \u0432 \u043f\u0438\u0441\u044c\u043c\u0435', 'verbose_name_plural': '\u0418\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u044f \u0432 \u043f\u0438\u0441\u044c\u043c\u0435', }, ), migrations.CreateModel( name='EmailSubject', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('subject', models.CharField(default='\u0422\u0435\u043c\u0430', max_length=256, verbose_name='\u0422\u0435\u043c\u0430 \u043f\u0438\u0441\u044c\u043c\u0430')), ('chance', models.DecimalField(default=1, verbose_name='\u0412\u0435\u0440\u043e\u044f\u0442\u043d\u043e\u0441\u0442\u044c', max_digits=4, decimal_places=2)), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='\u0414\u0430\u0442\u0430 \u0441\u043e\u0437\u0434\u0430\u043d\u0438\u044f', null=True)), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='\u0414\u0430\u0442\u0430 \u043e\u0431\u043d\u043e\u0432\u043b\u0435\u043d\u0438\u044f', null=True)), ], options={ 'ordering': ['-created_at'], 'db_table': 'Delivery2_EmailSubject', 'verbose_name': '\u0422\u0435\u043c\u0430', 'verbose_name_plural': '\u0422\u0435\u043c\u044b', }, ), migrations.RemoveField( model_name='subject', name='delivery', ), migrations.RemoveField( model_name='delivery', name='template', ), migrations.AddField( model_name='emailtemplate', name='name', field=models.CharField(null=True, default=b'<built-in method now of type object at 0x83c4c20>', max_length=64, blank=True, unique=True, verbose_name='\u041d\u0430\u0437\u0432\u0430\u043d\u0438\u0435'), ), migrations.AlterField( model_name='delivery', name='task_id', field=models.CharField(max_length=255, null=True, verbose_name='task id', blank=True), ), migrations.AlterField( model_name='emailtemplate', name='template', field=models.FileField(upload_to=applications.delivery2.models.upload_to, null=True, verbose_name='\u0428\u0430\u0431\u043b\u043e\u043d', blank=True), ), migrations.AlterField( model_name='message', name='subject', field=models.ForeignKey(verbose_name='\u0423\u043a\u0430\u0437\u0430\u0442\u0435\u043b\u044c \u043d\u0430 subject', blank=True, to='delivery2.EmailSubject', null=True), ), migrations.AlterModelTable( name='emailtemplate', table='Delivery2_EmailTemplate', ), migrations.DeleteModel( name='Subject', ), migrations.AddField( model_name='emailsubject', name='delivery', field=models.ForeignKey(to='delivery2.Delivery'), ), migrations.AddField( model_name='emailimagetemplate', name='template', field=models.ForeignKey(related_name='images', verbose_name='\u0428\u0430\u0431\u043b\u043e\u043d', to='delivery2.EmailTemplate'), ), ]
apache-2.0
-7,083,899,874,331,063,000
50.380435
213
0.609477
false
3.357244
false
false
false
mammix2/ccoin-dev
contrib/pyminer/pyminer.py
1
6435
#!/usr/bin/python # # Copyright (c) 2011 The Bitcoin developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # import time import json import pprint import hashlib import struct import re import base64 import httplib import sys from multiprocessing import Process ERR_SLEEP = 15 MAX_NONCE = 1000000L settings = {} pp = pprint.PrettyPrinter(indent=4) class BitcoinRPC: OBJID = 1 def __init__(self, host, port, username, password): authpair = "%s:%s" % (username, password) self.authhdr = "Basic %s" % (base64.b64encode(authpair)) self.conn = httplib.HTTPConnection(host, port, False, 30) def rpc(self, method, params=None): self.OBJID += 1 obj = { 'version' : '1.1', 'method' : method, 'id' : self.OBJID } if params is None: obj['params'] = [] else: obj['params'] = params self.conn.request('POST', '/', json.dumps(obj), { 'Authorization' : self.authhdr, 'Content-type' : 'application/json' }) resp = self.conn.getresponse() if resp is None: print "JSON-RPC: no response" return None body = resp.read() resp_obj = json.loads(body) if resp_obj is None: print "JSON-RPC: cannot JSON-decode body" return None if 'error' in resp_obj and resp_obj['error'] != None: return resp_obj['error'] if 'result' not in resp_obj: print "JSON-RPC: no result in object" return None return resp_obj['result'] def getblockcount(self): return self.rpc('getblockcount') def getwork(self, data=None): return self.rpc('getwork', data) def uint32(x): return x & 0xffffffffL def bytereverse(x): return uint32(( ((x) << 24) | (((x) << 8) & 0x00ff0000) | (((x) >> 8) & 0x0000ff00) | ((x) >> 24) )) def bufreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): word = struct.unpack('@I', in_buf[i:i+4])[0] out_words.append(struct.pack('@I', bytereverse(word))) return ''.join(out_words) def wordreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): out_words.append(in_buf[i:i+4]) out_words.reverse() return ''.join(out_words) class Miner: def __init__(self, id): self.id = id self.max_nonce = MAX_NONCE def work(self, datastr, targetstr): # decode work data hex string to binary static_data = datastr.decode('hex') static_data = bufreverse(static_data) # the first 76b of 80b do not change blk_hdr = static_data[:76] # decode 256-bit target value targetbin = targetstr.decode('hex') targetbin = targetbin[::-1] # byte-swap and dword-swap targetbin_str = targetbin.encode('hex') target = long(targetbin_str, 16) # pre-hash first 76b of block header static_hash = hashlib.sha256() static_hash.update(blk_hdr) for nonce in xrange(self.max_nonce): # encode 32-bit nonce value nonce_bin = struct.pack("<I", nonce) # hash final 4b, the nonce value hash1_o = static_hash.copy() hash1_o.update(nonce_bin) hash1 = hash1_o.digest() # sha256 hash of sha256 hash hash_o = hashlib.sha256() hash_o.update(hash1) hash = hash_o.digest() # quick test for winning solution: high 32 bits zero? if hash[-4:] != '\0\0\0\0': continue # convert binary hash to 256-bit Python long hash = bufreverse(hash) hash = wordreverse(hash) hash_str = hash.encode('hex') l = long(hash_str, 16) # proof-of-work test: hash < target if l < target: print time.asctime(), "PROOF-OF-WORK found: %064x" % (l,) return (nonce + 1, nonce_bin) else: print time.asctime(), "PROOF-OF-WORK false positive %064x" % (l,) # return (nonce + 1, nonce_bin) return (nonce + 1, None) def submit_work(self, rpc, original_data, nonce_bin): nonce_bin = bufreverse(nonce_bin) nonce = nonce_bin.encode('hex') solution = original_data[:152] + nonce + original_data[160:256] param_arr = [ solution ] result = rpc.getwork(param_arr) print time.asctime(), "--> Upstream RPC result:", result def iterate(self, rpc): work = rpc.getwork() if work is None: time.sleep(ERR_SLEEP) return if 'data' not in work or 'target' not in work: time.sleep(ERR_SLEEP) return time_start = time.time() (hashes_done, nonce_bin) = self.work(work['data'], work['target']) time_end = time.time() time_diff = time_end - time_start self.max_nonce = long( (hashes_done * settings['scantime']) / time_diff) if self.max_nonce > 0xfffffffaL: self.max_nonce = 0xfffffffaL if settings['hashmeter']: print "HashMeter(%d): %d hashes, %.2f Khash/sec" % ( self.id, hashes_done, (hashes_done / 1000.0) / time_diff) if nonce_bin is not None: self.submit_work(rpc, work['data'], nonce_bin) def loop(self): rpc = BitcoinRPC(settings['host'], settings['port'], settings['rpcuser'], settings['rpcpass']) if rpc is None: return while True: self.iterate(rpc) def miner_thread(id): miner = Miner(id) miner.loop() if __name__ == '__main__': if len(sys.argv) != 2: print "Usage: pyminer.py CONFIG-FILE" sys.exit(1) f = open(sys.argv[1]) for line in f: # skip comment lines m = re.search('^\s*#', line) if m: continue # parse key=value lines m = re.search('^(\w+)\s*=\s*(\S.*)$', line) if m is None: continue settings[m.group(1)] = m.group(2) f.close() if 'host' not in settings: settings['host'] = '127.0.0.1' if 'port' not in settings: settings['port'] = 10464 if 'threads' not in settings: settings['threads'] = 1 if 'hashmeter' not in settings: settings['hashmeter'] = 0 if 'scantime' not in settings: settings['scantime'] = 30L if 'rpcuser' not in settings or 'rpcpass' not in settings: print "Missing username and/or password in cfg file" sys.exit(1) settings['port'] = int(settings['port']) settings['threads'] = int(settings['threads']) settings['hashmeter'] = int(settings['hashmeter']) settings['scantime'] = long(settings['scantime']) thr_list = [] for thr_id in range(settings['threads']): p = Process(target=miner_thread, args=(thr_id,)) p.start() thr_list.append(p) time.sleep(1) # stagger threads print settings['threads'], "mining threads started" print time.asctime(), "Miner Starts - %s:%s" % (settings['host'], settings['port']) try: for thr_proc in thr_list: thr_proc.join() except KeyboardInterrupt: pass print time.asctime(), "Miner Stops - %s:%s" % (settings['host'], settings['port'])
mit
8,596,083,419,467,708,000
24.535714
84
0.648951
false
2.83106
false
false
false
John-Lin/invoice-net
website.py
1
1459
#!/usr/bin/env python # -*- coding: UTF-8 -*- from bottle import route, run, template, view #from bottle import jinja2_view from invoice_prize import * @route('/hello') def hello(): return "Hello World!" @route('/invoice') @view('invoice_template') def invoive(): (results, date) = get_result() date = date[0].decode('UTF-8') special = prize(results, 0) first = prize(results, 1) second = prize(results, 2) third = prize(results, 3) fourth = prize(results, 4) fifth = prize(results, 5) sixth = prize(results, 6) sixth_plus = prize(results, 7) special2 = prize(results, 8) return dict(date=date, special2=special2, special=special, first=first, second=second, third=third, fourth=fourth, fifth=fifth, sixth=sixth, sixth_plus=sixth_plus) @route('/invoice_M') @view('invoiceM_template') def invoive(): (results, date) = get_result() date = date[0].decode('UTF-8') special = prize(results, 0) first = prize(results, 1) second = prize(results, 2) third = prize(results, 3) fourth = prize(results, 4) fifth = prize(results, 5) sixth = prize(results, 6) sixth_plus = prize(results, 7) special2 = prize(results, 8) return dict(date=date, special2=special2, special=special, first=first, second=second, third=third, fourth=fourth, fifth=fifth, sixth=sixth, sixth_plus=sixth_plus) run(host='localhost', port=8080, debug=True, reloader=True)
mit
5,745,852,764,212,994,000
27.607843
62
0.655243
false
2.965447
false
false
false
jeonghoonkang/BerePi
apps/data.go.kr/get_public_micro_particle.py
1
3613
# -*- coding: utf-8 -*- # Author : https://github.com/kmlee408 # https://github.com/jeonghoonkang ''' 부산 URL= http://openapi.airkorea.or.kr/openapi/services/rest/ArpltnInforInqireSvc/getCtprvnRltmMesureDnsty?serviceKey=fCRWi0DoCfoCPMHyDwai3trva10y4qb8mh9aysoHzvLKDWw6Q2bWOsvuM4%2BsRdvE4dPiKqBFD7vj7%2FM2noCe2g%3D%3D&ver=1.3&pageSize=10&pageNo=1&sidoName=%EB%B6%80%EC%82%B0&startPage=1&numOfRows=100 실행 방법= $python mdust_pusan.py (지역을 바꾸고 싶으면 misaemunji 함수 안에 location = '경기' 와 같은 식으로 변경) (측정 가능 지역: 서울, 부산, 대구, 인천, 광주, 대전, 울산, 경기, 강원, 충북, 충남, 전북, 전남, 경북, 경남, 제주, 세종) ''' import requests from urllib import urlencode, quote_plus from bs4 import BeautifulSoup import pandas as pd import keytxt # 서비스키는 data.go.kr 에서 받아야 함 # https://www.data.go.kr/dataset/15000581/openapi.do?mypageFlag=Y service_key = keytxt.key def misaemunji(service_key, location=None, spot=None): #location으로 가능한 것: 서울, 부산, 대구, 인천, 광주, 대전, 울산, 경기, 강원, 충북, 충남, 전북, 전남, 경북, 경남, 제주, 세종 #시도별 실시간 측정 조회 api URL ='http://openapi.airkorea.or.kr/openapi/services/rest/ArpltnInforInqireSvc/getCtprvnRltmMesureDnsty?serviceKey=' # URL 인자 설정 및 인코딩 queryParams = '&' + urlencode({quote_plus('numOfRows') : '100', # 최대로 설정 quote_plus('pageSize'): '10', quote_plus('pageNo') : '1', quote_plus('startPage') :'1', quote_plus('sidoName') : location, quote_plus('ver') : '1.3' }) if location == None : exit ('you shoud write location such like 부산') r = requests.get(URL+service_key+queryParams) html = r.text soup = BeautifulSoup(html, 'html.parser') #parsing info_ = soup.select('item') misae_station = {} for info__ in info_: datetime_ = info__.datatime.text list_ = [str(info__.pm10value.text),str(info__.pm25value.text)] # list 미세먼지 측정값 2가지 misae_station[info__.stationname.text.encode('utf-8')] =list_ # misae_station 은 기상대 이름별로 pm2.5, pm10 데이터를 담고 있음 #dataframe 생성 index_list = ['미세먼지10','초미세먼지2.5'] df = pd.DataFrame(misae_station, index = index_list) if spot != None : if spot in misae_station: ''' print('측정시간 : ' + str(datetime_)), 2018-11-08 20:00 print('측정지역 : ') print(location) print(spot) print('(단위 : ㎍/㎥)') print misae_station[spot][1] ''' return (str(datetime_), str(spot), 'pm2.5', misae_station[spot][1] ) def get_public_mise(loc='서울', station='강남구'): kangnam = misaemunji(service_key, location=loc, spot=station) return kangnam if __name__ == '__main__': kangnam = misaemunji(service_key, location='서울', spot='강남구') #location으로 가능한 것: 서울, 부산, 대구, 인천, 광주, 대전, 울산, 경기, 강원, 충북, 충남, 전북, 전남, 경북, 경남, 제주, 세종 print kangnam
bsd-2-clause
2,974,692,860,236,816,000
36.134146
300
0.560601
false
1.979114
false
false
false
rowinggolfer/openmolar2
src/lib_openmolar/admin/db_orm/admin_teeth_present.py
1
3093
#! /usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### ## ## ## Copyright 2010-2012, Neil Wallace <neil@openmolar.com> ## ## ## ## This program is free software: you can redistribute it and/or modify ## ## it under the terms of the GNU General Public License as published by ## ## the Free Software Foundation, either version 3 of the License, or ## ## (at your option) any later version. ## ## ## ## This program is distributed in the hope that it will be useful, ## ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## ## GNU General Public License for more details. ## ## ## ## You should have received a copy of the GNU General Public License ## ## along with this program. If not, see <http://www.gnu.org/licenses/>. ## ## ## ############################################################################### ''' Provides a DemoGenerator for teeth_present table provides schema and insert query for the teeth_present table data on which teeth are present in the patients mouth ''' from random import randint from PyQt4 import QtSql from lib_openmolar.common.db_orm import InsertableRecord TABLENAME = "teeth_present" class DemoGenerator(object): def __init__(self, database): q_query= QtSql.QSqlQuery( "select min(ix), max(ix) from patients", database) if q_query.first(): self.min_patient_id = q_query.value(0).toInt()[0] self.max_patient_id = q_query.value(1).toInt()[0] else: self.min_patient_id, self.max_patient_id = 0,0 self.length = self.max_patient_id - self.min_patient_id self.record = InsertableRecord(database, TABLENAME) self.record.remove(self.record.indexOf("dent_key")) self.record.remove(self.record.indexOf('checked_date')) def demo_queries(self): ''' return a list of queries to populate a demo database ''' for patient_id in xrange(self.min_patient_id, self.max_patient_id+1): self.record.clearValues() #set values, or allow defaults self.record.setValue('patient_id', patient_id) self.record.setValue('checked_by', 'demo_installer') yield self.record.insert_query if __name__ == "__main__": from lib_openmolar.admin.connect import DemoAdminConnection sc = DemoAdminConnection() sc.connect() builder = DemoGenerator(sc) print builder.demo_queries().next()
gpl-3.0
-1,188,628,920,479,698,700
41.369863
79
0.515681
false
4.52193
false
false
false
dormouse/read
database/models.py
1
5390
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import datetime from sqlalchemy import Column, ForeignKey from sqlalchemy.dialects.sqlite import INTEGER, TEXT, DATETIME, BOOLEAN from sqlalchemy.orm import column_property, relationship from sqlalchemy.sql import func from sqlalchemy import and_ from database.database import book_base, rss_base class BookJob(book_base): """ Jobs for book """ __tablename__ = 'book_job' id = Column(INTEGER, primary_key=True) type_code = Column(TEXT, ForeignKey('book_dict.code')) type = relationship( "BookDict", primaryjoin="and_(BookJob.type_code==BookDict.code," "BookDict.name=='job_type')", backref='job_type' ) file_name = Column(TEXT) url = Column(TEXT) create_time = Column(DATETIME, default=datetime.datetime.utcnow) last_update = Column(DATETIME, default=datetime.datetime.utcnow) status_code = Column(TEXT, ForeignKey('book_dict.code')) status = relationship( "BookDict", primaryjoin="and_(BookJob.status_code==BookDict.code," "BookDict.name=='job_status')", backref='job_status' ) def __init__(self, url): self.url = url def __repr__(self): return 'BookJob %s' % self.url class BookDict(book_base): """ BookDict """ __tablename__ = 'book_dict' id = Column(INTEGER, primary_key=True) name = Column(TEXT) code = Column(TEXT) value = Column(TEXT) class Node(rss_base): __tablename__ = 'node' id = Column(INTEGER, primary_key=True) parent_id = Column(INTEGER, ForeignKey('node.id')) category = Column(TEXT) children = relationship("Node") data_id = Column(INTEGER) # RssAction.id or RssFolder.id or RssFeed.id rank = Column(INTEGER) # rank for display in tree def __repr__(self): return "Node:{}".format(self.id) class RssCommand(rss_base): __tablename__ = 'rss_command' id = Column(INTEGER, primary_key=True) title = Column(TEXT) command = Column(TEXT) def __repr__(self): return "Commander:{}".format(self.title) class RssFolder(rss_base): __tablename__ = 'rss_folder' id = Column(INTEGER, primary_key=True) title = Column(TEXT) def __repr__(self): return "folder:{}".format(self.title) class RssFeed(rss_base): __tablename__ = 'rss_feed' id = Column(INTEGER, primary_key=True) title = Column(TEXT) subtitle = Column(TEXT) url = Column(TEXT) encoding = Column(TEXT) language = Column(TEXT) author = Column(TEXT) site_url = Column(TEXT) published = Column(DATETIME) updated = Column(DATETIME) def __repr__(self): return "feed:{}".format(self.title) class RssItem(rss_base): __tablename__ = 'rss_item' id = Column(INTEGER, primary_key=True) author = Column(TEXT) feed_id = Column(INTEGER, ForeignKey('rss_feed.id'), info={'relationFieldName': 'feed'} ) feed = relationship("RssFeed") published = Column(DATETIME) link = Column(TEXT) title = Column(TEXT) summary = Column(TEXT) content = Column(TEXT) is_read = Column(BOOLEAN) @property def foreignKeyFieldNames(self): # a list of name of field which have foreign key cols = self.__table__.columns fieldNames = [col.name for col in cols] return filter(self.isForeignKeyField, fieldNames) @property def foreignKeyRelationFieldNames(self): return [self.relationFieldName(name) for name in self.foreignKeyFieldNames] @property def allFieldNames(self): cols = self.__table__.columns fieldNames = [col.name for col in cols] return fieldNames + self.foreignKeyRelationFieldNames def __repr__(self): return '<item {0}>'.format(self.title) def updateByDict(self, dictData): for name, value in dictData.item_rows(): setattr(self, name, value) def isForeignKeyField(self, name): """ 判断是否是一个外键字段 """ if self.__table__.columns[name].foreign_keys: return True else: return False def relationFieldName(self, name): """ 返回外键字段对应的关系字段 """ cols = self.__table__.columns relationName = dict(cols)[name].info['relationFieldName'] return relationName def valuesAsDict(self, fieldNames=None): names = fieldNames if fieldNames else self.allFieldNames values = self.valuesAsList(names) return dict(zip(names, values)) def valuesAsList(self, fieldNames): """ 根据字段列表返回相应的值 :param fieldNames: 字段名称,类型:list :return: 字段值,类型: list """ return [self.fieldValue(name) for name in fieldNames] def fieldValue(self, fieldName): """ 根据字段名称返回其值,关系字段返回其中文字典短名称 :param fieldName: 字段名称 :return: 字段值 """ value = getattr(self, fieldName, None) if fieldName == 'published': value = value.strftime("%Y年%m月%d日 %X") return value # return value.value_short if isinstance(value, ModelCqDict) else value
lgpl-3.0
7,813,540,119,064,889,000
27.839779
79
0.615134
false
3.536585
false
false
false
fengkaicnic/traffic
traffic/crypto.py
1
12797
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Wrappers around standard crypto data elements. Includes root and intermediate CAs, SSH key_pairs and x509 certificates. """ from __future__ import absolute_import import hashlib import os import string from traffic import context from traffic import db from traffic import exception from traffic import flags from traffic.openstack.common import cfg from traffic.openstack.common import log as logging from traffic.openstack.common import timeutils from traffic import utils LOG = logging.getLogger(__name__) crypto_opts = [ cfg.StrOpt('ca_file', default='cacert.pem', help=_('Filename of root CA')), cfg.StrOpt('key_file', default=os.path.join('private', 'cakey.pem'), help=_('Filename of private key')), cfg.StrOpt('crl_file', default='crl.pem', help=_('Filename of root Certificate Revocation List')), cfg.StrOpt('keys_path', default='$state_path/keys', help=_('Where we keep our keys')), cfg.StrOpt('ca_path', default='$state_path/CA', help=_('Where we keep our root CA')), cfg.BoolOpt('use_project_ca', default=False, help=_('Should we use a CA for each project?')), cfg.StrOpt('user_cert_subject', default='/C=US/ST=California/O=OpenStack/' 'OU=trafficDev/CN=%.16s-%.16s-%s', help=_('Subject for certificate for users, %s for ' 'project, user, timestamp')), cfg.StrOpt('project_cert_subject', default='/C=US/ST=California/O=OpenStack/' 'OU=trafficDev/CN=project-ca-%.16s-%s', help=_('Subject for certificate for projects, %s for ' 'project, timestamp')), ] FLAGS = flags.FLAGS FLAGS.register_opts(crypto_opts) def ca_folder(project_id=None): if FLAGS.use_project_ca and project_id: return os.path.join(FLAGS.ca_path, 'projects', project_id) return FLAGS.ca_path def ca_path(project_id=None): return os.path.join(ca_folder(project_id), FLAGS.ca_file) def key_path(project_id=None): return os.path.join(ca_folder(project_id), FLAGS.key_file) def crl_path(project_id=None): return os.path.join(ca_folder(project_id), FLAGS.crl_file) def fetch_ca(project_id=None): if not FLAGS.use_project_ca: project_id = None ca_file_path = ca_path(project_id) if not os.path.exists(ca_file_path): raise exception.CryptoCAFileNotFound(project_id=project_id) with open(ca_file_path, 'r') as cafile: return cafile.read() def ensure_ca_filesystem(): """Ensure the CA filesystem exists.""" ca_dir = ca_folder() if not os.path.exists(ca_path()): genrootca_sh_path = os.path.join(os.path.dirname(__file__), 'CA', 'genrootca.sh') start = os.getcwd() utils.ensure_tree(ca_dir) os.chdir(ca_dir) utils.execute("sh", genrootca_sh_path) os.chdir(start) def _generate_fingerprint(public_key_file): (out, err) = utils.execute('ssh-keygen', '-q', '-l', '-f', public_key_file) fingerprint = out.split(' ')[1] return fingerprint def generate_fingerprint(public_key): with utils.tempdir() as tmpdir: try: pubfile = os.path.join(tmpdir, 'temp.pub') with open(pubfile, 'w') as f: f.write(public_key) return _generate_fingerprint(pubfile) except exception.ProcessExecutionError: raise exception.InvalidKeypair() def generate_key_pair(bits=1024): # what is the magic 65537? with utils.tempdir() as tmpdir: keyfile = os.path.join(tmpdir, 'temp') utils.execute('ssh-keygen', '-q', '-b', bits, '-N', '', '-t', 'rsa', '-f', keyfile, '-C', 'Generated by traffic') fingerprint = _generate_fingerprint('%s.pub' % (keyfile)) if not os.path.exists(keyfile): raise exception.FileNotFound(keyfile) private_key = open(keyfile).read() public_key_path = keyfile + '.pub' if not os.path.exists(public_key_path): raise exception.FileNotFound(public_key_path) public_key = open(public_key_path).read() return (private_key, public_key, fingerprint) def fetch_crl(project_id): """Get crl file for project.""" if not FLAGS.use_project_ca: project_id = None crl_file_path = crl_path(project_id) if not os.path.exists(crl_file_path): raise exception.CryptoCRLFileNotFound(project_id) with open(crl_file_path, 'r') as crlfile: return crlfile.read() def decrypt_text(project_id, text): private_key = key_path(project_id) if not os.path.exists(private_key): raise exception.ProjectNotFound(project_id=project_id) try: dec, _err = utils.execute('openssl', 'rsautl', '-decrypt', '-inkey', '%s' % private_key, process_input=text) return dec except exception.ProcessExecutionError: raise exception.DecryptionFailure() def revoke_cert(project_id, file_name): """Revoke a cert by file name.""" start = os.getcwd() os.chdir(ca_folder(project_id)) # NOTE(vish): potential race condition here utils.execute('openssl', 'ca', '-config', './openssl.cnf', '-revoke', file_name) utils.execute('openssl', 'ca', '-gencrl', '-config', './openssl.cnf', '-out', FLAGS.crl_file) os.chdir(start) def revoke_certs_by_user(user_id): """Revoke all user certs.""" admin = context.get_admin_context() for cert in db.certificate_get_all_by_user(admin, user_id): revoke_cert(cert['project_id'], cert['file_name']) def revoke_certs_by_project(project_id): """Revoke all project certs.""" # NOTE(vish): This is somewhat useless because we can just shut down # the vpn. admin = context.get_admin_context() for cert in db.certificate_get_all_by_project(admin, project_id): revoke_cert(cert['project_id'], cert['file_name']) def revoke_certs_by_user_and_project(user_id, project_id): """Revoke certs for user in project.""" admin = context.get_admin_context() for cert in db.certificate_get_all_by_user_and_project(admin, user_id, project_id): revoke_cert(cert['project_id'], cert['file_name']) def _project_cert_subject(project_id): """Helper to generate user cert subject.""" return FLAGS.project_cert_subject % (project_id, timeutils.isotime()) def _user_cert_subject(user_id, project_id): """Helper to generate user cert subject.""" return FLAGS.user_cert_subject % (project_id, user_id, timeutils.isotime()) def generate_x509_cert(user_id, project_id, bits=1024): """Generate and sign a cert for user in project.""" subject = _user_cert_subject(user_id, project_id) with utils.tempdir() as tmpdir: keyfile = os.path.abspath(os.path.join(tmpdir, 'temp.key')) csrfile = os.path.join(tmpdir, 'temp.csr') utils.execute('openssl', 'genrsa', '-out', keyfile, str(bits)) utils.execute('openssl', 'req', '-new', '-key', keyfile, '-out', csrfile, '-batch', '-subj', subject) private_key = open(keyfile).read() csr = open(csrfile).read() (serial, signed_csr) = sign_csr(csr, project_id) fname = os.path.join(ca_folder(project_id), 'newcerts/%s.pem' % serial) cert = {'user_id': user_id, 'project_id': project_id, 'file_name': fname} db.certificate_create(context.get_admin_context(), cert) return (private_key, signed_csr) def _ensure_project_folder(project_id): if not os.path.exists(ca_path(project_id)): geninter_sh_path = os.path.join(os.path.dirname(__file__), 'CA', 'geninter.sh') start = os.getcwd() os.chdir(ca_folder()) utils.execute('sh', geninter_sh_path, project_id, _project_cert_subject(project_id)) os.chdir(start) def generate_vpn_files(project_id): project_folder = ca_folder(project_id) key_fn = os.path.join(project_folder, 'server.key') crt_fn = os.path.join(project_folder, 'server.crt') if os.path.exists(crt_fn): return # NOTE(vish): The 2048 is to maintain compatibility with the old script. # We are using "project-vpn" as the user_id for the cert # even though that user may not really exist. Ultimately # this will be changed to be launched by a real user. At # that point we will can delete this helper method. key, csr = generate_x509_cert('project-vpn', project_id, 2048) with open(key_fn, 'w') as keyfile: keyfile.write(key) with open(crt_fn, 'w') as crtfile: crtfile.write(csr) def sign_csr(csr_text, project_id=None): if not FLAGS.use_project_ca: project_id = None if not project_id: return _sign_csr(csr_text, ca_folder()) _ensure_project_folder(project_id) project_folder = ca_folder(project_id) return _sign_csr(csr_text, ca_folder(project_id)) def _sign_csr(csr_text, ca_folder): with utils.tempdir() as tmpdir: inbound = os.path.join(tmpdir, 'inbound.csr') outbound = os.path.join(tmpdir, 'outbound.csr') with open(inbound, 'w') as csrfile: csrfile.write(csr_text) LOG.debug(_('Flags path: %s'), ca_folder) start = os.getcwd() # Change working dir to CA utils.ensure_tree(ca_folder) os.chdir(ca_folder) utils.execute('openssl', 'ca', '-batch', '-out', outbound, '-config', './openssl.cnf', '-infiles', inbound) out, _err = utils.execute('openssl', 'x509', '-in', outbound, '-serial', '-noout') serial = string.strip(out.rpartition('=')[2]) os.chdir(start) with open(outbound, 'r') as crtfile: return (serial, crtfile.read()) # Copyright (c) 2006-2009 Mitch Garnaat http://garnaat.org/ # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # http://code.google.com/p/boto def compute_md5(fp): """Compute an md5 hash. :type fp: file :param fp: File pointer to the file to MD5 hash. The file pointer will be reset to the beginning of the file before the method returns. :rtype: tuple :returns: the hex digest version of the MD5 hash """ m = hashlib.md5() fp.seek(0) s = fp.read(8192) while s: m.update(s) s = fp.read(8192) hex_md5 = m.hexdigest() # size = fp.tell() fp.seek(0) return hex_md5
apache-2.0
-3,505,826,213,502,774,300
34.64624
79
0.616238
false
3.684711
false
false
false
arpitmathur/CourseAvailabilityChecker
courseCheck.py
1
1898
__author__ = 'Arpit' import find import time import sys import gmailer #initialize datastructures courses = [] semester = [] email = [] flag = 0 #parse changeme with open('CHANGEME.txt') as fp: for line in fp: if(line[0] == "\n" or line[0] == "#"): continue line = line.rstrip() if(line == "START" or line == "EMAIL START"): continue elif(line == "EMAIL END"): break elif(line == "END"): flag = 2 elif(flag == 0): semester = (line.rsplit(',')) flag = 1 elif(flag == 1): courses.append(line.rsplit(',')) elif(flag == 2): email = (line.rsplit(',')) flag = 0 count = 0 sleepTime = 300 #while a course isn't available while courses: count = count + 1 if count!=1: print ("Please wait for " + str(sleepTime/60) + " minutes before the next attempt!") #sleep five minutes time.sleep(sleepTime) print ("Aaaaaaaand we're back! \n") print ('Attempt: ' + str(count)) try: for course in list(courses): print ("Checking: " + str(course[0]) + ' ' + str(course[1]) + ' - CRN: ' + str(course[2])) #check availability flag = find.search(semester, course) if( flag == 1): print ('Success!') print ('Sending email now!') courses.remove(course) try: gmailer.sendemail(email[0], email[0], "", str(course[0]) + " " + str(course[1]) + " IS OPEN", "The CRN is " + str(course[2]) + ". Register now!", email[0], email[1] ) except: raise ValueError() else: print ("It's Closed!") except ValueError: print ("Fix your email credentials!") sys.exit() except: print ("oops")
mit
7,397,628,063,815,961,000
27.343284
186
0.494731
false
3.811245
false
false
false
argonnexraydetector/RoachFirmPy
Roach2DevelopmentTree/pyfiles/pca.py
1
3520
import numpy as np from scipy import linalg import random as rnd import matplotlib import matplotlib.pyplot ''' execfile('pca.py') p = pulseTrain(1000) e = eigens(p) plot(e['eigenvectors'][0]) plot(e['eigenvectors'][1]) testan(e,2); ''' print 'running pca.py' def makePulse(L=100.0,t1=10.0,t2=1.0,a1=1.0,a2=1.0,n=0.1): rnd.seed(None) e1=a1*np.exp(-1*np.arange(L)/t1); e2=a2*(1.0 - np.exp(-1*np.arange(L)/t2)); p1=e1*e2 noise=[] for k in range(int(L)): noise.append(rnd.gauss(0.0,n)) noise=np.array(noise) p1=p1+noise return(p1) def pulseTrain(N=100): plist=[] for n in range(N): amp = 0.5 + 0.02*rnd.random() amp2 = 0.2 + 0.02*rnd.random() xx=rnd.random() if xx>=0.5: tc = 10 else: tc = 4 pls=makePulse( a1=amp, a2=amp2, t2=4, t1=tc, n=0.001) plist.append(pls.tolist()) D=np.array(plist).transpose() plotTrain(D) return(D) def plotTrain(D): matplotlib.pyplot.figure(1) N=D.shape[0] L=D.shape[1] matplotlib.pyplot.clf() for k in range(N): matplotlib.pyplot.plot(D.transpose()[k]) matplotlib.pyplot.figure(2) matplotlib.pyplot.clf() matplotlib.pyplot.pcolor(D) def eigens(D): Z=np.dot(D,D.transpose() ) #Z =np.cov(D) evals,evecs=linalg.eig(Z) evals = np.real(evals) evecs = np.real(evecs) matplotlib.pyplot.figure(1) matplotlib.pyplot.clf() matplotlib.pyplot.plot(np.real(evals)) matplotlib.pyplot.figure(2) matplotlib.pyplot.clf() matplotlib.pyplot.pcolor(evecs * evals) matplotlib.pyplot.figure(3) matplotlib.pyplot.clf() matplotlib.pyplot.pcolor(Z) matplotlib.pyplot.figure(4) matplotlib.pyplot.plot(evecs * evals) retdata = {} retdata['eigenvalues'] = np.real(evals) retdata['eigenvectors'] = np.real(evecs).transpose() retdata['covariance'] = Z return(retdata) def eigenPulseTrain(eigendata,numcomponents=2,N=100): pulsestruct =np.array( [ [0.1,1.0],[1.0,0.1] , [0.5,0.5] , [0.1,-1.0]]) pulses = [] for n in range(N): pulse = np.array([0.0] * len(eigendata['eigenvectors'][0]) ) r = rand() psindex = floor(rand() * len(pulsestruct)) ps = pulsestruct[psindex] ps = ps* (1.0 + 0.2*rand(numcomponents)) for c in range(numcomponents): eigpulse = eigendata['eigenvectors'][c] pulse = pulse + eigpulse * ps[c] pulses.append(pulse) pulses = np.array(pulses) figure(1) clf() plot(pulses.transpose()) return(pulses) def testan(eigendata,numcomponents): #p = pulseTrain().transpose() p = eigenPulseTrain(eigendata) figure(10) Rvals = [] for pulse in p: rvalp = [0.0] * (1+numcomponents) energy = 0.0 for c in range(numcomponents): filt = eigendata['eigenvectors'][c] fp = np.convolve(pulse,filt) rvalp[c] =(np.dot(fp,fp)) #rvalp[c] =max(fp) energy = energy + rvalp[c] rvalp[numcomponents] = energy Rvals.append(rvalp) if numcomponents==2: plot(rvalp[0],rvalp[1],'.') return(np.array(Rvals) )
gpl-2.0
-1,943,123,093,516,862,700
20.469512
75
0.537216
false
3.037101
false
false
false
why2pac/dp-tornado
dp_tornado/helper/io/image/__init__.py
1
12413
# -*- coding: utf-8 -*- import tempfile from dp_tornado.engine.helper import Helper as dpHelper class ImageHelper(dpHelper): def compare(self, i1, i2, error=0): i1 = self.load(i1) i2 = self.load(i2) if not i1 or not i2: return None s1 = i1.size s2 = i2.size if s1[0] != s2[0] or s2[1] != s2[1]: print('size ne,', s1, s2) return False i1 = i1.load() i2 = i2.load() for i in range(s1[0]): for j in range(s1[1]): if i1[i, j] != i2[i, j]: if error: for k in range(len(i1[i, j])): if abs(i1[i, j][k] - i2[i, j][k]) > error: print('pixel ne,', i1[i, j], i2[i, j], abs(i1[i, j][k] - i2[i, j][k]), error) return False else: return False return True def _driver(self, options=None, **kwargs): if not options and kwargs: options = kwargs if options and 'driver' in options and options['driver'] == 'wand': return self.helper.io.image.driver.wand return self.helper.io.image.driver.pillow def load(self, src, options=None, **kwargs): if not options and kwargs: options = kwargs tmp = None drivers = [] pillow_image = self.helper.io.image.driver.pillow.Image wand_image = self.helper.io.image.driver.wand.Image if pillow_image: drivers.append(pillow_image) if wand_image: drivers.append(wand_image) try: if isinstance(src, tuple(drivers)): return src elif self.helper.web.url.validate(src): code, res = self.helper.web.http.get.raw(src) if code != 200: raise Exception('The specified image url is invalid.') tmp = tempfile.NamedTemporaryFile(delete=False) tmp.write(res) tmp.close() tmp = tmp.name else: tmp = None if not tmp and not src: raise Exception('The specified image is invalid.') img = self._driver(options=options).load(tmp if tmp else src) if not img: raise Exception('The specified image is invalid.') return img except Exception as e: self.logging.exception(e) return False finally: if tmp: self.helper.io.file.remove(tmp) def execute(self, src, fn, options=None, **kwargs): if not options and kwargs: options = kwargs img = self.load(src, options=options) if not img: return False try: return fn(img, options) except Exception as e: self.logging.exception(e) return False def size(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): if not img: return -1, -1 return img.width, img.height return self.execute(src, fn, options=options) def crop(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): crop = kwargs['crop'] if 'crop' in kwargs else None if not crop: return img e_top = 0 e_left = 0 e_right = 0 e_bottom = 0 if self.helper.misc.type.check.string(crop): crop = crop.split(',') crop = [int(e.strip()) for e in crop] if self.helper.misc.type.check.numeric(crop): e_top = e_left = e_right = e_bottom = crop elif isinstance(crop, (tuple, list)): if len(crop) == 1: e_top = e_left = e_right = e_bottom = crop[0] elif len(crop) == 2: e_top = e_bottom = crop[0] e_left = e_right = crop[1] elif len(crop) == 4: e_top = crop[0] e_right = crop[1] e_bottom = crop[2] e_left = crop[3] img = self._driver(options=kwargs).crop(img, e_left, e_top, img.size[0] - e_right, img.size[1] - e_bottom) return img return self.execute(src, fn, options=options) def border(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): border = int(kwargs['border']) if 'border' in kwargs else 0 border_color = kwargs['border_color'] if 'border_color' in kwargs else '#000000' if not border: return img if '_org' in kwargs and 'radius' in kwargs and kwargs['radius']: return img img = self._driver(options=kwargs).border(img, border, border_color) return img return self.execute(src, fn, options=options) def radius(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): radius = int(kwargs['radius'] or 0) if 'radius' in kwargs else None border = int(kwargs['border']) if 'border' in kwargs else 0 border_color = kwargs['border_color'] if 'border_color' in kwargs else '#000000' if not radius: return img elif '__radius_processed__' in img.__dict__: return img img = self._driver(options=kwargs).radius(img, radius, border, border_color) img.__dict__['__radius_processed__'] = True return img return self.execute(src, fn, options=options) def colorize(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): colorize = kwargs['colorize'] if 'colorize' in kwargs else None if not colorize: return img img = self._driver(options=kwargs).colorize(img, colorize) return img return self.execute(src, fn, options=options) def resize(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): size = kwargs['size'] if 'size' in kwargs else None mode = kwargs['mode'] if 'mode' in kwargs else None scale = int(kwargs['scale']) if 'scale' in kwargs else 1 limit = True if 'limit' in kwargs and kwargs['limit'] else False border = int(kwargs['border']) if 'border' in kwargs else 0 if not size: return img width_new, height_new = size width_origin, height_origin = img.size if scale > 1: if limit: scale_max_width = float(width_origin) / float(width_new) scale_max_height = float(height_origin) / float(height_new) scale_max = min(scale, scale_max_width, scale_max_height) else: scale_max = scale if scale_max > 1: width_new = int(width_new * scale_max) height_new = int(height_new * scale_max) if not width_new: width_new = width_origin * height_new / height_origin mode = self.helper.io.image.mode.resize if not height_new: height_new = height_origin * width_new / width_origin mode = self.helper.io.image.mode.resize if border: width_new -= border * 2 height_new -= border * 2 if not mode: mode = self.helper.io.image.mode.resize if mode not in self.helper.io.image.mode.modes: raise Exception('The specified mode is not supported.') seqs = [] for i, im in self._driver(options=kwargs).iter_seqs(img, kwargs): # Image Resizing if mode == self.helper.io.image.mode.center: im = self._driver(options=kwargs).resize(im, width_new, height_new, kwargs) elif mode == self.helper.io.image.mode.fill: ratio_origin = float(width_origin) / float(height_origin) ratio_new = float(width_new) / float(height_new) if ratio_origin > ratio_new: tw = int(round(height_new * ratio_origin)) im = self._driver(options=kwargs).resize(im, tw, height_new) left = int(round((tw - width_new) / 2.0)) im = self._driver(options=kwargs).crop(im, left, 0, left + width_new, height_new) elif ratio_origin < ratio_new: th = int(round(width_new / ratio_origin)) im = self._driver(options=kwargs).resize(im, width_new, th) top = int(round((th - height_new) / 2.0)) im = self._driver(options=kwargs).crop(im, 0, top, width_new, top + height_new) else: im = self._driver(options=kwargs).resize(im, width_new, height_new) elif mode == self.helper.io.image.mode.resize: if width_new > width_origin or height_new > height_origin: width_new = width_origin height_new = height_origin im = self._driver(options=kwargs).resize(im, width_new, height_new) seqs.append(im) img = seqs[0] seqs.remove(img) img.__dict__['__frames__'] = seqs return img return self.execute(src, fn, options=options) def save(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): ext = kwargs['format'] if 'format' in kwargs else None dest = kwargs['dest'] if 'dest' in kwargs else None if not dest: return None if not ext and self.helper.misc.type.check.string(dest): ext = self.helper.io.path.ext(dest, dot='').lower() if not ext and self.helper.misc.type.check.string(src): ext = self.helper.io.path.ext(src, dot='').lower() if not ext and '_org' in kwargs and kwargs['_org'] and self.helper.misc.type.check.string(kwargs['_org']): ext = self.helper.io.path.ext(kwargs['_org'], dot='').lower() if dest == 's3': # TODO return False if not self._driver(options=kwargs).save(img, ext, dest, kwargs): return False return True return self.execute(src, fn, options=options) def manipulate(self, src, options=None, **kwargs): if not options and kwargs: options = kwargs options['_org'] = src try: img = self.load(src, options=options) # Crop img = self.crop(img, options=options) if not img: return False # Resize img = self.resize(img, options=options) if not img: return False # Radius img = self.radius(img, options=options) if not img: return False # Border img = self.border(img, options=options) if not img: return False # Colorize img = self.colorize(img, options=options) if not img: return False # Save saved = self.save(img, options=options) if saved is None: return img elif saved is False: return False return True except Exception as e: self.logging.exception(e) return False
mit
5,356,887,573,378,849,000
29.649383
118
0.498107
false
4.183687
false
false
false
kgarrison343/recipe-site
polls/views.py
1
1213
from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse, Http404, HttpResponseRedirect from django.urls import reverse from django.views import generic from .models import Question, Choice # Create your views here. class IndexView(generic.ListView): template_name = 'polls/index.html' context_object_name = 'latest_question_list' def get_queryset(self): return Question.objects.order_by('-pub_date')[:5] class DetailView(generic.DetailView): model = Question template_name = 'polls/detail.html' class ResultsView(generic.DetailView): model = Question template_name = 'polls/results.html' def vote(request, question_id): question = get_object_or_404(Question, pk=question_id) try: selected_choice = question.choice_set.get(pk=request.POST['choice']) except (KeyError, Choice.DoesNotExist): return render(request, 'polls/detail.html', { 'question': question, 'error_message': "You didn't select a valid choice.", }) else: selected_choice.votes += 1 selected_choice.save() return HttpResponseRedirect(reverse('polls:results', args=(question.id,)))
mit
-1,490,559,948,873,557,200
30.921053
82
0.693322
false
3.912903
false
false
false
bobmcwhirter/drools
lib/utility-scripts/docbot-masseur.py
1
2159
#!/usr/bin/python # # This script will flatten out a folder based docbook manual into a docbot friendly "flat" structure # (and update links in files accordingly) # Author: Michael Neale # import os, sys, shutil def flatten(root, output) : if not os.path.isdir(output): os.mkdir(output) if not os.path.isdir(os.path.join(output, "images")): os.mkdir(os.path.join(output, "images")) sections = {} top_files = [] names = os.listdir(root) for name in names: if os.path.isdir(os.path.join(root, name)) : if not name == ".svn": flattenDir(root, name, output, sections) else: if name.endswith(".xml") : top_files.append(name) elif name != ".svn": shutil.copyfile(os.path.join(root, name), os.path.join(output, name)) for file in top_files: contents = open(os.path.join(root, file), "r").read() for section in sections: contents = contents.replace(section, sections[section]) outfile = open(os.path.join(output, file), "w") outfile.write(contents) def flattenDir(root, dir, output, sections): docs = [] images = [] names = os.listdir(os.path.join(root, dir)) for name in names: if name.endswith(".xml"): docs.append(name) else: if name != ".svn": images.append(name) shutil.copyfile(os.path.join(root, dir, name), os.path.join(output, "images", dir + "_" + name)) for doc in docs: new_name = dir + "_" + doc sections[dir + "/" + doc] = new_name file = open(os.path.join(root, dir, doc), "r").read() outfile = open(os.path.join(output, new_name), "w") for img in images: file = file.replace(img, "images/" + dir + "_" + img) outfile.write(file) if len(sys.argv) < 2: print "2 arguments required: <path to root of documentation> <output path>. eg: docbot-masseur.py ./something ./output" else: flatten(sys.argv[1], sys.argv[2])
apache-2.0
6,316,199,486,616,234,000
31.223881
123
0.552571
false
3.628571
false
false
false
ristorantino/fiscalberry
Traductores/TraductorFiscal.py
1
7099
# -*- coding: utf-8 -*- from Traductores.TraductorInterface import TraductorInterface import math class TraductorFiscal(TraductorInterface): def dailyClose(self, type): "Comando X o Z" # cancelar y volver a un estado conocido self.comando.cancelAnyDocument() self.comando.start() ret = self.comando.dailyClose(type) self.comando.close() return ret def imprimirAuditoria(self, desde, hasta): "Imprimir Auditoria" #Solo compatible para Epson 1G y 2G por el momento... #desde & hasta parametros que pueden ser números de zetas o fechas en formato ddmmyyyy self.comando.start() ret = self.comando.imprimirAuditoria(desde, hasta) self.comando.close() return ret def getStatus(self, *args): "getStatus" self.comando.start() ret = self.comando.getStatus(list(args)) self.comando.close() return ret def setHeader(self, *args): "SetHeader" self.comando.start() ret = self.comando.setHeader(list(args)) self.comando.close() return ret def setTrailer(self, *args): "SetTrailer" self.comando.start() ret = self.comando.setTrailer(list(args)) self.comando.close() return ret def openDrawer(self, *args): "Abrir caja registradora" self.comando.start() ret = self.comando.openDrawer() self.comando.close() return ret def getLastNumber(self, tipo_cbte): "Devuelve el último número de comprobante" self.comando.start() letra_cbte = tipo_cbte[-1] if len(tipo_cbte) > 1 else None ret = self.comando.getLastNumber(letra_cbte) self.comando.close() return ret def cancelDocument(self, *args): "Cancelar comprobante en curso" self.comando.start() self.comando.cancelAnyDocument() self.comando.close() def printTicket(self, encabezado=None, items=[], pagos=[], percepciones=[], addAdditional=None, setHeader=None, setTrailer=None): if setHeader: self.setHeader(*setHeader) if setTrailer: self.setTrailer(*setTrailer) self.comando.start() try: if encabezado: self._abrirComprobante(**encabezado) else: self._abrirComprobante() for item in items: self._imprimirItem(**item) if percepciones: for percepcion in percepciones: self._imprimirPercepcion(**percepcion) if pagos: for pago in pagos: self._imprimirPago(**pago) if addAdditional: self.comando.addAdditional(**addAdditional) rta = self._cerrarComprobante() self.comando.close() return rta except Exception, e: self.cancelDocument() raise def _abrirComprobante(self, tipo_cbte="T", # tique tipo_responsable="CONSUMIDOR_FINAL", tipo_doc="SIN_CALIFICADOR", nro_doc=" ", # sin especificar nombre_cliente=" ", domicilio_cliente=" ", referencia=None, # comprobante original (ND/NC) **kwargs ): "Creo un objeto factura (internamente) e imprime el encabezado" # crear la estructura interna self.factura = {"encabezado": dict(tipo_cbte=tipo_cbte, tipo_responsable=tipo_responsable, tipo_doc=tipo_doc, nro_doc=nro_doc, nombre_cliente=nombre_cliente, domicilio_cliente=domicilio_cliente, referencia=referencia), "items": [], "pagos": [], "percepciones": []} printer = self.comando letra_cbte = tipo_cbte[-1] if len(tipo_cbte) > 1 else None # mapear el tipo de cliente (posicion/categoria) pos_fiscal = printer.ivaTypes.get(tipo_responsable) # mapear el numero de documento según RG1361 doc_fiscal = printer.docTypes.get(tipo_doc) ret = False # enviar los comandos de apertura de comprobante fiscal: if tipo_cbte.startswith('T'): if letra_cbte: ret = printer.openTicket(letra_cbte) else: ret = printer.openTicket() elif tipo_cbte.startswith("F"): ret = printer.openBillTicket(letra_cbte, nombre_cliente, domicilio_cliente, nro_doc, doc_fiscal, pos_fiscal) elif tipo_cbte.startswith("ND"): ret = printer.openDebitNoteTicket(letra_cbte, nombre_cliente, domicilio_cliente, nro_doc, doc_fiscal, pos_fiscal) elif tipo_cbte.startswith("NC"): ret = printer.openBillCreditTicket(letra_cbte, nombre_cliente, domicilio_cliente, nro_doc, doc_fiscal, pos_fiscal, referencia) return ret def _imprimirItem(self, ds, qty, importe, alic_iva=21., itemNegative=False, discount=0, discountDescription='', discountNegative=False): "Envia un item (descripcion, cantidad, etc.) a una factura" if importe < 0: importe = math.fabs(importe) itemNegative = True self.factura["items"].append(dict(ds=ds, qty=qty, importe=importe, alic_iva=alic_iva, itemNegative=itemNegative, discount=discount, discountDescription=discountDescription, discountNegative=discountNegative)) # Nota: no se calcula neto, iva, etc (deben venir calculados!) if discountDescription == '': discountDescription = ds return self.comando.addItem(ds, float(qty), float(importe), float(alic_iva), itemNegative, float(discount), discountDescription, discountNegative) def _imprimirPago(self, ds, importe): "Imprime una linea con la forma de pago y monto" self.factura["pagos"].append(dict(ds=ds, importe=importe)) return self.comando.addPayment(ds, float(importe)) def _imprimirPercepcion(self, ds, importe): "Imprime una linea con nombre de percepcion y monto" self.factura["percepciones"].append(dict(ds=ds, importe=importe)) return self.comando.addPerception(ds, float(importe)) def _cerrarComprobante(self, *args): "Envia el comando para cerrar un comprobante Fiscal" return self.comando.closeDocument()
mit
-7,636,467,503,041,819,000
36.539683
133
0.552361
false
3.80633
false
false
false
k-j-m/Pyxon
pyxon/decode.py
1
5564
# Dict of the form: # { cls: [propname]} # cls: class that has been written with the @sprop annotation # propname: name of the property class_sprops = {} # Dict of the form: # {cls: {name:(fn, inv_fn)}} # cls: class that has been written with @cprop annotations # name: class attribute name # fn: function to turn json data into the corresponding attribute type # inv_fn: inverse of fn class_cprops = {} # Dict of the form: # {AbstractClass:specifier_property} # AbstractClass: the class that we're trying to (de)serialize # specifier_property: the name of the json property that # will indicate the concrete class name specifier_properties = {} # Dict of the form {AbstractClass: {label: ConcreteClass}} # Used to retrieve the concrete implementation of an # abstract class based on a string label. class_specifiers = {} # {ConcreteClass: (AbstractClass, concrete_label)} conc_to_abstract = {} def add_type_property(data,cls): """ Given some JSON data and the class from which it was produced, this function returns the JSON data with any required type annotations added to it. """ if not cls in conc_to_abstract: return data abstract_cls, concrete_label = conc_to_abstract[cls] prop_name = specifier_properties[abstract_cls] data[prop_name] = concrete_label return data class MetaSProp(type): """ Metaclass designed specifically to let us use dot notation for specifying simple class properties. This metaclass contains the decorator logic for the @cprop decorator. """ def __getattr__(prop_cls,key): def sprop2(cls): simple_props = class_sprops.get(cls,[]) simple_props.append(key) class_sprops[cls]=simple_props return cls return sprop2 class sprop: """ Decorator used to add simple properties to a class. The logic for this decorator is contained in the metaclass MetaSProp. The reason for this is to allow simple dot notation to specify parameter. Example: >>> @sprop.x >>> @sprop.y >>> class Foo(object): pass """ __metaclass__ = MetaSProp class MetaCProp(type): """ Metaclass for the cprop calculated property decorator. This class contains all of the decorator logic. The reason for using a metaclass rather than something simpler is to allow us to use dot notation when adding calculated properties. """ def __getattr__(prop_cls,key): def cprop2(f1, f2): def cprop3(cls): cprops = class_cprops.get(cls,{}) cprops[key]=(f1,f2) class_cprops[cls]=cprops return cls return cprop3 return cprop2 class cprop: """ Decorator for adding calculated properties to a class. A calculated property is needed when the json data can't be added to the class directly, for example when creating some other user classes from the data before adding as properties. The decorator needs to be given 2 functions as arguments: fun1: a function that takes JSON data and converts to some other data type fun2: the inverse of fun1, which takes some data type and converts it into JSON data Note: ideally the following will hold for any value of x >>> fun2(fun1(x)) == x Example: @sprop.x class Foo(object): pass @cprop.y(f1=obj(Foo), f2=unobjectify) class Bar(object): pass """ __metaclass__ = MetaCProp # Decorator annotations def subtyped(using): """ Decorator used to indicate that a class will be subtyped. The using= parameter is used to indicate which JSON property will contain the name of the subclass. A sensible value for thsi will be @type, but this wil all depend on how you have set up the rest of the system. Example: @subtyped(using='@type') class Foo(object): pass """ # Because this is a parameterised decorator that we call, we # now need to create and return the decorator proper. def subtyped2(cls): specifier_properties[cls]=using return cls return subtyped2 def extending(super_cls, named): """ This decorator is used to indicate which superclass a class extends. This could potentially be interpreted from the classes mro, but that starts to get tricky and we would still need to add extra info to say what the class will be named in the data. This label is needed because we can't necessarily rely on the class name and the class label in the data being the same. Example: @extending(Foo, named='Bar') class Baz(Foo): pass """ def extending2(cls): conc_to_abstract[cls]=super_cls,named clsmap = class_specifiers.get(super_cls,{}) clsmap[named]=cls class_specifiers[super_cls]=clsmap return cls return extending2 def conc2(data, cls): """ Returns the appropriate concrete class of a subtyped class based on the content of some JSON data. If the class is not subtyped then it gets returned. """ s1 = set(specifier_properties.keys()) s2 = set(class_specifiers.keys()) assert s1==s2, "You need to use @subtyped and @extending as a pair!:\n%s\n%s" % (str(s1), str(s2)) if not cls in specifier_properties: return cls prop_name = specifier_properties[cls] cls_label = data[prop_name] concrete_cls = class_specifiers[cls][cls_label] return concrete_cls
mit
950,680,876,732,445,200
28.913978
102
0.663192
false
3.994257
false
false
false
twitter/pants
src/python/pants/subsystem/subsystem_client_mixin.py
1
6246
# coding=utf-8 # Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import, division, print_function, unicode_literals from builtins import object from twitter.common.collections import OrderedSet from pants.option.arg_splitter import GLOBAL_SCOPE from pants.option.optionable import OptionableFactory from pants.option.scope import ScopeInfo from pants.util.objects import datatype class SubsystemClientError(Exception): pass class SubsystemDependency(datatype([ 'subsystem_cls', 'scope', 'removal_version', 'removal_hint', ]), OptionableFactory): """Indicates intent to use an instance of `subsystem_cls` scoped to `scope`.""" def __new__(cls, subsystem_cls, scope, removal_version=None, removal_hint=None): return super(SubsystemDependency, cls).__new__(cls, subsystem_cls, scope, removal_version, removal_hint) def is_global(self): return self.scope == GLOBAL_SCOPE @property def optionable_cls(self): # Fills the OptionableFactory contract. return self.subsystem_cls @property def options_scope(self): """The subscope for options of `subsystem_cls` scoped to `scope`. This is the scope that option values are read from when initializing the instance indicated by this dependency. """ if self.is_global(): return self.subsystem_cls.options_scope else: return self.subsystem_cls.subscope(self.scope) class SubsystemClientMixin(object): """A mixin for declaring dependencies on subsystems. Must be mixed in to an Optionable. """ @classmethod def subsystem_dependencies(cls): """The subsystems this object uses. Override to specify your subsystem dependencies. Always add them to your superclass's value. Note: Do not call this directly to retrieve dependencies. See subsystem_dependencies_iter(). :return: A tuple of SubsystemDependency instances. In the common case where you're an optionable and you want to get an instance scoped to you, call subsystem_cls.scoped(cls) to get an appropriate SubsystemDependency. As a convenience, you may also provide just a subsystem_cls, which is shorthand for SubsystemDependency(subsystem_cls, GLOBAL SCOPE) and indicates that we want to use the global instance of that subsystem. """ return tuple() @classmethod def subsystem_dependencies_iter(cls): """Iterate over the direct subsystem dependencies of this Optionable.""" for dep in cls.subsystem_dependencies(): if isinstance(dep, SubsystemDependency): yield dep else: yield SubsystemDependency(dep, GLOBAL_SCOPE, removal_version=None, removal_hint=None) @classmethod def subsystem_closure_iter(cls): """Iterate over the transitive closure of subsystem dependencies of this Optionable. :rtype: :class:`collections.Iterator` of :class:`SubsystemDependency` :raises: :class:`pants.subsystem.subsystem_client_mixin.SubsystemClientMixin.CycleException` if a dependency cycle is detected. """ seen = set() dep_path = OrderedSet() def iter_subsystem_closure(subsystem_cls): if subsystem_cls in dep_path: raise cls.CycleException(list(dep_path) + [subsystem_cls]) dep_path.add(subsystem_cls) for dep in subsystem_cls.subsystem_dependencies_iter(): if dep not in seen: seen.add(dep) yield dep for d in iter_subsystem_closure(dep.subsystem_cls): yield d dep_path.remove(subsystem_cls) for dep in iter_subsystem_closure(cls): yield dep class CycleException(Exception): """Thrown when a circular subsystem dependency is detected.""" def __init__(self, cycle): message = 'Cycle detected:\n\t{}'.format(' ->\n\t'.join( '{} scope: {}'.format(optionable_cls, optionable_cls.options_scope) for optionable_cls in cycle)) super(SubsystemClientMixin.CycleException, self).__init__(message) @classmethod def known_scope_infos(cls): """Yield ScopeInfo for all known scopes for this optionable, in no particular order. :rtype: set of :class:`pants.option.scope.ScopeInfo` :raises: :class:`pants.subsystem.subsystem_client_mixin.SubsystemClientMixin.CycleException` if a dependency cycle is detected. """ known_scope_infos = set() optionables_path = OrderedSet() # To check for cycles at the Optionable level, ignoring scope. def collect_scope_infos(optionable_cls, scoped_to, removal_version=None, removal_hint=None): if optionable_cls in optionables_path: raise cls.CycleException(list(optionables_path) + [optionable_cls]) optionables_path.add(optionable_cls) scope = (optionable_cls.options_scope if scoped_to == GLOBAL_SCOPE else optionable_cls.subscope(scoped_to)) scope_info = ScopeInfo( scope, optionable_cls.options_scope_category, optionable_cls, removal_version=removal_version, removal_hint=removal_hint ) if scope_info not in known_scope_infos: known_scope_infos.add(scope_info) for dep in scope_info.optionable_cls.subsystem_dependencies_iter(): # A subsystem always exists at its global scope (for the purpose of options # registration and specification), even if in practice we only use it scoped to # some other scope. # # NB: We do not apply deprecations to this implicit global copy of the scope, because if # the intention was to deprecate the entire scope, that could be accomplished by # deprecating all options in the scope. collect_scope_infos(dep.subsystem_cls, GLOBAL_SCOPE) if not dep.is_global(): collect_scope_infos(dep.subsystem_cls, scope, removal_version=dep.removal_version, removal_hint=dep.removal_hint) optionables_path.remove(scope_info.optionable_cls) collect_scope_infos(cls, GLOBAL_SCOPE) return known_scope_infos
apache-2.0
7,956,763,797,131,338,000
36.401198
108
0.686519
false
4.087696
false
false
false
AutorestCI/azure-sdk-for-python
azure-mgmt-compute/azure/mgmt/compute/v2017_03_30/operations/virtual_machine_extension_images_operations.py
1
10932
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from .. import models class VirtualMachineExtensionImagesOperations(object): """VirtualMachineExtensionImagesOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An objec model deserializer. :ivar api_version: Client Api Version. Constant value: "2017-03-30". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2017-03-30" self.config = config def get( self, location, publisher_name, type, version, custom_headers=None, raw=False, **operation_config): """Gets a virtual machine extension image. :param location: The name of a supported Azure region. :type location: str :param publisher_name: :type publisher_name: str :param type: :type type: str :param version: :type version: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: VirtualMachineExtensionImage or ClientRawResponse if raw=true :rtype: ~azure.mgmt.compute.v2017_03_30.models.VirtualMachineExtensionImage or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmextension/types/{type}/versions/{version}' path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'publisherName': self._serialize.url("publisher_name", publisher_name, 'str'), 'type': self._serialize.url("type", type, 'str'), 'version': self._serialize.url("version", version, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('VirtualMachineExtensionImage', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def list_types( self, location, publisher_name, custom_headers=None, raw=False, **operation_config): """Gets a list of virtual machine extension image types. :param location: The name of a supported Azure region. :type location: str :param publisher_name: :type publisher_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: list or ClientRawResponse if raw=true :rtype: list[~azure.mgmt.compute.v2017_03_30.models.VirtualMachineExtensionImage] or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmextension/types' path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'publisherName': self._serialize.url("publisher_name", publisher_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('[VirtualMachineExtensionImage]', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def list_versions( self, location, publisher_name, type, filter=None, top=None, orderby=None, custom_headers=None, raw=False, **operation_config): """Gets a list of virtual machine extension image versions. :param location: The name of a supported Azure region. :type location: str :param publisher_name: :type publisher_name: str :param type: :type type: str :param filter: The filter to apply on the operation. :type filter: str :param top: :type top: int :param orderby: :type orderby: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: list or ClientRawResponse if raw=true :rtype: list[~azure.mgmt.compute.v2017_03_30.models.VirtualMachineExtensionImage] or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmextension/types/{type}/versions' path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'publisherName': self._serialize.url("publisher_name", publisher_name, 'str'), 'type': self._serialize.url("type", type, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} if filter is not None: query_parameters['$filter'] = self._serialize.query("filter", filter, 'str') if top is not None: query_parameters['$top'] = self._serialize.query("top", top, 'int') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, 'str') query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('[VirtualMachineExtensionImage]', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized
mit
-586,315,393,133,818,900
43.620408
181
0.644621
false
4.440292
true
false
false
kamailio/kamcli
kamcli/commands/cmd_db.py
1
28309
import os import sys import click from sqlalchemy import create_engine from sqlalchemy.sql import text from sqlalchemy.exc import SQLAlchemyError from kamcli.cli import pass_context from kamcli.ioutils import ioutils_dbres_print from kamcli.ioutils import ioutils_formats_list from kamcli.dbutils import dbutils_exec_sqlfile KDB_GROUP_BASIC = ["standard"] KDB_GROUP_STANDARD = [ "acc", "lcr", "domain", "group", "permissions", "registrar", "usrloc", "msilo", "alias_db", "uri_db", "speeddial", "avpops", "auth_db", "pdt", "dialog", "dispatcher", "dialplan", "topos", ] KDB_GROUP_EXTRA = [ "imc", "cpl", "siptrace", "domainpolicy", "carrierroute", "drouting", "userblacklist", "userblocklist", "htable", "purple", "uac", "pipelimit", "mtree", "sca", "mohqueue", "rtpproxy", "rtpengine", "secfilter", ] KDB_GROUP_PRESENCE = ["presence", "rls"] KDB_GROUP_UID = [ "uid_auth_db", "uid_avp_db", "uid_domain", "uid_gflags", "uid_uri_db", ] @click.group( "db", help="Raw database operations", short_help="Raw database operations" ) @pass_context def cli(ctx): pass @cli.command("query", short_help="Run SQL statement") @click.option( "oformat", "--output-format", "-F", type=click.Choice(["raw", "json", "table", "dict"]), default=None, help="Format the output", ) @click.option( "ostyle", "--output-style", "-S", default=None, help="Style of the output (tabulate table format)", ) @click.argument("query", metavar="<query>") @pass_context def db_query(ctx, oformat, ostyle, query): e = create_engine(ctx.gconfig.get("db", "rwurl")) res = e.execute(query.encode("ascii", "ignore").decode()) ioutils_dbres_print(ctx, oformat, ostyle, res) @cli.command("connect", short_help="Launch db cli and connect to database") @pass_context def db_connect(ctx): dbtype = ctx.gconfig.get("db", "type") if dbtype.lower() == "mysql": scmd = ("mysql -h {0} -u {1} -p{2} {3}").format( ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "dbname"), ) elif dbtype == "postgresql": scmd = ('psql "postgresql://{0}:{1}@{2}/{3}"').format( ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "dbname"), ) elif dbtype == "sqlite": scmd = ("sqlite3 {0} ").format( ctx.gconfig.get("db", "dbpath"), ) else: ctx.log("unsupported database type [%s]", dbtype) sys.exit() os.system(scmd) @cli.command("clirun", short_help="Run SQL statement via cli") @click.argument("query", metavar="<query>") @pass_context def db_clirun(ctx, query): dbtype = ctx.gconfig.get("db", "type") if dbtype == "mysql": scmd = ('mysql -h {0} -u {1} -p{2} -e "{3} ;" {4}').format( ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), query, ctx.gconfig.get("db", "dbname"), ) elif dbtype == "postgresql": scmd = ('psql "postgresql://{0}:{1}@{2}/{3}" -c "{4} ;"').format( ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "dbname"), query, ) elif dbtype == "sqlite": scmd = ('sqlite3 {0} "{1} "').format( ctx.gconfig.get("db", "dbpath"), query, ) else: ctx.log("unsupported database type [%s]", dbtype) sys.exit() os.system(scmd) @cli.command("clishow", short_help="Show content of table via cli") @click.argument("table", metavar="<table>") @pass_context def db_clishow(ctx, table): dbtype = ctx.gconfig.get("db", "type") if dbtype == "mysql": scmd = ( 'mysql -h {0} -u {1} -p{2} -e "select * from {3} ;" {4}' ).format( ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), table, ctx.gconfig.get("db", "dbname"), ) elif dbtype == "postgresql": scmd = ( 'psql "postgresql://{0}:{1}@{2}/{3}" -c "select * from {4} ;"' ).format( ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "dbname"), table, ) elif dbtype == "sqlite": scmd = ('sqlite3 {0} "select * from {1} "').format( ctx.gconfig.get("db", "dbpath"), table, ) else: ctx.log("unsupported database type [%s]", dbtype) sys.exit() os.system(scmd) @cli.command("clishowg", short_help="Show content of table via cli") @click.argument("table", metavar="<table>") @pass_context def db_clishowg(ctx, table): dbtype = ctx.gconfig.get("db", "type") if dbtype == "mysql": scmd = ( r'mysql -h {0} -u {1} -p{2} -e "select * from {3} \G" {4}' ).format( ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), table, ctx.gconfig.get("db", "dbname"), ) elif dbtype == "postgresql": scmd = ( 'psql "postgresql://{0}:{1}@{2}/{3}" -c "\\x" -c "select * from {4} ;" -c "\\x"' ).format( ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "dbname"), table, ) elif dbtype == "sqlite": scmd = ('sqlite3 -line {0} "select * from {1} "').format( ctx.gconfig.get("db", "dbpath"), table, ) else: ctx.log("unsupported database type [%s]", dbtype) sys.exit() os.system(scmd) @cli.command("show", short_help="Show content of a table") @click.option( "oformat", "--output-format", "-F", type=click.Choice(ioutils_formats_list), default=None, help="Format the output", ) @click.option( "ostyle", "--output-style", "-S", default=None, help="Style of the output (tabulate table format)", ) @click.argument("table", metavar="<table>") @pass_context def db_show(ctx, oformat, ostyle, table): ctx.vlog("Content of database table [%s]", table) e = create_engine(ctx.gconfig.get("db", "rwurl")) res = e.execute("select * from {0}".format(table)) ioutils_dbres_print(ctx, oformat, ostyle, res) @cli.command( "showcreate", short_help="Show create statement of of a database table" ) @click.option( "oformat", "--output-format", "-F", type=click.Choice(ioutils_formats_list), default=None, help="Format the output", ) @click.option( "ostyle", "--output-style", "-S", default=None, help="Style of the output (tabulate table format)", ) @click.argument("table", metavar="<table>") @pass_context def db_showcreate(ctx, oformat, ostyle, table): ctx.vlog("Show create of database table [%s]", table) dbtype = ctx.gconfig.get("db", "type") if dbtype == "mysql": e = create_engine(ctx.gconfig.get("db", "rwurl")) res = e.execute("show create table {0}".format(table)) ioutils_dbres_print(ctx, oformat, ostyle, res) elif dbtype == "postgresql": scmd = ('psql "postgresql://{0}:{1}@{2}/{3}" -c "\\d {4} "').format( ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "dbname"), table, ) os.system(scmd) elif dbtype == "sqlite": scmd = ('sqlite3 {0} ".schema {1} "').format( ctx.gconfig.get("db", "dbpath"), table, ) os.system(scmd) else: ctx.log("unsupported database type [%s]", dbtype) @cli.command("runfile", short_help="Run SQL statements in a file") @click.argument("fname", metavar="<fname>") @pass_context def db_runfile(ctx, fname): """Run SQL statements in a file \b Parameters: <fname> - name to the file with the SQL statements """ ctx.vlog("Run statements in the file [%s]", fname) e = create_engine(ctx.gconfig.get("db", "rwurl")) dbutils_exec_sqlfile(ctx, e, fname) def db_create_mysql_host_users( ctx, e, nousers, nogrants, dbname, dbhost, dbrwuser, dbrwpassword, dbrouser, dbropassword, ): if not nousers: e.execute( "CREATE USER {0!r}@{1!r} IDENTIFIED BY {2!r}".format( dbrwuser, dbhost, dbrwpassword ) ) if not nogrants: e.execute( "GRANT ALL PRIVILEGES ON {0}.* TO {1!r}@{2!r}".format( dbname, dbrwuser, dbhost ) ) if not nousers: e.execute( "CREATE USER {0!r}@{1!r} IDENTIFIED BY {2!r}".format( dbrouser, dbhost, dbropassword ) ) if not nogrants: e.execute( "GRANT SELECT PRIVILEGES ON {0}.* TO {1!r}@{2!r}".format( dbname, dbrouser, dbhost ) ) def db_create_mysql_users(ctx, e, dbname, nousers, nogrants): dbhost = ctx.gconfig.get("db", "host") dbrwuser = ctx.gconfig.get("db", "rwuser") dbrwpassword = ctx.gconfig.get("db", "rwpassword") dbrouser = ctx.gconfig.get("db", "rouser") dbropassword = ctx.gconfig.get("db", "ropassword") dbaccesshost = ctx.gconfig.get("db", "accesshost") db_create_mysql_host_users( ctx, e, dbname, dbhost, dbrwuser, dbrwpassword, dbrouser, dbropassword ) if dbhost != "localhost": db_create_mysql_host_users( ctx, e, nousers, nogrants, dbname, "localhost", dbrwuser, dbrwpassword, dbrouser, dbropassword, ) if len(dbaccesshost) > 0: db_create_mysql_host_users( ctx, e, nousers, nogrants, dbname, dbaccesshost, dbrwuser, dbrwpassword, dbrouser, dbropassword, ) def db_create_sql_group(ctx, e, dirpath, dbgroup): for t in dbgroup: fname = dirpath + "/" + t + "-create.sql" dbutils_exec_sqlfile(ctx, e, fname) def db_create_sql_table_groups(ctx, e, ldirectory, alltables): db_create_sql_group(ctx, e, ldirectory, KDB_GROUP_BASIC) db_create_sql_group(ctx, e, ldirectory, KDB_GROUP_STANDARD) option = "y" if not alltables: print("Do you want to create extra tables? (y/n):", end=" ") option = input() if option == "y": db_create_sql_group(ctx, e, ldirectory, KDB_GROUP_EXTRA) if not alltables: print("Do you want to create presence tables? (y/n):", end=" ") option = input() if option == "y": db_create_sql_group(ctx, e, ldirectory, KDB_GROUP_PRESENCE) if not alltables: print("Do you want to create uid tables? (y/n):", end=" ") option = input() if option == "y": db_create_sql_group(ctx, e, ldirectory, KDB_GROUP_UID) def db_create_mysql(ctx, ldbname, ldirectory, nousers, nogrants, alltables): e = create_engine(ctx.gconfig.get("db", "adminurl")) e.execute("create database {0}".format(ldbname)) db_create_mysql_users(ctx, e, ldbname, nousers, nogrants) e.execute("use {0}".format(ldbname)) db_create_sql_table_groups(ctx, e, ldirectory, alltables) def db_create_postgresql( ctx, ldbname, ldirectory, nousers, nogrants, nofunctions, alltables ): scmd = ( 'psql "postgresql://{0}:{1}@{2}" -c "create database {3} "' ).format( ctx.gconfig.get("db", "adminuser"), ctx.gconfig.get("db", "adminpassword"), ctx.gconfig.get("db", "host"), ldbname, ) os.system(scmd) e = create_engine(ctx.gconfig.get("db", "adminurl")) if not nogrants: e.execute( "CREATE USER {0} WITH PASSWORD '{1}';".format( ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ) ) e.execute( "GRANT CONNECT ON DATABASE {0} TO {1};".format( ldbname, ctx.gconfig.get("db", "rwuser"), ) ) if ctx.gconfig.get("db", "rwuser") != ctx.gconfig.get("db", "rouser"): e.execute( "CREATE USER {0} WITH PASSWORD '{1}';".format( ctx.gconfig.get("db", "rouser"), ctx.gconfig.get("db", "ropassword"), ) ) e.execute( "GRANT CONNECT ON DATABASE {0} TO {1};".format( ldbname, ctx.gconfig.get("db", "rouser"), ) ) e.dispose() e = create_engine( "{0}+{1}://{2}:{3}@{4}/{5}".format( ctx.gconfig.get("db", "type"), ctx.gconfig.get("db", "driver"), ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "host"), ldbname, ) ) if not nofunctions: e.execute( "CREATE FUNCTION concat(text, text) RETURNS text AS 'SELECT $1 || $2;' LANGUAGE 'sql';" ) e.execute( "CREATE FUNCTION rand() RETURNS double precision AS 'SELECT random();' LANGUAGE 'sql';" ) db_create_sql_table_groups(ctx, e, ldirectory, alltables) e.dispose() e = create_engine(ctx.gconfig.get("db", "adminurl")) if not nogrants: e.execute( "GRANT ALL PRIVILEGES ON DATABASE {0} TO {1};".format( ldbname, ctx.gconfig.get("db", "rwuser"), ) ) if ctx.gconfig.get("db", "rwuser") != ctx.gconfig.get("db", "rouser"): e.execute( "GRANT SELECT ON DATABASE {0} TO {1};".format( ldbname, ctx.gconfig.get("db", "rouser"), ) ) def db_create_sqlite(ctx, ldbname, ldirectory, alltables): e = create_engine( "{0}+{1}:///{2}".format( ctx.gconfig.get("db", "type"), ctx.gconfig.get("db", "driver"), ldbname, ) ) db_create_sql_table_groups(ctx, e, ldirectory, alltables) @cli.command("create", short_help="Create database structure") @click.option( "dbname", "--dbname", "-d", default="", help="Database name or path to the folder for database", ) @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @click.option( "nousers", "--no-users", "-U", is_flag=True, help="Do not create users", ) @click.option( "nogrants", "--no-grants", "-G", is_flag=True, help="Do not grant privileges", ) @click.option( "nofunctions", "--no-functions", "-F", is_flag=True, help="Do not create additional SQL functions", ) @click.option( "alltables", "--all-tables", "-a", is_flag=True, help="Create all tables without asking for confirmation", ) @pass_context def db_create( ctx, dbname, scriptsdirectory, nousers, nogrants, nofunctions, alltables ): """Create database structure \b """ dbtype = ctx.gconfig.get("db", "type") if dbtype == "sqlite": ldbname = ctx.gconfig.get("db", "dbpath") else: ldbname = ctx.gconfig.get("db", "dbname") if len(dbname) > 0: ldbname = dbname ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory ctx.vlog("Creating database [%s] structure", ldbname) if dbtype == "mysql": db_create_mysql(ctx, ldbname, ldirectory, nousers, nogrants, alltables) return elif dbtype == "postgresql": db_create_postgresql( ctx, ldbname, ldirectory, nousers, nogrants, nofunctions, alltables ) return elif dbtype == "sqlite": db_create_sqlite(ctx, ldbname, ldirectory, alltables) return else: ctx.vlog("Database type [%s] not supported yet", dbtype) return @cli.command("create-dbonly", short_help="Create database only") @click.option( "dbname", "--dbname", "-d", default="", help="Database name or path to the folder for database", ) @pass_context def db_create_dbonly(ctx, dbname): """Create database only \b """ ctx.vlog("Creating only database [%s]", dbname) dbtype = ctx.gconfig.get("db", "type") if dbtype == "sqlite": ldbname = ctx.gconfig.get("db", "dbpath") else: ldbname = ctx.gconfig.get("db", "dbname") if len(dbname) > 0: ldbname = dbname if dbtype == "mysql": e = create_engine(ctx.gconfig.get("db", "adminurl")) e.execute("create database {0}".format(ldbname)) elif dbtype == "postgresql": scmd = ( 'psql "postgresql://{0}:{1}@{2}" -c "create database {3} "' ).format( ctx.gconfig.get("db", "adminuser"), ctx.gconfig.get("db", "adminpassword"), ctx.gconfig.get("db", "host"), ldbname, ) os.system(scmd) elif dbtype == "sqlite": ctx.vlog("Database file for type [%s] is created on first use", dbtype) else: ctx.vlog("Database type [%s] not supported yet", dbtype) return @cli.command("drop", short_help="Drop database") @click.option( "dbname", "--dbname", "-d", default="", help="Database name or path to the database", ) @click.option( "yes", "--yes", "-y", is_flag=True, help="Do not ask for confirmation", ) @pass_context def db_drop(ctx, dbname, yes): """Drop database \b """ dbtype = ctx.gconfig.get("db", "type") if dbtype == "sqlite": ldbname = ctx.gconfig.get("db", "dbpath") else: ldbname = ctx.gconfig.get("db", "dbname") if len(dbname) > 0: ldbname = dbname if not yes: print("Dropping database. Are you sure? (y/n):", end=" ") option = input() if option != "y": ctx.vlog("Skip dropping database [%s]", ldbname) return ctx.vlog("Dropping database [%s]", ldbname) if dbtype == "mysql": e = create_engine(ctx.gconfig.get("db", "adminurl")) e.execute("drop database {0}".format(ldbname)) elif dbtype == "postgresql": scmd = ( 'psql "postgresql://{0}:{1}@{2}" -c "drop database {3} "' ).format( ctx.gconfig.get("db", "adminuser"), ctx.gconfig.get("db", "adminpassword"), ctx.gconfig.get("db", "host"), ldbname, ) os.system(scmd) elif dbtype == "sqlite": if not os.path.isfile(ldbname): ctx.vlog("Database file [%s] does not exist", ldbname) else: os.remove(ldbname) return else: ctx.vlog("Database type [%s] not supported yet", dbtype) return def db_create_tables_list(ctx, directory, group): dbtype = ctx.gconfig.get("db", "type") if dbtype != "mysql": ctx.vlog("Database type [%s] not supported yet", dbtype) return ldirectory = "" if len(directory) > 0: ldirectory = directory e = create_engine(ctx.gconfig.get("db", "rwurl")) db_create_sql_group(ctx, e, ldirectory, group) @cli.command("create-tables-basic", short_help="Create basic database tables") @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @pass_context def db_create_tables_basic(ctx, scriptsdirectory): """Create basic database tables \b """ ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory db_create_tables_list(ctx, ldirectory, KDB_GROUP_BASIC) @cli.command( "create-tables-standard", short_help="Create standard database tables" ) @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @pass_context def db_create_tables_standard(ctx, scriptsdirectory): """Create standard database tables \b """ ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory db_create_tables_list(ctx, ldirectory, KDB_GROUP_STANDARD) @cli.command("create-tables-extra", short_help="Create extra database tables") @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @pass_context def db_create_tables_extra(ctx, scriptsdirectory): """Create extra database tables \b """ ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory db_create_tables_list(ctx, ldirectory, KDB_GROUP_EXTRA) @cli.command( "create-tables-presence", short_help="Create presence database tables" ) @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @pass_context def db_create_tables_presence(ctx, scriptsdirectory): """Create presence database tables \b """ ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory db_create_tables_list(ctx, ldirectory, KDB_GROUP_PRESENCE) @cli.command("create-tables-uid", short_help="Create uid database tables") @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @pass_context def db_create_tables_uid(ctx, scriptsdirectory): """Create uid database tables \b """ ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory db_create_tables_list(ctx, ldirectory, KDB_GROUP_UID) @cli.command( "create-tables-group", short_help="Create the group of database tables for a specific extension", ) @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @click.argument("gname", metavar="<gname>") @pass_context def db_create_tables_group(ctx, scriptsdirectory, gname): """Create the group of database tables for a specific extension \b Parameters: <gname> - the name of the group of tables """ ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory e = create_engine(ctx.gconfig.get("db", "rwurl")) fpath = ldirectory + "/" + gname + "-create.sql" dbutils_exec_sqlfile(ctx, e, fpath) @cli.command("grant", short_help="Create db access users and grant privileges") @click.option( "dbname", "--dbname", "-d", default="", help="Database name", ) @pass_context def db_grant(ctx, dbname): """Create db access users and grant privileges \b """ dbtype = ctx.gconfig.get("db", "type") if dbtype != "mysql": ctx.vlog("Database type [%s] not supported yet", dbtype) return ldbname = ctx.gconfig.get("db", "dbname") if len(dbname) > 0: ldbname = dbname ctx.vlog("Creating only database [%s]", ldbname) e = create_engine(ctx.gconfig.get("db", "adminurl")) db_create_mysql_users(ctx, e, ldbname, False, False) def db_revoke_host_users(ctx, e, dbname, dbhost, dbrwuser, dbrouser): e.execute( "REVOKE ALL PRIVILEGES ON {0}.* TO {1!r}@{2!r}".format( dbname, dbrwuser, dbhost ) ) e.execute("DROP USER {0!r}@{1!r}".format(dbrwuser, dbhost)) e.execute( "REVOKE SELECT PRIVILEGES ON {0}.* TO {1!r}@{2!r}".format( dbname, dbrouser, dbhost ) ) e.execute("DROP USER {0!r}@{1!r}".format(dbrouser, dbhost)) def db_revoke_users(ctx, e, dbname): dbhost = ctx.gconfig.get("db", "host") dbrwuser = ctx.gconfig.get("db", "rwuser") dbrouser = ctx.gconfig.get("db", "rouser") dbaccesshost = ctx.gconfig.get("db", "accesshost") db_revoke_host_users(ctx, e, dbname, dbhost, dbrwuser, dbrouser) if dbhost != "localhost": db_revoke_host_users( ctx, e, dbname, "localhost", dbrwuser, dbrouser, ) if len(dbaccesshost) > 0: db_revoke_host_users( ctx, e, dbname, dbaccesshost, dbrwuser, dbrouser, ) @cli.command("revoke", short_help="Revoke db access privileges") @click.option( "dbname", "--dbname", "-d", default="", help="Database name", ) @pass_context def db_revoke(ctx, dbname): """Revoke db access privileges \b """ dbtype = ctx.gconfig.get("db", "type") if dbtype != "mysql": ctx.vlog("Database type [%s] not supported yet", dbtype) return ldbname = ctx.gconfig.get("db", "dbname") if len(dbname) > 0: ldbname = dbname ctx.vlog("Revoke access to database [%s]", ldbname) e = create_engine(ctx.gconfig.get("db", "adminurl")) db_revoke_users(ctx, e, ldbname) @cli.command( "version-set", short_help="Set the version number for a table structure" ) @click.option( "vertable", "--version-table", default="version", help="Name of the table with version records", ) @click.argument("table", metavar="<table>") @click.argument("version", metavar="<version>", type=int) @pass_context def db_version_set(ctx, vertable, table, version): """Set the version number for a table structure \b Parameters: <table> - Name of the table to set the version for <version> - Version number """ e = create_engine(ctx.gconfig.get("db", "rwurl")) e.execute( "delete from {0} where table_name={1!r}".format( vertable.encode("ascii", "ignore").decode(), table.encode("ascii", "ignore").decode(), ) ) e.execute( "insert into {0} (table_name, table_version) values ({1!r}, {2})".format( vertable.encode("ascii", "ignore").decode(), table.encode("ascii", "ignore").decode(), version, ) ) @cli.command( "version-get", short_help="Get the version number for a table structure" ) @click.option( "vertable", "--version-table", default="version", help="Name of the table with version records", ) @click.option( "oformat", "--output-format", "-F", type=click.Choice(["raw", "json", "table", "dict"]), default=None, help="Format the output", ) @click.option( "ostyle", "--output-style", "-S", default=None, help="Style of the output (tabulate table format)", ) @click.argument("table", metavar="<table>") @pass_context def db_version_get(ctx, vertable, oformat, ostyle, table): """Get the version number for a table structure \b Parameters: <table> - Name of the table to get the version for """ e = create_engine(ctx.gconfig.get("db", "rwurl")) res = e.execute( "select * from {0} where table_name={1!r}".format( vertable.encode("ascii", "ignore").decode(), table.encode("ascii", "ignore").decode(), ) ) ioutils_dbres_print(ctx, oformat, ostyle, res)
gpl-2.0
5,029,327,672,222,936,000
26.863189
99
0.560528
false
3.357329
true
false
false
aidin36/beneath-a-binary-sky
src/actions/water_action.py
1
2052
# This file is part of Beneath a Binary Sky. # Copyright (C) 2016, Aidin Gharibnavaz <aidin@aidinhut.com> # # Beneath a Binary Sky is free software: you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # Beneath a Binary Sky is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Beneath a Binary Sky. If not, see # <http://www.gnu.org/licenses/>. import time from actions.action import Action from actions.exceptions import InvalidArgumentsError, RobotHaveNoWaterError from world.world import World from database.exceptions import LockAlreadyAquiredError class WaterAction(Action): def __init__(self): super().__init__() self._world = World() def do_action(self, robot, args): '''Waters the square robot stands on. @param robot: Instance of `objects.robot.Robot'. ''' if len(args) != 1: raise InvalidArgumentsError("`water' action takes no arguments.") if not robot.get_has_water(): raise RobotHaveNoWaterError("Robot does not carry water.") try: square = self._world.get_square(robot.get_location(), for_update=True) except LockAlreadyAquiredError: # Waiting a little, and trying one more time. time.sleep(0.02) square = self._world.get_square(robot.get_location(), for_update=True) # Note: we don't raise an exception if there's no plant. A robot can waste its water. plant = square.get_plant() if plant is not None: plant.set_water_level(100) robot.set_honor(robot.get_honor() + 1) robot.set_has_water(False)
gpl-3.0
8,472,158,464,183,048,000
35
93
0.679825
false
3.842697
false
false
false
mdsalman729/flexpret_project
emulator/concurrit-poplsyntax/concurrit-poplsyntax/bench/pfscan/inputs/in2/config/getpthreadfunctions.py
1
1909
## # getpthreadfunctions.py - outputs the pthread man page to mapthread.txt # parses the latter, creates a dictionary with pairs # (functionname, list of function args where last element is result type) # marshals dictionary to pthreaddict file # # Author - Christos Stergiou (chster@eecs.berkeley.edu) # import os,re,marshal os.system('man pthread | col -b > manpthread.txt') filemp = open('manpthread.txt') filedict = open('pthreaddict','w') try: pfuncs = dict() previousmatch = False funcargtypesstr = '' funcname = '' funcrettype = '' for line in filemp: line = line.rstrip('\n') funcargtypeslist = [] if previousmatch: previousmatch = False funcargtypesstr = funcargtypesstr + ' ' + line.strip()[0:-2] else: #matchobj = re.search('[\t ]*[([a-zA-Z0-9_]+)[\t ]+([a-zA-Z0-9_]+)\(([a-z]+.*$)', line) matchobj = re.search('[\t ]*([a-zA-Z0-9_]+( \*)?)[\t ]*([a-zA-Z0-9_]+)\(([a-z]+.*$)', line) if matchobj: funcname = matchobj.group(3) funcrettype = matchobj.group(1) funcargtypesstr = matchobj.group(4); if not re.search(';$', matchobj.group(4)): # function arguments continue to next line previousmatch = True continue else: # remove ');' from end of line funcargtypesstr = funcargtypesstr[0:-2] if matchobj or previousmatch: funcargtypeslist = re.split(', ', funcargtypesstr) funcargtypeslist.reverse() funcargtypeslist.append(funcrettype) funcargtypeslist.reverse() print funcname,"->",funcargtypeslist pfuncs[funcname] = funcargtypeslist finally: marshal.dump(pfuncs,filedict) filemp.close() filedict.close()
bsd-3-clause
-8,134,398,863,236,522,000
33.709091
103
0.566789
false
3.735812
false
false
false
henaras/sahara
sahara/service/volumes.py
1
8618
# Copyright (c) 2013 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo_config import cfg from oslo_log import log as logging from sahara import conductor as c from sahara import context from sahara import exceptions as ex from sahara.i18n import _ from sahara.i18n import _LE from sahara.utils import cluster_progress_ops as cpo from sahara.utils.openstack import cinder from sahara.utils.openstack import nova from sahara.utils import poll_utils conductor = c.API LOG = logging.getLogger(__name__) CONF = cfg.CONF CONF.import_opt('api_version', 'sahara.utils.openstack.cinder', group='cinder') def _count_instances_to_attach(instances): result = 0 for instance in instances: if instance.node_group.volumes_per_node > 0: result += 1 return result def _count_volumes_to_mount(instances): return sum([inst.node_group.volumes_per_node for inst in instances]) def attach_to_instances(instances): instances_to_attach = _count_instances_to_attach(instances) if instances_to_attach == 0: return cpo.add_provisioning_step( instances[0].cluster_id, _("Attach volumes to instances"), instances_to_attach) with context.ThreadGroup() as tg: for instance in instances: if instance.node_group.volumes_per_node > 0: with context.set_current_instance_id(instance.instance_id): tg.spawn( 'attach-volumes-for-instance-%s' % instance.instance_name, _attach_volumes_to_node, instance.node_group, instance) @poll_utils.poll_status( 'await_attach_volumes', _("Await for attaching volumes to instances"), sleep=2) def _await_attach_volumes(instance, devices): return _count_attached_devices(instance, devices) == len(devices) @cpo.event_wrapper(mark_successful_on_exit=True) def _attach_volumes_to_node(node_group, instance): ctx = context.ctx() size = node_group.volumes_size volume_type = node_group.volume_type devices = [] for idx in range(1, node_group.volumes_per_node + 1): display_name = "volume_" + instance.instance_name + "_" + str(idx) device = _create_attach_volume( ctx, instance, size, volume_type, node_group.volume_local_to_instance, display_name, node_group.volumes_availability_zone) devices.append(device) LOG.debug("Attached volume {device} to instance".format(device=device)) _await_attach_volumes(instance, devices) paths = instance.node_group.storage_paths() for idx in range(0, instance.node_group.volumes_per_node): LOG.debug("Mounting volume {volume} to instance" .format(volume=devices[idx])) _mount_volume(instance, devices[idx], paths[idx]) LOG.debug("Mounted volume to instance") @poll_utils.poll_status( 'volume_available_timeout', _("Await for volume become available"), sleep=1) def _await_available(volume): volume = cinder.get_volume(volume.id) if volume.status == 'error': raise ex.SystemError(_("Volume %s has error status") % volume.id) return volume.status == 'available' def _create_attach_volume(ctx, instance, size, volume_type, volume_local_to_instance, name=None, availability_zone=None): if CONF.cinder.api_version == 1: kwargs = {'size': size, 'display_name': name} else: kwargs = {'size': size, 'name': name} kwargs['volume_type'] = volume_type if availability_zone is not None: kwargs['availability_zone'] = availability_zone if volume_local_to_instance: kwargs['scheduler_hints'] = {'local_to_instance': instance.instance_id} volume = cinder.client().volumes.create(**kwargs) conductor.append_volume(ctx, instance, volume.id) _await_available(volume) resp = nova.client().volumes.create_server_volume( instance.instance_id, volume.id, None) return resp.device def _count_attached_devices(instance, devices): code, part_info = instance.remote().execute_command('cat /proc/partitions') count = 0 for line in part_info.split('\n')[1:]: tokens = line.split() if len(tokens) > 3: dev = '/dev/' + tokens[3] if dev in devices: count += 1 return count def mount_to_instances(instances): if len(instances) == 0: return cpo.add_provisioning_step( instances[0].cluster_id, _("Mount volumes to instances"), _count_volumes_to_mount(instances)) with context.ThreadGroup() as tg: for instance in instances: with context.set_current_instance_id(instance.instance_id): devices = _find_instance_volume_devices(instance) # Since formating can take several minutes (for large disks) # and can be done in parallel, launch one thread per disk. for idx in range(0, instance.node_group.volumes_per_node): tg.spawn( 'mount-volume-%d-to-node-%s' % (idx, instance.instance_name), _mount_volume_to_node, instance, idx, devices[idx]) def _find_instance_volume_devices(instance): volumes = nova.client().volumes.get_server_volumes(instance.instance_id) devices = [volume.device for volume in volumes] return devices @cpo.event_wrapper(mark_successful_on_exit=True) def _mount_volume_to_node(instance, idx, device): LOG.debug("Mounting volume {device} to instance".format(device=device)) mount_point = instance.node_group.storage_paths()[idx] _mount_volume(instance, device, mount_point) LOG.debug("Mounted volume to instance") def _mount_volume(instance, device_path, mount_point): with instance.remote() as r: try: # Mount volumes with better performance options: # - reduce number of blocks reserved for root to 1% # - use 'dir_index' for faster directory listings # - use 'extents' to work faster with large files # - disable journaling # - enable write-back # - do not store access time fs_opts = '-m 1 -O dir_index,extents,^has_journal' mount_opts = '-o data=writeback,noatime,nodiratime' r.execute_command('sudo mkdir -p %s' % mount_point) r.execute_command('sudo mkfs.ext4 %s %s' % (fs_opts, device_path)) r.execute_command('sudo mount %s %s %s' % (mount_opts, device_path, mount_point)) except Exception: LOG.error(_LE("Error mounting volume to instance")) raise def detach_from_instance(instance): for volume_id in instance.volumes: _detach_volume(instance, volume_id) _delete_volume(volume_id) @poll_utils.poll_status( 'detach_volume_timeout', _("Await for volume become detached"), sleep=2) def _await_detach(volume_id): volume = cinder.get_volume(volume_id) if volume.status not in ['available', 'error']: return False return True def _detach_volume(instance, volume_id): volume = cinder.get_volume(volume_id) try: LOG.debug("Detaching volume {id} from instance".format(id=volume_id)) nova.client().volumes.delete_server_volume(instance.instance_id, volume_id) except Exception: LOG.error(_LE("Can't detach volume {id}").format(id=volume.id)) detach_timeout = CONF.timeouts.detach_volume_timeout LOG.debug("Waiting {timeout} seconds to detach {id} volume".format( timeout=detach_timeout, id=volume_id)) _await_detach(volume_id) def _delete_volume(volume_id): LOG.debug("Deleting volume {volume}".format(volume=volume_id)) volume = cinder.get_volume(volume_id) try: volume.delete() except Exception: LOG.error(_LE("Can't delete volume {volume}").format( volume=volume.id))
apache-2.0
-8,491,081,074,740,166,000
34.465021
79
0.640752
false
3.840463
false
false
false
niboshi/chainer
chainerx/_docs/routines.py
1
127367
import chainerx from chainerx import _docs def set_docs(): _docs_creation() _docs_evaluation() _docs_indexing() _docs_linalg() _docs_logic() _docs_loss() _docs_manipulation() _docs_math() _docs_sorting() _docs_statistics() _docs_connection() _docs_normalization() _docs_pooling() _docs_rnn() def _docs_creation(): _docs.set_doc( chainerx.empty, """empty(shape, dtype, device=None) Returns an array without initializing the elements. Args: shape (tuple of ints): Shape of the array. dtype: Data type of the array. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: :class:`~chainerx.ndarray`: New array with elements not initialized. .. seealso:: :func:`numpy.empty` """) _docs.set_doc( chainerx.empty_like, """empty_like(a, device=None) Returns a new array with same shape and dtype of a given array. Args: a (~chainerx.ndarray): Prototype array. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: :class:`~chainerx.ndarray`: New array with same shape and dtype as ``a`` \ with elements not initialized. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the prototype array. .. seealso:: :func:`numpy.empty_like` """) _docs.set_doc( chainerx.eye, """eye(N, M=None, k=0, dtype=float64, device=None) Returns a 2-D array with ones on the diagonals and zeros elsewhere. Args: N (int): Number of rows. M (int): Number of columns. M == N by default. k (int): Index of the diagonal. Zero indicates the main diagonal, a positive index an upper diagonal, and a negative index a lower diagonal. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: A 2-D array with given diagonals filled with ones and zeros elsewhere. .. seealso:: :func:`numpy.eye` """) _docs.set_doc( chainerx.tri, """tri(N, M=None, k=0, dtype=float32, device=None) Returns a 2-D array with ones at and below the given diagonal and zeros elsewhere. Args: N (int): Number of rows. M (int): Number of columns. M == N by default. k (int): Index of the diagonal. Zero indicates the main diagonal, a positive index an upper diagonal, and a negative index a lower diagonal. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: A 2-D array with given diagonals filled ones at and below the given diagonal and zeros elsewhere. .. seealso:: :func:`numpy.tri` """) _docs.set_doc( chainerx.tril, """tril(m, k=0) Lower triangle of an array. Returns a copy of an array with elements above the k-th diagonal zeroed. Args: m (~chainerx.ndarray): Input array. k (int): Index of the diagonal. Zero indicates the main diagonal, a positive index an upper diagonal, and a negative index a lower diagonal. Returns: ~chainerx.ndarray: Lower triangle of ``m``. .. seealso:: :func:`numpy.tril` """) _docs.set_doc( chainerx.triu, """triu(m, k=0) Upper triangle of an array. Returns a copy of an array with elements below the k-th diagonal zeroed. Args: m (~chainerx.ndarray): Input array. k (int): Index of the diagonal. Zero indicates the main diagonal, a positive index an upper diagonal, and a negative index a lower diagonal. Returns: ~chainerx.ndarray: Upper triangle of ``m``. .. seealso:: :func:`numpy.triu` """) _docs.set_doc( chainerx.identity, """identity(n, dtype=None, device=None) Returns a 2-D identity array. It is equivalent to ``eye(n, n, dtype)``. Args: n (int): Number of rows and columns. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: A 2-D identity array. .. seealso:: :func:`numpy.identity` """) _docs.set_doc( chainerx.ones, """ones(shape, dtype, device=None) Returns a new array of given shape and dtype, filled with ones. Args: shape (tuple of ints): Shape of the array. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. .. seealso:: :func:`numpy.ones` """) _docs.set_doc( chainerx.ones_like, """ones_like(a, device=None) Returns an array of ones with same shape and dtype as a given array. Args: a (~chainerx.ndarray): Prototype array. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the prototype array. .. seealso:: :func:`numpy.ones_like` """) _docs.set_doc( chainerx.zeros, """zeros(shape, dtype, device=None) Returns a new array of given shape and dtype, filled with zeros. Args: shape (tuple of ints): Shape of the array. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. .. seealso:: :func:`numpy.zeros` """) _docs.set_doc( chainerx.zeros_like, """zeros_like(a, device=None) Returns an array of zeros with same shape and dtype as a given array. Args: a (~chainerx.ndarray): Prototype array. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the prototype array. .. seealso:: :func:`numpy.zeros_like` """) _docs.set_doc( chainerx.full, """full(shape, fill_value, dtype, device=None) Returns a new array of given shape and dtype, filled with a given value. Args: shape (tuple of ints): Shape of the array. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. .. seealso:: :func:`numpy.full` """) _docs.set_doc( chainerx.full_like, """full_like(a, fill_value, dtype=None, device=None) Returns a full array with same shape and dtype as a given array. Args: a (~chainerx.ndarray): Prototype array. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the prototype array. .. seealso:: :func:`numpy.full_like` """) _docs.set_doc( chainerx.array, """array(object, dtype=None, copy=True, device=None) Creates an array. Args: object: A :class:`~chainerx.ndarray` object or any other object that can be passed to :func:`numpy.array`. dtype: Data type. If omitted, it's inferred from the input. copy (bool): If ``True``, the object is always copied. Otherwise, a copy will only be made if it is needed to satisfy any of the other requirements (dtype, device, etc.). device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the input array. .. seealso:: :func:`numpy.array` """) _docs.set_doc( chainerx.asarray, """asarray(a, dtype=None, device=None) Converts an object to an array. Args: a: The source object. dtype: Data type. If omitted, it's inferred from the input. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: Array interpretation of ``a``. If ``a`` is already an \ ndarray on the given device with matching dtype, no copy is performed. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the input array. .. seealso:: :func:`numpy.asarray` """) _docs.set_doc( chainerx.ascontiguousarray, """ascontiguousarray(a, dtype=None, device=None) Returns a C-contiguous array. Args: a (~chainerx.ndarray): Source array. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: C-contiguous array. A copy will be made only if needed. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the input array. .. seealso:: :func:`numpy.ascontiguousarray` """) _docs.set_doc( chainerx.copy, """copy(a) Creates a copy of a given array. Args: a (~chainerx.ndarray): Source array. Returns: ~chainerx.ndarray: A copy array on the same device as ``a``. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.copy` """) _docs.set_doc( chainerx.frombuffer, """frombuffer(buffer, dtype=float, count=-1, offset=0, device=None) Returns a 1-D array interpretation of a buffer. The given ``buffer`` memory must be usable on the given device, otherwise, an error is raised. Note: The ``native`` backend requires a buffer of main memory, and the ``cuda`` backend requires a buffer of CUDA memory. No copy is performed. Args: buffer: An object that exposes the buffer interface. dtype: Data type of the returned array. count (int): Number of items to read. -1 means all data in the buffer. offset (int): Start reading the buffer from this offset (in bytes). device (~chainerx.Device): Device of the returned array. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: 1-D array interpretation of ``buffer``. .. seealso:: :func:`numpy.frombuffer` """) _docs.set_doc( chainerx.arange, """arange([start=0, ]stop, [step=1, ]dtype=None, device=None) Returns an array with evenly spaced values within a given interval. Values are generated within the half-open interval [``start``, ``stop``). The first three arguments are mapped like the ``range`` built-in function, i.e. ``start`` and ``step`` are optional. Args: start: Start of the interval. stop: End of the interval. step: Step width between each pair of consecutive values. dtype: Data type specifier. It is inferred from other arguments by default. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: The 1-D array of range values. .. seealso:: :func:`numpy.arange` """) _docs.set_doc( chainerx.linspace, """linspace(start, stop, num=50, endpoint=True, dtype=None, device=None) Returns an array with evenly spaced numbers over a specified interval. Instead of specifying the step width like :func:`chainerx.arange()`, this function requires the total number of elements specified. Args: start: Start of the interval. stop: End of the interval. num: Number of elements. endpoint (bool): If ``True``, the stop value is included as the last element. Otherwise, the stop value is omitted. dtype: Data type specifier. It is inferred from the start and stop arguments by default. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: The 1-D array of ranged values. .. seealso:: :func:`numpy.linspace` """) # NOQA _docs.set_doc( chainerx.diag, """diag(v, k=0, device=None) Returns a diagonal or a diagonal array. Args: v (~chainerx.ndarray): Array object. k (int): Index of diagonals. Zero indicates the main diagonal, a positive value an upper diagonal, and a negative value a lower diagonal. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: If ``v`` is a 1-D array, then it returns a 2-D array with the specified diagonal filled by ``v``. If ``v`` is a 2-D array, then it returns the specified diagonal of ``v``. In latter case, if ``v`` is a :class:`chainerx.ndarray` object, then its view is returned. Note: The argument ``v`` does not support array-like objects yet. .. seealso:: :func:`numpy.diag` """) _docs.set_doc( chainerx.diagflat, """diagflat(v, k=0, device=None) Creates a diagonal array from the flattened input. Args: v (~chainerx.ndarray): Array object. k (int): Index of diagonals. See :func:`chainerx.diag`. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: A 2-D diagonal array with the diagonal copied from ``v``. Note: The argument ``v`` does not support array-like objects yet. .. seealso:: :func:`numpy.diagflat` """) _docs.set_doc( chainerx.meshgrid, """meshgrid(xi, indexing='xy') Returns coordinate matrices from coordinate vectors. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,…, xn. Args: xi (sequence of :class:`~chainerx.ndarray`\\ s): 1-D arrays representing the coordinates of a grid. indexing (str): {‘xy’, ‘ij’}, optional Cartesian (‘xy’, default) or matrix (‘ij’) indexing of output. Returns: list of :class:`~chainerx.ndarray`\\ s: For vectors x1, x2,…, ‘xn’ with lengths Ni=len(xi), return (N1, N2, N3,...Nn) shaped arrays if indexing=’ij’ or (N2, N1, N3,...Nn) shaped arrays if indexing=’xy’ with the elements of xi repeated to fill the matrix along the first dimension for x1, the second for x2 and so on. .. seealso:: :func:`numpy.meshgrid` """) def _docs_evaluation(): _docs.set_doc( chainerx.accuracy, """accuracy(y, t, ignore_label=None) Computes multiclass classification accuracy of the minibatch. Args: y (~chainerx.ndarray): Array whose (i, j, k, ...)-th element indicates the score of the class j at the (i, k, ...)-th sample. The prediction label :math:`\\hat t` is calculated by the formula :math:`\\hat t(i, k, ...) = \\operatorname{\\mathrm{argmax}}_j \ y(i, j, k, ...)`. t (~chainerx.ndarray): Array of ground truth labels. ignore_label (int or None): Skip calculating accuracy if the true label is ``ignore_label``. Returns: :func:`~chainerx.ndarray`: A variable holding a scalar \ array of the accuracy. Note: This function is non-differentiable. .. seealso:: :func:`chainer.functions.accuracy` .. admonition:: Example We show the most common case, when ``y`` is the two dimensional array. >>> y = chainerx.array([[0.1, 0.7, 0.2], # prediction label is 1 ... [8.0, 1.0, 2.0], # prediction label is 0 ... [-8.0, 1.0, 2.0], # prediction label is 2 ... [-8.0, -1.0, -2.0]]) # prediction label is 1 >>> t = chainerx.array([1, 0, 2, 1], chainerx.int32) >>> chainerx.accuracy(y, t) \ # 100% accuracy because all samples are correct array(1., shape=(), dtype=float64, device='native:0') >>> t = chainerx.array([1, 0, 0, 0], chainerx.int32) >>> chainerx.accuracy(y, t) \ # 50% accuracy because 1st and 2nd samples are correct array(0.5, shape=(), dtype=float64, device='native:0') >>> chainerx.accuracy(y, t, ignore_label=0) \ # 100% accuracy because of ignoring the 2nd, 3rd and 4th samples. array(1., shape=(), dtype=float64, device='native:0') """) def _docs_indexing(): _docs.set_doc( chainerx.take, """take(a, indices, axis) Takes elements from an array along an axis. Args: a (~chainerx.ndarray): Source array. indices (~chainerx.ndarray): The indices of the values to extract. When indices are out of bounds, they are wrapped around. axis (int): The axis over which to select values. mode (str): Specifies how out-of-bounds indices will behave. 'raise' - raise an error 'wrap' - wrap around 'clip' - clip to the range Returns: :func:`~chainerx.ndarray`: Output array. Note: This function currently does not support ``axis=None`` Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. Note: The default mode for the native backend is 'raise', while for the cuda backend is 'wrap' in order to prevent device synchronization. 'raise' mode is currently not supported in the CUDA backend. .. seealso:: :func:`numpy.take` """) _docs.set_doc( chainerx.where, """where(condition, x, y) Return elements chosen from ``x`` or ``y`` depending on condition. Args: condition (~chainerx.ndarray): Where True, yield ``x``, otherwise yield ``y``. x (~chainerx.ndarray): Values from which to choose. y (~chainerx.ndarray): Values from which to choose. Returns: :func:`~chainerx.ndarray`: An array with elements from ``x`` where condition is True, and elements from ``y`` elsewhere. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x`` and ``y``. .. seealso:: :func:`numpy.where` """) _docs.set_doc( chainerx.nonzero, """nonzero(a) Return the indices of the elements that are non-zero. Args: a (~chainerx.ndarray): Input array. Returns: tuple of :func:`~chainerx.ndarray`: Indices of elements that are non-zero. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :func:`numpy.nonzero` """) def _docs_linalg(): _docs.set_doc( chainerx.dot, """dot(a, b) Returns a dot product of two arrays. For arrays with more than one axis, it computes the dot product along the last axis of ``a`` and the second-to-last axis of ``b``. This is just a matrix product if the both arrays are 2-D. For 1-D arrays, it uses their unique axis as an axis to take dot product over. Args: a (~chainerx.ndarray): The left argument. b (~chainerx.ndarray): The right argument. Returns: :class:`~chainerx.ndarray`: Output array. Note: This function currently does not support N > 2 dimensional arrays. Note: During backpropagation, this function propagates the gradient of the output array to input arrays ``a`` and ``b``. .. seealso:: :func:`numpy.dot` """) _docs.set_doc( chainerx.linalg.solve, """solve(a, b) Solves a linear matrix equation, or system of linear scalar equations. It computes the exact solution of ``x`` in ``ax = b``, where ``a`` is a square and full rank matrix, ``b`` can be a vector, or a rectangular matrix. When ``b`` is matrix, its columns are treated as separate vectors representing multiple right-hand sides. Args: a (~chainerx.ndarray): Coefficient matrix. b (~chainerx.ndarray): "dependent variable" values. Returns: :class:`~chainerx.ndarray`: Solution to the system ``ax = b``. Shape is identical to ``b``. Note: The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) .. seealso:: :func:`numpy.linalg.solve` """) _docs.set_doc( chainerx.linalg.inv, """inv(a) Computes the inverse of a matrix. This function computes matrix ``a_inv`` from square matrix ``a`` such that ``dot(a, a_inv) = dot(a_inv, a) = eye(a.shape[0])``. Args: a (~chainerx.ndarray): The matrix to be inverted. Returns: :class:`~chainerx.ndarray`: The inverse of a matrix. Note: The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) .. seealso:: :func:`numpy.linalg.inv` """) _docs.set_doc( chainerx.linalg.svd, """svd(a, full_matrices=True, compute_uv=True) Singular Value Decomposition. Factorizes the matrix ``a`` into two unitary matrices ``U`` and ``Vt``, and a 1-D array ``s`` of singular values such that ``a == U * S * Vt``, where ``S`` is a suitably shaped matrix of zeros with main diagonal ``s`` and ``*`` represents a dot product. Args: a (~chainerx.ndarray): The input matrix with dimension ``(M, N)``. full_matrices (bool): If True, it returns u and v with dimensions ``(M, M)`` and ``(N, N)``. Otherwise, the dimensions of u and v are respectively ``(M, K)`` and ``(K, N)``, where ``K = min(M, N)``. compute_uv (bool): If False, only singular values are computed. Returns: tuple of :class:`chainerx.ndarray`: A tuple of ``(U, s, Vt)`` such that ``a = U * diag(s) * Vt``. When ``compute_uv`` is False only singular values ``s`` are returned. Note: * The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) * The SVD is commonly written as `a = U * diag(s) * V^T`. The ``Vt`` returned by this function is `V^T`. * During backpropagation, this function requires ``U`` and ``Vt`` computed, therefore differentiation does not work for ``compute_uv=False``. * Backpropagation is not implemented for ``full_matrices=True``. .. seealso:: :func:`numpy.linalg.svd` """) _docs.set_doc( chainerx.linalg.pinv, """pinv(a, rcond=1e-15) Compute the (Moore-Penrose) pseudo-inverse of a matrix. Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all large singular values. Args: a (~chainerx.ndarray): The input matrix to be pseudo-inverted. rcond (float): Cutoff for small singular values. Returns: :class:`~chainerx.ndarray`: The pseudo-inverse of ``a``. Note: The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) .. seealso:: :func:`numpy.linalg.pinv` """) _docs.set_doc( chainerx.linalg.qr, """qr(a, mode='reduced') Compute the qr factorization of a matrix. Factor the matrix ``a`` as *qr*, where ``q`` is orthonormal and ``r`` is upper-triangular. Args: a (~chainerx.ndarray): Matrix to be factored. mode (str): The mode of decomposition. 'reduced' : returns q, r with dimensions (M, K), (K, N) (default) 'complete' : returns q, r with dimensions (M, M), (M, N) 'r' : returns r only with dimensions (K, N) 'raw' : returns h, tau with dimensions (N, M), (K,), where ``(M, N)`` is the shape of the input matrix and ``K = min(M, N)`` Returns: q (~chainerx.ndarray): A matrix with orthonormal columns. r (~chainerx.ndarray): The upper-triangular matrix. Note: * The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) * Backpropagation is not implemented for non-square output matrix ``r``. * Backpropagation is not implemented for 'r' or 'raw' modes. .. seealso:: :func:`numpy.linalg.qr` """) _docs.set_doc( chainerx.linalg.cholesky, """cholesky(a) Computes the Cholesky decomposition of a matrix. Returns the Cholesky decomposition, :math:`A = L L^T`, for the square matrix ``a``. Args: a (~chainerx.ndarray): Symmetric positive-definite input matrix. Returns: :class:`~chainerx.ndarray`: Output array. Cholesky factor of ``a``. Note: The forward computation does not necessarily check if the input matrix is symmetric (e.g. the native backend relying on LAPACK does not). However, both the forward and the backward computations assume that it is and their results are unspecified otherwise. The computed gradient is always a symmetric matrix. More specifically, the gradient is computed as if the function is restricted to a Riemannian submanifold of :math:`R_{n \times n}` consisting just of positive-definite symmetric matrices and is faithful to the mathematical definition of the Cholesky decomposition. Note: * GPU implementation of the Cholesky decomposition routine is based on cuSOLVER library. Older versions (<10.1) of it might not raise an error for some non positive-definite matrices. * The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) .. seealso:: :func:`numpy.linalg.cholesky` """) _docs.set_doc( chainerx.linalg.eigh, """eigh(a, UPLO='L') Compute the eigenvalues and eigenvectors of a real symmetric matrix. Args: a (~chainerx.ndarray): Real symmetric matrix whose eigenvalues and eigenvectors are to be computed. UPLO (str): Specifies whether the calculation is done with the lower triangular part of a ('L', default) or the upper triangular part ('U'). Returns: tuple of :class:`~chainerx.ndarray`: Returns a tuple ``(w, v)``. ``w`` contains eigenvalues and ``v`` contains eigenvectors. ``v[:, i]`` is an eigenvector corresponding to an eigenvalue ``w[i]``. Note: Although ``UPLO`` can be specified to ignore either the strictly lower or upper part of the input matrix, the backward computation assumes that the inputs is symmetric and the computed gradient is always a symmetric matrix with respect to ``UPLO``. More specifically, the gradient is computed as if the function is restricted to a Riemannian submanifold of :math:`R_{n \times n}` consisting just of symmetric matrices and is faithful to the mathematical definition of the eigenvalue decomposition of symmetric matrices. Note: The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) .. seealso:: :func:`numpy.linalg.eigh` """) _docs.set_doc( chainerx.linalg.eigvalsh, """eigvalsh(a, UPLO='L') Compute the eigenvalues of a real symmetric matrix. Main difference from eigh: the eigenvectors are not computed. Args: a (~chainerx.ndarray): Real symmetric matrix whose eigenvalues and eigenvectors are to be computed. UPLO (str): Specifies whether the calculation is done with the lower triangular part of a (‘L’, default) or the upper triangular part (‘U’). (optional). Returns: :class:`~chainerx.ndarray`: Returns eigenvalues as a vector. Note: * The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) * Backpropagation requires eigenvectors and, therefore, is not implemented for this function. ``linalg.eigh`` should be used instead. .. seealso:: :func:`numpy.linalg.eigvalsh` """) def _docs_logic(): _docs.set_doc( chainerx.all, """all(x) Test whether all array elements along a given axis evaluate to True. Args: x (~chainerx.ndarray): Input array. axis (None or int or tuple of ints): Axis or axes along which AND reduction is performed. The flattened array is used by default. keepdims (bool): If this is set to ``True``, the reduced axes are left in the result as dimensions with size one. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.all` """) _docs.set_doc( chainerx.any, """any(x) Test whether any array element along a given axis evaluate to True. Args: x (~chainerx.ndarray): Input array. axis (None or int or tuple of ints): Axis or axes along which OR reduction is performed. The flattened array is used by default. keepdims (bool): If this is set to ``True``, the reduced axes are left in the result as dimensions with size one. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.any` """) _docs.set_doc( chainerx.logical_not, """logical_not(x) Returns an array of NOT x element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.logical_not` """) _docs.set_doc( chainerx.logical_and, """logical_and(x1, x2) Returns an array of x1 AND x2 element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.logical_and` """) _docs.set_doc( chainerx.logical_or, """logical_or(x1, x2) Returns an array of x1 OR x2 element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.logical_or` """) _docs.set_doc( chainerx.logical_xor, """logical_xor(x1, x2) Returns an array of x1 XOR x2 element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.logical_xor` """) _docs.set_doc( chainerx.greater, """greater(x1, x2) Returns an array of (x1 > x2) element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.greater` """) _docs.set_doc( chainerx.greater_equal, """greater_equal(x1, x2) Returns an array of (x1 >= x2) element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.greater_equal` """) _docs.set_doc( chainerx.less, """less(x1, x2) Returns an array of (x1 < x2) element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.less` """) _docs.set_doc( chainerx.less_equal, """less_equal(x1, x2) Returns an array of (x1 <= x2) element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.less_equal` """) _docs.set_doc( chainerx.equal, """equal(x1, x2) Returns an array of (x1 == x2) element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.equal` """) _docs.set_doc( chainerx.not_equal, """not_equal(x1, x2) Returns an array of (x1 != x2) element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.not_equal` """) def _docs_loss(): _docs.set_doc( chainerx.absolute_error, """Element-wise absolute error function. Computes the element-wise absolute error :math:`L` between two inputs :math:`x_1` and :math:`x_2` defined as follows. .. math:: L = |x_1 - x_2| Args: x1 (~chainerx.ndarray): Input variable. x2 (~chainerx.ndarray): Input variable. Returns: :class:`~chainerx.ndarray`: A variable holding an array representing the absolute error of two inputs. .. seealso:: :func:`chainer.functions.absolute_error` """) _docs.set_doc( chainerx.squared_error, """Element-wise squared error function. Computes the element-wise squared error :math:`L` between two inputs :math:`x_1` and :math:`x_2` defined as follows. .. math:: L = (x_1 - x_2)^2 Can be used to compute mean squared error by just calling `mean()` on the output array. Args: x0 (~chainerx.ndarray): Input variable. x1 (~chainerx.ndarray): Input variable. Returns: :class:`~chainerx.ndarray`: A variable holding an array representing the squared error of two inputs. .. seealso:: :func:`chainer.functions.squared_error` """) _docs.set_doc( chainerx.huber_loss, """Element-wise Huber loss. The Huber loss is similar to the squared error but is less sensitive to outliers in the data. It is defined as .. math:: L_{\\delta}(a) = \\left \\{ \\begin{array}{cc} \\frac{1}{2} a^2 & {\\rm if~|a| \\leq \\delta} \\\\ \\delta (|a| - \\frac{1}{2} \\delta) & {\\rm otherwise,} \\end{array} \\right. where :math:`a = x - t` is the difference between the input :math:`x` and the target :math:`t`. See: `Huber loss - Wikipedia <https://en.wikipedia.org/wiki/Huber_loss>`_. Args: x (~chainerx.ndarray): Input variable. t (~chainerx.ndarray): Target variable for regression. delta (float): Constant variable for Huber loss function as used in definition. Returns: :class:`~chainerx.ndarray`: A variable object holding an array representing the Huber loss :math:`L_{\\delta}` of the two inputs. .. seealso:: :func:`chainer.functions.huber_loss` """) _docs.set_doc( chainerx.gaussian_kl_divergence, """Element-wise KL-divergence of Gaussian variables from the standard one. Given two variable ``mean`` representing :math:`\\mu` and ``ln_var`` representing :math:`\\log(\\sigma^2)`, this function calculates the element-wise KL-divergence between the given multi-dimensional Gaussian :math:`N(\\mu, S)` and the standard Gaussian :math:`N(0, I)` .. math:: D_{\\mathbf{KL}}(N(\\mu, S) \\| N(0, I)), where :math:`S` is a diagonal matrix such that :math:`S_{ii} = \\sigma_i^2` and :math:`I` is an identity matrix. Args: mean (~chainerx.ndarray): A variable representing mean of given gaussian distribution, :math:`\\mu`. ln_var (~chainerx.ndarray): A variable representing logarithm of variance of given gaussian distribution, :math:`\\log(\\sigma^2)`. Returns: :class:`~chainerx.ndarray`: A variable representing KL-divergence between given gaussian distribution and the standard gaussian. .. seealso:: :func:`chainer.functions.gaussian_kl_divergence` """) _docs.set_doc( chainerx.sigmoid_cross_entropy, """sigmoid_cross_entropy(x1, x2) Element-wise cross entropy loss for pre-sigmoid activations. Args: x1 (~chainerx.ndarray): An array whose (i, j)-th element indicates the unnormalized log probability of the j-th unit at the i-th example. x2 (~chainerx.ndarray): An array whose (i, j)-th element indicates a signed integer vector of ground truth labels 0 or 1. If ``x2[i, j] == -1``, corresponding ``x1[i, j]`` is ignored. Loss is zero if all ground truth labels are -1. Returns: :class:`~chainerx.ndarray`: An array of the cross entropy. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x1`` only. """) _docs.set_doc( chainerx.softmax_cross_entropy, """softmax_cross_entropy(x1, x2) Element-wise cross entropy loss for pre-softmax activations. Args: x1 (~chainerx.ndarray): An array whose element indicates unnormalized log probability: the first axis of the array represents the number of samples, and the second axis represents the number of classes. x2 (~chainerx.ndarray): A signed integer vector of ground truth labels. If ``x2[i] == -1``, corresponding ``x1[i]`` is ignored. Returns: :class:`~chainerx.ndarray`: An array of the cross entropy. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x1`` only. """) def _docs_manipulation(): _docs.set_doc( chainerx.reshape, """reshape(a, newshape) Returns a reshaped array. Args: a (~chainerx.ndarray): Array to be reshaped. newshape (int or tuple of ints): The new shape of the array to return. If it is an integer, then it is treated as a tuple of length one. It should be compatible with ``a.size``. One of the elements can be -1, which is automatically replaced with the appropriate value to make the shape compatible with ``a.size``. Returns: :class:`~chainerx.ndarray`: A reshaped view of ``a`` if possible, otherwise a copy. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.reshape` """) _docs.set_doc( chainerx.ravel, """ravel(a) Returns a flattened array. Args: a (~chainerx.ndarray): Array to be flattened. Returns: :class:`~chainerx.ndarray`: A flattened view of ``a`` if possible, otherwise a copy. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.ravel` """) _docs.set_doc( chainerx.transpose, """transpose(a, axes=None) Permutes the dimensions of an array. Args: a (~chainerx.ndarray): Array to permute the dimensions. axes (tuple of ints): Permutation of the dimensions. This function reverses the shape by default. Returns: ~chainerx.ndarray: A view of ``a`` with the dimensions permuted. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.transpose` """) _docs.set_doc( chainerx.broadcast_to, """broadcast_to(array, shape) Broadcasts an array to a given shape. Args: array (~chainerx.ndarray): Array to broadcast. shape (tuple of ints): The shape of the desired array. Returns: ~chainerx.ndarray: Broadcasted view. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``array``. .. seealso:: :func:`numpy.broadcast_to` """) _docs.set_doc( chainerx.squeeze, """squeeze(a, axis=None) Removes size-one axes from the shape of an array. Args: a (~chainerx.ndarray): Array to be reshaped. axis (int or tuple of ints): Axes to be removed. This function removes all size-one axes by default. If one of the specified axes is not of size one, an exception is raised. Returns: ~chainerx.ndarray: An array without (specified) size-one axes. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.squeeze` """) _docs.set_doc( chainerx.concatenate, """concatenate(arrays, axis=0) Joins arrays along an axis. Args: arrays (sequence of :class:`~chainerx.ndarray`\\ s): Arrays to be joined. All of these should have the same dimensionalities except the specified axis. axis (int): The axis to join arrays along. Returns: ~chainerx.ndarray: Joined array. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays in ``arrays``. .. seealso:: :func:`numpy.concatenate` """) _docs.set_doc( chainerx.stack, """stack(arrays, axis=0) Stacks arrays along a new axis. Args: arrays (sequence of :class:`~chainerx.ndarray`\\ s): Arrays to be stacked. axis (int): Axis along which the arrays are stacked. Returns: ~chainerx.ndarray: Stacked array. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays in ``arrays``. .. seealso:: :func:`numpy.stack` """) _docs.set_doc( chainerx.hstack, """hstack(arrays) Stack arrays in sequence horizontally (column wise). Args: arrays (sequence of :class:`~chainerx.ndarray`\\ s): Arrays to be stacked. Returns: ~chainerx.ndarray: Stacked array. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays in ``arrays``. .. seealso:: :func:`numpy.hstack` """) _docs.set_doc( chainerx.vstack, """vstack(arrays) Stack arrays in sequence vertically (row wise). Args: arrays (sequence of :class:`~chainerx.ndarray`\\ s): Arrays to be stacked. Returns: ~chainerx.ndarray: Stacked array. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays in ``arrays``. .. seealso:: :func:`numpy.vstack` """) _docs.set_doc( chainerx.dstack, """dstack(arrays) Stack arrays in sequence depth wise (along third axis). Args: arrays (sequence of :class:`~chainerx.ndarray`\\ s): Arrays to be stacked. Returns: ~chainerx.ndarray: Stacked array. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays in ``arrays``. .. seealso:: :func:`numpy.dstack` """) _docs.set_doc( chainerx.atleast_2d, """atleast_2d(a) View inputs as arrays with at least two dimensions. Args: a (~chainerx.ndarray): Array. Returns: ~chainerx.ndarray: An array with a.ndim >= 2. Copies are avoided where possible, and views with two or more dimensions are returned. Note: * Arrays that already have two or more dimensions are preserved. * During backpropagation, this function propagates the gradient of the output array to the input arrays in ``a``. .. seealso:: :func:`numpy.atleast_2d` """) _docs.set_doc( chainerx.atleast_3d, """atleast_3d(a) View inputs as arrays with at least three dimensions. Args: a (~chainerx.ndarray): Array. Returns: ~chainerx.ndarray: An array with a.ndim >= 3. Copies are avoided where possible, and views with three or more dimensions are returned. Note: * Arrays that already have three or more dimensions are preserved. * During backpropagation, this function propagates the gradient of the output array to the input arrays in ``a``. .. seealso:: :func:`numpy.atleast_3d` """) _docs.set_doc( chainerx.split, """split(ary, indices_or_sections, axis=0) Splits an array into multiple sub arrays along a given axis. Args: ary (~chainerx.ndarray): Array to split. indices_or_sections (int or sequence of ints): A value indicating how to divide the axis. If it is an integer, then is treated as the number of sections, and the axis is evenly divided. Otherwise, the integers indicate indices to split at. Note that a sequence on the device memory is not allowed. axis (int): Axis along which the array is split. Returns: list of :class:`~chainerx.ndarray`\\ s: A list of sub arrays. Each array \ is a partial view of the input array. Note: During backpropagation, this function propagates the gradients of the output arrays to the input array ``ary``. .. seealso:: :func:`numpy.split` """) _docs.set_doc( chainerx.dsplit, """dsplit(ary, indices_or_sections) Split array into multiple sub-arrays along the 3rd axis (depth). Args: ary (~chainerx.ndarray): Array to split. indices_or_sections (int or sequence of ints): A value indicating how to divide the axis. If it is an integer, then is treated as the number of sections, and the axis is evenly divided. Otherwise, the integers indicate indices to split at. Note that a sequence on the device memory is not allowed. Returns: list of :class:`~chainerx.ndarray`\\ s: A list of sub arrays. Each array \ is a partial view of the input array. Note: During backpropagation, this function propagates the gradients of the output arrays to the input array ``ary``. .. seealso:: :func:`numpy.dsplit` """) _docs.set_doc( chainerx.vsplit, """vsplit(ary, indices_or_sections) Splits an array into multiple sub-arrays vertically (row-wise). Args: ary (~chainerx.ndarray): Array to split. indices_or_sections (int or sequence of ints): A value indicating how to divide the axis. If it is an integer, then is treated as the number of sections, and the axis is evenly divided. Otherwise, the integers indicate indices to split at. Note that a sequence on the device memory is not allowed. Returns: list of :class:`~chainerx.ndarray`\\ s: A list of sub arrays. Each array \ is a partial view of the input array. Note: During backpropagation, this function propagates the gradients of the output arrays to the input array ``ary``. .. seealso:: :func:`numpy.vsplit` """) _docs.set_doc( chainerx.hsplit, """hsplit(ary, indices_or_sections) Split an array into multiple sub-arrays horizontally (column-wise). Args: ary (~chainerx.ndarray): Array to split. indices_or_sections (int or sequence of ints): A value indicating how to divide the axis. If it is an integer, then is treated as the number of sections, and the axis is evenly divided. Otherwise, the integers indicate indices to split at. Note that a sequence on the device memory is not allowed. Returns: list of :class:`~chainerx.ndarray`\\ s: A list of sub arrays. Each array \ is a partial view of the input array. Note: During backpropagation, this function propagates the gradients of the output arrays to the input array ``ary``. .. seealso:: :func:`numpy.hsplit` """) _docs.set_doc( chainerx.swapaxes, """swapaxes(a, axis1, axis2) Interchange two axes of an array. Args: a (~chainerx.ndarray): Array to swapaxes. axis1 (int): First Axis axis2 (int): Second Axis Returns: ~chainerx.ndarray: Swaped array. Note: * Output array is a view of the input array. * During backpropagation, this function propagates the gradients of the output arrays to the input array ``a``. .. seealso:: :func:`numpy.swapaxes` """) _docs.set_doc( chainerx.repeat, """repeat(a, repeats, axis=None) Constructs an array by repeating a given array. Args: a (~chainerx.ndarray): Array to repeat. repeats (int or tuple of ints): The number of times which each element of a is repeated. axis (int): The axis along which to repeat values. Returns: ~chainerx.ndarray: The repeated output array. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.repeat` """) _docs.set_doc( chainerx.expand_dims, """expand_dims(a, axis) Expand the shape of an array. Args: a (~chainerx.ndarray): Input Array. axis (int): Position in the expanded axes where the new axis is placed. Returns: ~chainerx.ndarray: Output array. Note: * Output array may or may not be a view of the input array. * During backpropagation, this function propagates the gradients of the output arrays to the input array ``a``. .. seealso:: :func:`numpy.expand_dims` """) _docs.set_doc( chainerx.flip, """flip(m, axis) Reverse the order of elements in an array along the given axis. Args: m (~chainerx.ndarray): Input Array. axis (int or tuple of ints): Axis or axes along which to flip over. The default, axis=None, will flip over all of the axes of the input array. If axis is negative it counts from the last to the first axis. If axis is a tuple of ints, flipping is performed on all of the axes specified in the tuple. Returns: ~chainerx.ndarray: A view of m with the entries of axis reversed. Since a view is returned, this operation is done in constant time. Note: * Output array is a view of the input array. * During backpropagation, this function propagates the gradients of the output arrays to the input array ``m``. .. seealso:: :func:`numpy.flip` """) _docs.set_doc( chainerx.fliplr, """fliplr(m) Flip array in the left/right direction. Args: m (~chainerx.ndarray): Input Array. Returns: ~chainerx.ndarray: A view of m with the columns reversed. Since a view is returned, this operation is done in constant time. Note: * Output array is a view of the input array. * During backpropagation, this function propagates the gradients of the output arrays to the input array ``m``. .. seealso:: :func:`numpy.fliplr` """) _docs.set_doc( chainerx.flipud, """flipud(m) Flip array in the up/down direction. Args: m (~chainerx.ndarray): Input Array. Returns: ~chainerx.ndarray: A view of m with the rows reversed. Since a view is returned, this operation is done in constant time. Note: * Output array is a view of the input array. * During backpropagation, this function propagates the gradients of the output arrays to the input array ``m``. .. seealso:: :func:`numpy.flipud` """) _docs.set_doc( chainerx.moveaxis, """moveaxis(a, source, destination) Move axes of an array to new positions. Other axes remain in their original order. Args: a (~chainerx.ndarray): Input Array. source (int or tuple of ints): Original positions of the axes to move. These must be unique. destintation (int or tuple of ints): Destination positions for each of the original axes. These must also be unique. Returns: ~chainerx.ndarray: Array with moved axes. This array is a view of the input array. Note: * During backpropagation, this function propagates the gradients of the output arrays to the input array ``a``. .. seealso:: :func:`numpy.moveaxis` """) def _docs_math(): _docs.set_doc( chainerx.negative, """negative(x) Numerical negative, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = -x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.negative` """) _docs.set_doc( chainerx.add, """add(x1, x2) Add arguments, element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = x_1 + x_2`. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.add` """) _docs.set_doc( chainerx.subtract, """subtract(x1, x2) Subtract arguments, element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = x_1 - x_2`. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.subtract` """) _docs.set_doc( chainerx.multiply, """multiply(x1, x2) Multiply arguments, element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = x_1 \\times x_2`. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.multiply` """) _docs.set_doc( chainerx.divide, """divide(x1, x2) Divide arguments, element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\frac{x_1}{x_2}`. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.divide` """) _docs.set_doc( chainerx.sum, """sum(a, axis=None, keepdims=False) Sum of array elements over a given axis. Args: a (~chainerx.ndarray): Input array. axis (None or int or tuple of ints): Axis or axes along which a sum is performed. The flattened array is used by default. keepdims (bool): If this is set to ``True``, the reduced axes are left in the result as dimensions with size one. Returns: :class:`~chainerx.ndarray`: The sum of input elements over a given axis. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.sum` """) _docs.set_doc( chainerx.maximum, """maximum(x1, x2) Maximum arguments, element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = max(\\{x_1, x_2\\})`. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.maximum` """) _docs.set_doc( chainerx.minimum, """minimum(x1, x2) Minimum arguments, element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = min(\\{x_1, x_2\\})`. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.minimum` """) _docs.set_doc( chainerx.remainder, """remainder(x1, x2) Return element-wise remainder of division. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: The element-wise remainder of the quotient ``floor_divide(x1, x2)``. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.remainder` """) _docs.set_doc( chainerx.exp, """exp(x) Numerical exponential, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\exp x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.exp` """) _docs.set_doc( chainerx.log, """log(x) Natural logarithm, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\ln x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.log` """) _docs.set_doc( chainerx.log10, """log10(x) Base 10 logarithm, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\log_{10} x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.log10` """) _docs.set_doc( chainerx.log2, """log2(x) Base 2 logarithm, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\log_{2} x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.log2` """) _docs.set_doc( chainerx.log1p, """log1p(x) Natural logarithm of one plus the input, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\log(1 + x)`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.log1p` """) _docs.set_doc( chainerx.logsumexp, """logsumexp(x, axis=None, keepdims=False) The log of the sum of exponentials of input array. Args: x (~chainerx.ndarray): Input array. axis (None or int or tuple of ints): Axis or axes along which a sum is performed. The flattened array is used by default. keepdims (bool): If this is set to ``True``, the reduced axes are left in the result as dimensions with size one. Returns: :class:`~chainerx.ndarray`: The log of the sum of exponentials of input elements over a given axis. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. """) _docs.set_doc( chainerx.log_softmax, """log_softmax(x, axis=None) The log of the softmax of input array. Args: x (~chainerx.ndarray): Input array. axis (None or int or tuple of ints): Axis or axes along which a sum is performed. The flattened array is used by default. Returns: :class:`~chainerx.ndarray`: The log of the softmax of input elements over a given axis. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. """) _docs.set_doc( chainerx.square, """square(x) Returns the element-wise square of the input. Args: x (~chainerx.ndarray or scalar): Input data Returns: ~chainerx.ndarray: Returned array: :math:`y = x * x`. A scalar is returned if ``x`` is a scalar. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.square` """) _docs.set_doc( chainerx.sqrt, """sqrt(x) Non-negative square-root, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\sqrt x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.sqrt` """) _docs.set_doc( chainerx.sinh, """sinh(x) Hyperbolic Sine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\sinh x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.sinh` """) _docs.set_doc( chainerx.cosh, """cosh(x) Hyperbolic Cosine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\cosh x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.cosh` """) _docs.set_doc( chainerx.tanh, """tanh(x) Element-wise hyperbolic tangent function. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\tanh x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.tanh` """) _docs.set_doc( chainerx.sigmoid, """sigmoid(x) Element-wise sigmoid logistic function. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`f(x) = (1 + \\exp(-x))^{-1}`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :func:`chainer.functions.sigmoid` """) _docs.set_doc( chainerx.sin, """sin(x) Sine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\sin x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.sin` """) _docs.set_doc( chainerx.cos, """cos(x) Cosine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\cos x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.cos` """) _docs.set_doc( chainerx.ceil, """ceil(x) Return the ceiling of the input, element-wise.. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: The ceiling of each element in array. .. seealso:: :data:`numpy.ceil` """) _docs.set_doc( chainerx.tan, """tan(x) Tangent, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\tan x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.tan` """) _docs.set_doc( chainerx.relu, """Rectified Linear Unit function. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\max (0, x)`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. """) _docs.set_doc( chainerx.tree_lstm, """tree_lstm(*inputs) TreeLSTM unit as an activation function. This function implements TreeLSTM units both for N-ary TreeLSTM and Child-Sum TreeLSTM. Let the children cell states :math:`c_{\\text{1}}, c_{\\text{2}}, \\dots, c_{\\text{N}}`, and the incoming signal :math:`x`. First, the incoming signal :math:`x` is split into (3 + N) arrays :math:`a, i, o, f_{\\text{1}}, f_{\\text{2}}, ..., f_{\\text{N}}` of the same shapes along the second axis. It means that :math:`x` 's second axis must have (3 + N) times of the length of each :math:`c_{n}`. The splitted input signals are corresponding to - :math:`a` : sources of cell input - :math:`i` : sources of input gate - :math:`o` : sources of output gate - :math:`f_{n}` : sources of forget gate for n-th ary Second, it computes outputs as .. math:: c &= \\tanh(a) \\text{sigmoid}(i) \\\\ & + c_{\\text{1}} \\text{sigmoid}(f_{\\text{1}}), \\\\ & + c_{\\text{2}} \\text{sigmoid}(f_{\\text{2}}), \\\\ & + ..., \\\\ & + c_{\\text{N}} \\text{sigmoid}(f_{\\text{N}}), \\\\ h &= \\tanh(c) \\text{sigmoid}(o). These are returned as a tuple of (N + 1) variables. Args: inputs (list of :class:`~chainerx.array`): Variable arguments which include all cell vectors from child-nodes, and an input vector. Each of the cell vectors and the input vector is :class:`~chainerx.array`. The input vector must have the second dimension whose size is (N + 3) times of that of each cell, where N denotes the total number of cells. Returns: tuple: Two :class:`~chainerx.array` objects ``c`` and ``h``. ``c`` is the updated cell state. ``h`` indicates the outgoing signal. See the papers for details: `Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks <https://www.aclweb.org/anthology/P15-1150>`_ and `A Fast Unified Model for Parsing and Sentence Understanding <https://arxiv.org/pdf/1603.06021.pdf>`_. Tai et al.'s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman et al. Specifically, eq. 10 in Tai et al. only has one :math:`W` matrix to be applied to :math:`x`, consistently for all children. On the other hand, Bowman et al.'s model has multiple matrices, each of which affects the forget gate for each child's cell individually. .. admonition:: Example Assuming ``y`` is the current input signal, ``c`` is the previous cell state, and ``h`` is the previous output signal from an :meth:`~chainerx.tree_lstm` function. Each of ``y``, ``c`` and ``h`` has ``n_units`` channels. Using 2-ary (binary) TreeLSTM, most typical preparation of ``x`` is >>> c1 = chainerx.ones((4, 10), dtype = chainerx.float32) >>> c2 = chainerx.ones((4, 10), dtype = chainerx.float32) >>> x = chainerx.ones((4, 50), dtype = chainerx.float32) >>> c, h = chainerx.tree_lstm(c1, c2, x) """) _docs.set_doc( chainerx.slstm, """slstm(c_prev1, c_prev2, x1, x2) S-LSTM units as an activation function. This function implements S-LSTM unit. It is an extension of LSTM unit applied to tree structures. The function is applied to binary trees. Each node has two child nodes. It gets four arguments, previous cell states ``c_prev1`` and ``c_prev2``, and input arrays ``x1`` and ``x2``. First both input arrays ``x1`` and ``x2`` are split into eight arrays :math:`a_1, i_1, f_1, o_1`, and :math:`a_2, i_2, f_2, o_2`. They have the same shape along the second axis. It means that ``x1`` and ``x2`` 's second axis must have 4 times the length of ``c_prev1`` and ``c_prev2``. The split input arrays are corresponding to - :math:`a_i` : sources of cell input - :math:`i_i` : sources of input gate - :math:`f_i` : sources of forget gate - :math:`o_i` : sources of output gate It computes the updated cell state ``c`` and the outgoing signal ``h`` as. .. math:: c &= \\tanh(a_1 + a_2) \\sigma(i_1 + i_2) + c_{\\text{prev}1} \\sigma(f_1) + c_{\\text{prev}2} \\sigma(f_2), \\\\ h &= \\tanh(c) \\sigma(o_1 + o_2), where :math:`\\sigma` is the elementwise sigmoid function. The function returns ``c`` and ``h`` as a tuple. Args: c_prev1 (:class:`~chainerx.array`): Variable that holds the previous cell state of the first child node. The cell state should be a zero array or the output of the previous call of LSTM. c_prev2 (:class:`~chainerx.array`): Variable that holds the previous cell state of the second child node. x1 (:class:`~chainerx.array`): Variable that holds the sources of cell input, input gate, forget gate and output gate from the first child node. It must have the second dimension whose size is four times of that of the cell state. x2 (:class:`~chainerx.array`): Variable that holds the input sources from the second child node. Returns: tuple: Two :class:`~chainerx.array` objects ``c`` and ``h``. ``c`` is the cell state. ``h`` indicates the outgoing signal. See detail in paper: `Long Short-Term Memory Over Tree Structures <https://arxiv.org/abs/1503.04881>`_. .. admonition:: Example Assuming ``c1``, ``c2`` is the previous cell state of children, and ``h1``, ``h2`` is the previous outgoing signal from children. Each of ``c1``, ``c2``, ``h1`` and ``h2`` has ``n_units`` channels. Most typical preparation of ``x1``, ``x2`` is: >>> n_units = 100 >>> c1 = chainerx.ones((1, n_units), np.float32) >>> c2 = chainerx.ones((1, n_units), np.float32) >>> x1 = chainerx.ones((1, 4 * n_units), chainerx.float32) >>> x2 = chainerx.ones((1, 4 * n_units), chainerx.float32) >>> c, h = chainerx.slstm(c1, c2, x1, x2) """) _docs.set_doc( chainerx.arcsin, """arcsin(x) Inverse sine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\arcsin x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.arcsin` """) _docs.set_doc( chainerx.arccos, """arccos(x) Trigonometric inverse cosine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\arccos x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.arccos` """) _docs.set_doc( chainerx.arctan, """arctan(x) Trigonometric inverse tangent, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\arctan x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.arctan` """) _docs.set_doc( chainerx.arctan2, """arctan2(x1, x2) Element-wise arc tangent of :math:`\\frac{x_1}{x_2}` choosing the quadrant correctly. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returns an array where each element represents :math:`\\theta` in the range :math:`[-\\pi, \\pi]`, such that :math:`x_1 = r \\sin(\\theta)` and :math:`x_2 = r \\cos(\\theta)` for some :math:`r > 0`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x1`` and/or ``x2``. .. seealso:: :data:`numpy.arctan2` """) _docs.set_doc( chainerx.arcsinh, """arcsinh(x) Inverse hyperbolic sine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\arcsinh x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.arcsinh` """) _docs.set_doc( chainerx.arccosh, """arccosh(x) Inverse hypberbolic inverse cosine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\arccosh x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.arccosh` """) _docs.set_doc( chainerx.fabs, """fabs(x) Compute the absolute values element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: The absolute values of x, the returned values are always floats. .. seealso:: :data:`numpy.fabs` """) _docs.set_doc( chainerx.sign, """sign(x) Returns an element-wise indication of the sign of a number. The sign function returns :math:`-1 if x < 0, 0 if x==0, 1 if x > 0`. ``nan`` is returned for ``nan`` inputs. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: The sign of x. .. seealso:: :data:`numpy.sign` """) _docs.set_doc( chainerx.floor, """floor(x) Return the floor of the input, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: The floor of each element in array. .. seealso:: :data:`numpy.floor` """) _docs.set_doc( chainerx.isnan, """isnan(x) Test element-wise for NaN and return result as a boolean array. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: True where ``x`` is NaN, false otherwise Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.isnan` """) _docs.set_doc( chainerx.isfinite, """isfinite(x) Test element-wise for finiteness (not infinity or not Not a Number). Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: True where x is not positive infinity, negative infinity, or NaN; false otherwise. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.isfinite` """) _docs.set_doc( chainerx.isinf, """isinf(x) Test element-wise for positive or negative infinity. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: True where ``x`` is positive or negative infinity, false otherwise. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.isinf` """) _docs.set_doc( chainerx.bitwise_and, """bitwise_and(x1, x2) Compute the bit-wise AND of two arrays element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array of integers. x2 (~chainerx.ndarray or scalar): Input array of integers. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = x_1 \\& x_2` Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.bitwise_and` """) _docs.set_doc( chainerx.bitwise_or, """bitwise_or(x1, x2) Compute the bit-wise OR of two arrays element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array of integers. x2 (~chainerx.ndarray or scalar): Input array of integers. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = x_1 | x_2` Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.bitwise_or` """) _docs.set_doc( chainerx.bitwise_xor, """bitwise_xor(x1, x2) Compute the bit-wise XOR of two arrays element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array of integers. x2 (~chainerx.ndarray or scalar): Input array of integers. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = x_1 \\oplus x_2` Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.bitwise_xor` """) _docs.set_doc( chainerx.left_shift, """left_shift(x1, x2) Shift the bits of an integer to the left. Args: x1 (~chainerx.ndarray or scalar): Input array of integers. x2 (~chainerx.ndarray or scalar): Input array of integers. Returns: :class:`~chainerx.ndarray`: Return `x1` with bits shifted `x2` times to the left. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.left_shift` """) # NOQA _docs.set_doc( chainerx.right_shift, """right_shift(x1, x2) Shift the bits of an integer to the right. Args: x1 (~chainerx.ndarray or scalar): Input array of integers. x2 (~chainerx.ndarray or scalar): Input array of integers. Returns: :class:`~chainerx.ndarray`: Return `x1` with bits shifted `x2` times to the right. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.right_shift` """) # NOQA def _docs_sorting(): _docs.set_doc( chainerx.argmax, """argmax(a, axis=None) Returns the indices of the maximum along an axis. Args: a (~chainerx.ndarray): Array to take the indices of the maximum of. axis (None or int): Along which axis to compute the maximum. The flattened array is used by default. Returns: :class:`~chainerx.ndarray`: The indices of the maximum of ``a``, along the axis if specified. .. seealso:: :func:`numpy.argmax` """) _docs.set_doc( chainerx.argmin, """argmin(a, axis=None) Returns the indices of the minimum along an axis. Args: a (~chainerx.ndarray): Array to take the indices of the minimum of. axis (None or int): Along which axis to compute the minimum. The flattened array is used by default. Returns: :class:`~chainerx.ndarray`: The indices of the minimum of ``a``, along the axis if specified. .. seealso:: :func:`numpy.argmin` """) def _docs_statistics(): _docs.set_doc( chainerx.amax, """amax(a, axis=None, keepdims=False) Returns the maximum of an array or the maximum along an axis. Note: When at least one element is NaN, the corresponding max value will be NaN. Args: a (~chainerx.ndarray): Array to take the maximum. axis (None or int or tuple of ints): Along which axis to take the maximum. The flattened array is used by default. If this is a tuple of ints, the maximum is selected over multiple axes, instead of a single axis or all the axes. keepdims (bool): If ``True``, the axis is remained as an axis of size one. Returns: :class:`~chainerx.ndarray`: The maximum of ``a``, along the axis if specified. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.amax` """) _docs.set_doc( chainerx.amin, """amin(a, axis=None, keepdims=False) Returns the minimum of an array or the minimum along an axis. Note: When at least one element is NaN, the corresponding min value will be NaN. Args: a (~chainerx.ndarray): Array to take the minimum. axis (None or int or tuple of ints): Along which axis to take the minimum. The flattened array is used by default. If this is a tuple of ints, the minimum is selected over multiple axes, instead of a single axis or all the axes. keepdims (bool): If ``True``, the axis is remained as an axis of size one. Returns: :class:`~chainerx.ndarray`: The minimum of ``a``, along the axis if specified. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.amin` """) _docs.set_doc( chainerx.mean, """mean(a, axis=None, keepdims=False) Compute the arithmetic mean along the specified axis. Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. Args: a (~chainerx.ndarray): Array to take the mean of. axis (None or int or tuple of ints): Along which axis or axes to compute the mean. The flattened array is used by default. keepdims (bool): If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. Returns: :class:`~chainerx.ndarray`: The mean of ``a``, along the axis or axes if specified. .. seealso:: :func:`numpy.mean` """) _docs.set_doc( chainerx.var, """var(a, axis=None, keepdims=False) Compute the arithmetic var along the specified axis. Returns the var of the array elements. The var is taken over the flattened array by default, otherwise over the specified axis. Args: a (~chainerx.ndarray): Array to take the var of. axis (None or int or tuple of ints): Along which axis or axes to compute the var. The flattened array is used by default. keepdims (bool): If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. Returns: :class:`~chainerx.ndarray`: The var of ``a``, along the axis or axes if specified. .. seealso:: :func:`numpy.var` """) def _docs_connection(): _docs.set_doc( chainerx.conv, """conv(x, w, b=None, stride=1, pad=0, cover_all=False) N-dimensional convolution. This is an implementation of N-dimensional convolution which is generalized two-dimensional convolution in ConvNets. It takes three arrays: the input ``x``, the filter weight ``w`` and the bias vector ``b``. Notation: here is a notation for dimensionalities. - :math:`N` is the number of spatial dimensions. - :math:`n` is the batch size. - :math:`c_I` and :math:`c_O` are the number of the input and output channels, respectively. - :math:`d_1, d_2, ..., d_N` are the size of each axis of the input's spatial dimensions, respectively. - :math:`k_1, k_2, ..., k_N` are the size of each axis of the filters, respectively. - :math:`l_1, l_2, ..., l_N` are the size of each axis of the output's spatial dimensions, respectively. - :math:`p_1, p_2, ..., p_N` are the size of each axis of the spatial padding size, respectively. Then the ``conv`` function computes correlations between filters and patches of size :math:`(k_1, k_2, ..., k_N)` in ``x``. Note that correlation here is equivalent to the inner product between expanded tensors. Patches are extracted at positions shifted by multiples of ``stride`` from the first position ``(-p_1, -p_2, ..., -p_N)`` for each spatial axis. Let :math:`(s_1, s_2, ..., s_N)` be the stride of filter application. Then, the output size :math:`(l_1, l_2, ..., l_N)` is determined by the following equations: .. math:: l_n = (d_n + 2p_n - k_n) / s_n + 1 \\ \\ (n = 1, ..., N) If ``cover_all`` option is ``True``, the filter will cover the all spatial locations. So, if the last stride of filter does not cover the end of spatial locations, an additional stride will be applied to the end part of spatial locations. In this case, the output size is determined by the following equations: .. math:: l_n = (d_n + 2p_n - k_n + s_n - 1) / s_n + 1 \\ \\ (n = 1, ..., N) Args: x (:class:`~chainerx.ndarray`): Input array of shape :math:`(n, c_I, d_1, d_2, ..., d_N)`. w (:class:`~chainerx.ndarray`): Weight array of shape :math:`(c_O, c_I, k_1, k_2, ..., k_N)`. b (None or :class:`~chainerx.ndarray`): One-dimensional bias array with length :math:`c_O` (optional). stride (:class:`int` or :class:`tuple` of :class:`int` s): Stride of filter applications :math:`(s_1, s_2, ..., s_N)`. ``stride=s`` is equivalent to ``(s, s, ..., s)``. pad (:class:`int` or :class:`tuple` of :class:`int` s): Spatial padding width for input arrays :math:`(p_1, p_2, ..., p_N)`. ``pad=p`` is equivalent to ``(p, p, ..., p)``. cover_all (bool): If ``True``, all spatial locations are convoluted into some output pixels. It may make the output size larger. `cover_all` needs to be ``False`` if you want to use ``cuda`` backend. Returns: ~chainerx.ndarray: Output array of shape :math:`(n, c_O, l_1, l_2, ..., l_N)`. Note: In ``cuda`` backend, this function uses cuDNN implementation for its forward and backward computation. Note: In ``cuda`` backend, this function has following limitations yet: - The ``cover_all=True`` option is not supported yet. - The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) Note: During backpropagation, this function propagates the gradient of the output array to input arrays ``x``, ``w``, and ``b``. .. seealso:: :func:`chainer.functions.convolution_nd` .. admonition:: Example >>> n = 10 >>> c_i, c_o = 3, 1 >>> d1, d2, d3 = 30, 40, 50 >>> k1, k2, k3 = 10, 10, 10 >>> p1, p2, p3 = 5, 5, 5 >>> x = chainerx.random.uniform(0, 1, (n, c_i, d1, d2, d3)).\ astype(np.float32) >>> x.shape (10, 3, 30, 40, 50) >>> w = chainerx.random.uniform(0, 1, (c_o, c_i, k1, k2, k3)).\ astype(np.float32) >>> w.shape (1, 3, 10, 10, 10) >>> b = chainerx.random.uniform(0, 1, (c_o)).astype(np.float32) >>> b.shape (1,) >>> s1, s2, s3 = 2, 4, 6 >>> y = chainerx.conv(x, w, b, stride=(s1, s2, s3),\ pad=(p1, p2, p3)) >>> y.shape (10, 1, 16, 11, 9) >>> l1 = int((d1 + 2 * p1 - k1) / s1 + 1) >>> l2 = int((d2 + 2 * p2 - k2) / s2 + 1) >>> l3 = int((d3 + 2 * p3 - k3) / s3 + 1) >>> y.shape == (n, c_o, l1, l2, l3) True >>> y = chainerx.conv(x, w, b, stride=(s1, s2, s3),\ pad=(p1, p2, p3), cover_all=True) >>> y.shape == (n, c_o, l1, l2, l3 + 1) True """) _docs.set_doc( chainerx.conv_transpose, """conv_transpose(x, w, b=None, stride=1, pad=0, outsize=None) N-dimensional transposed convolution. This is an implementation of N-dimensional transposed convolution, which is previously known as **deconvolution** in Chainer. .. _Deconvolutional Networks: \ ://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf It takes three arrays: the input ``x``, the filter weight ``w``, and the bias vector ``b``. Notation: here is a notation for dimensionalities. - :math:`N` is the number of spatial dimensions. - :math:`n` is the batch size. - :math:`c_I` and :math:`c_O` are the number of the input and output channels, respectively. - :math:`d_1, d_2, ..., d_N` are the size of each axis of the input's spatial dimensions, respectively. - :math:`k_1, k_2, ..., k_N` are the size of each axis of the filters, respectively. - :math:`p_1, p_2, ..., p_N` are the size of each axis of the spatial padding size, respectively. - :math:`s_1, s_2, ..., s_N` are the stride of each axis of filter application, respectively. If ``outsize`` option is ``None``, the output size :math:`(l_1, l_2, ..., l_N)` is determined by the following equations with the items in the above list: .. math:: l_n = s_n (d_n - 1) + k_n - 2 p_n \\ \\ (n = 1, ..., N) If ``outsize`` option is given, the output size is determined by ``outsize``. In this case, the ``outsize`` :math:`(l_1, l_2, ..., l_N)` must satisfy the following equations: .. math:: d_n = \\lfloor (l_n + 2p_n - k_n) / s_n \\rfloor + 1 \\ \\ \ (n = 1, ..., N) Args: x (:class:`~chainerx.ndarray`): Input array of shape :math:`(n, c_I, d_1, d_2, ..., d_N)`. w (:class:`~chainerx.ndarray`): Weight array of shape :math:`(c_I, c_O, k_1, k_2, ..., k_N)`. b (None or :class:`~chainerx.ndarray`): One-dimensional bias array with length :math:`c_O` (optional). stride (:class:`int` or :class:`tuple` of :class:`int` s): Stride of filter applications :math:`(s_1, s_2, ..., s_N)`. ``stride=s`` is equivalent to ``(s, s, ..., s)``. pad (:class:`int` or :class:`tuple` of :class:`int` s): Spatial padding width for input arrays :math:`(p_1, p_2, ..., p_N)`. ``pad=p`` is equivalent to ``(p, p, ..., p)``. outsize (None or :class:`tuple` of :class:`int` s): Expected output size of deconvolutional operation. It should be a tuple of ints :math:`(l_1, l_2, ..., l_N)`. Default value is ``None`` and the outsize is estimated by input size, stride and pad. Returns: ~chainerx.ndarray: Output array of shape :math:`(n, c_O, l_1, l_2, ..., l_N)`. Note: During backpropagation, this function propagates the gradient of the output array to input arrays ``x``, ``w``, and ``b``. .. seealso:: :func:`chainer.functions.deconvolution_nd` .. admonition:: Example **Example1**: the case when ``outsize`` is not given. >>> n = 10 >>> c_i, c_o = 3, 1 >>> d1, d2, d3 = 5, 10, 15 >>> k1, k2, k3 = 10, 10, 10 >>> p1, p2, p3 = 5, 5, 5 >>> x = chainerx.random.uniform(0, 1, (n, c_i, d1, d2, d3)).\ astype(np.float32) >>> x.shape (10, 3, 5, 10, 15) >>> w = chainerx.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).\ astype(np.float32) >>> w.shape (3, 1, 10, 10, 10) >>> b = chainerx.random.uniform(0, 1, (c_o)).astype(np.float32) >>> b.shape (1,) >>> s1, s2, s3 = 2, 4, 6 >>> y = chainerx.conv_transpose(x, w, b, stride=(s1, s2, s3), \ pad=(p1, p2, p3)) >>> y.shape (10, 1, 8, 36, 84) >>> l1 = s1 * (d1 - 1) + k1 - 2 * p1 >>> l2 = s2 * (d2 - 1) + k2 - 2 * p2 >>> l3 = s3 * (d3 - 1) + k3 - 2 * p3 >>> y.shape == (n, c_o, l1, l2, l3) True **Example2**: the case when ``outsize`` is given. >>> n = 10 >>> c_i, c_o = 3, 1 >>> d1, d2, d3 = 5, 10, 15 >>> k1, k2, k3 = 10, 10, 10 >>> p1, p2, p3 = 5, 5, 5 >>> x = chainerx.array(np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).\ astype(np.float32)) >>> x.shape (10, 3, 5, 10, 15) >>> w = chainerx.array(np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).\ astype(np.float32)) >>> w.shape (3, 1, 10, 10, 10) >>> b = chainerx.array(np.random.uniform(0, 1, (c_o)).astype(np.float32)) >>> b.shape (1,) >>> s1, s2, s3 = 2, 4, 6 >>> l1, l2, l3 = 9, 38, 87 >>> d1 == int((l1 + 2 * p1 - k1) / s1) + 1 True >>> d2 == int((l2 + 2 * p2 - k2) / s2) + 1 True >>> d3 == int((l3 + 2 * p3 - k3) / s3) + 1 True >>> y = chainerx.conv_transpose(x, w, b, stride=(s1, s2, s3), \ pad=(p1, p2, p3), outsize=(l1, l2, l3)) >>> y.shape (10, 1, 9, 38, 87) >>> y.shape == (n, c_o, l1, l2, l3) True """) _docs.set_doc( chainerx.linear, """linear(x, W, b=None, n_batch_axis=1) Linear function, or affine transformation. It accepts two or three arguments: an input minibatch ``x``, a weight matrix ``W``, and optionally a bias vector ``b``. It computes .. math:: Y = xW^\\top + b. Args: x (~chainerx.ndarray): Input array, which is a :math:`(s_1, s_2, ..., s_n)`-shaped array. W (~chainerx.ndarray): Weight variable of shape :math:`(M, N)`, where :math:`(N = s_{\\rm n\\_batch\\_axes} * ... * s_n)`. b (~chainerx.ndarray): Bias variable (optional) of shape :math:`(M,)`. n_batch_axes (int): The number of batch axes. The default is 1. The input variable is reshaped into (:math:`{\\rm n\\_batch\\_axes} + 1`)-dimensional tensor. This should be greater than 0. Returns: :class:`~chainerx.ndarray`: Output array with shape of :math:`(s_1, ..., s_{\\rm n\\_batch\\_axes}, M)`. Note: During backpropagation, this function propagates the gradient of the output array to input arrays ``x``, ``W`` and ``b``. """) _docs.set_doc( chainerx.lstm, """lstm(c_prev, x) Long Short-Term Memory units as an activation function. This function implements LSTM units with forget gates. Let the previous cell state ``c_prev`` and the input array ``x``. First, the input array ``x`` is split into four arrays :math:`a, i, f, o` of the same shapes along the second axis. It means that ``x`` 's second axis must have 4 times the ``c_prev`` 's second axis. The split input arrays are corresponding to: - :math:`a` : sources of cell input - :math:`i` : sources of input gate - :math:`f` : sources of forget gate - :math:`o` : sources of output gate Second, it computes the updated cell state ``c`` and the outgoing signal ``h`` as .. math:: c &= \\tanh(a) \\sigma(i) + c_{\\text{prev}} \\sigma(f), \\\\ h &= \\tanh(c) \\sigma(o), where :math:`\\sigma` is the elementwise sigmoid function. These are returned as a tuple of two variables. This function supports variable length inputs. The mini-batch size of the current input must be equal to or smaller than that of the previous one. When mini-batch size of ``x`` is smaller than that of ``c``, this function only updates ``c[0:len(x)]`` and doesn't change the rest of ``c``, ``c[len(x):]``. So, please sort input sequences in descending order of lengths before applying the function. Args: c_prev (:class:`~chainerx.array`): Variable that holds the previous cell state. The cell state should be a zero array or the output of the previous call of LSTM. x (:class:`~chainer.array`): Variable that holds the sources of cell input, input gate, forget gate and output gate. It must have the second dimension whose size is four times of that of the cell state. Returns: tuple: Two :class:`~chainerx.array` objects ``c`` and ``h``. ``c`` is the updated cell state. ``h`` indicates the outgoing signal. See the original paper proposing LSTM with forget gates: `Long Short-Term Memory in Recurrent Neural Networks <http://www.felixgers.de/papers/phd.pdf>`_. .. admonition:: Example Assuming ``y`` is the current incoming signal, ``c`` is the previous cell state, and ``h`` is the previous outgoing signal from an ``lstm`` function. Each of ``y``, ``c`` and ``h`` has ``n_units`` channels. Most typical preparation of ``x`` is >>> n_units = 100 >>> c_prev = chainerx.zeros((1, n_units), chainerx.float32) >>> x = chainerx.zeros((1, 4 * n_units), chainerx.float32) >>> c, h = chainerx.lstm(c_prev, x) It corresponds to calculate the input array ``x``, or the input sources :math:`a, i, f, o`, from the current incoming signal ``y`` and the previous outgoing signal ``h``. Different parameters are used for different kind of input sources. """) def _docs_normalization(): _docs.set_doc( chainerx.batch_norm, """batch_norm(x, gamma, beta, running_mean, running_var, eps=2e-5, \ decay=0.9, axis=None) Batch normalization function. It takes the input array ``x`` and two parameter arrays ``gamma`` and ``beta``. The parameter arrays must both have the same size. Args: x (~chainerx.ndarray): Input array. gamma (~chainerx.ndarray): Scaling parameter of normalized data. beta (~chainerx.ndarray): Shifting parameter of scaled normalized data. running_mean (~chainerx.ndarray): Running average of the mean. This is a running average of the mean over several mini-batches using the decay parameter. The function takes a previous running average, and updates the array in-place by the new running average. running_var (~chainerx.ndarray): Running average of the variance. This is a running average of the variance over several mini-batches using the decay parameter. The function takes a previous running average, and updates the array in-place by the new running average. eps (float): Epsilon value for numerical stability. decay (float): Decay rate of moving average. It is used during training. axis (int, tuple of int or None): Axis over which normalization is performed. When axis is ``None``, the first axis is treated as the batch axis and will be reduced during normalization. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x``, ``gamma`` and ``beta``. See: `Batch Normalization: Accelerating Deep Network Training by Reducing\ Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`_ """) _docs.set_doc( chainerx.fixed_batch_norm, """fixed_batch_norm(x, gamma, beta, mean, var, eps=2e-5, axis=None) Batch normalization function with fixed statistics. This is a variant of :func:`~chainerx.batch_norm`, where the mean and array statistics are given by the caller as fixed variables. Args: x (~chainerx.ndarray): Input array. gamma (~chainerx.ndarray): Scaling parameter of normalized data. beta (~chainerx.ndarray): Shifting parameter of scaled normalized data. mean (~chainerx.ndarray): Shifting parameter of input. var (~chainerx.ndarray): Square of scaling parameter of input. eps (float): Epsilon value for numerical stability. axis (int, tuple of int or None): Axis over which normalization is performed. When axis is ``None``, the first axis is treated as the batch axis and will be reduced during normalization. Note: During backpropagation, this function does not propagate gradients. """) def _docs_pooling(): _docs.set_doc( chainerx.max_pool, """max_pool(x, ksize, stride=None, pad=0, cover_all=False) Spatial max pooling function. This acts similarly to :func:`~chainerx.conv`, but it computes the maximum of input spatial patch for each channel without any parameter instead of computing the inner products. Args: x (~chainerx.ndarray): Input array. ksize (int or tuple of ints): Size of pooling window. ``ksize=k`` and ``ksize=(k, k, ..., k)`` are equivalent. stride (int or tuple of ints or None): Stride of pooling applications. ``stride=s`` and ``stride=(s, s, ..., s)`` are equivalent. If ``None`` is specified, then it uses same stride as the pooling window size. pad (int or tuple of ints): Spatial padding width for the input array. ``pad=p`` and ``pad=(p, p, ..., p)`` are equivalent. cover_all (bool): If ``True``, all spatial locations are pooled into some output pixels. It may make the output size larger. Returns: :class:`~chainerx.ndarray`: Output array. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. This function is only differentiable up to the second order. .. note:: In ``cuda`` backend, only 2 and 3 dim arrays are supported as ``x`` because cuDNN pooling supports 2 and 3 spatial dimensions. """) _docs.set_doc( chainerx.average_pool, """average_pool(x, ksize, stride=None, pad=0, pad_mode='ignore') Spatial average pooling function. This acts similarly to :func:`~chainerx.conv`, but it computes the average of input spatial patch for each channel without any parameter instead of computing the inner products. Args: x (~chainerx.ndarray): Input array. ksize (int or tuple of ints): Size of pooling window. ``ksize=k`` and ``ksize=(k, k, ..., k)`` are equivalent. stride (int or tuple of ints or None): Stride of pooling applications. ``stride=s`` and ``stride=(s, s, ..., s)`` are equivalent. If ``None`` is specified, then it uses same stride as the pooling window size. pad (int or tuple of ints): Spatial padding width for the input array. ``pad=p`` and ``pad=(p, p, ..., p)`` are equivalent. pad_mode ({'zero', 'ignore'}): Specifies how padded region is treated. * 'zero' -- the values in the padded region are treated as 0 * 'ignore' -- padded region is ignored (default) Returns: :class:`~chainerx.ndarray`: Output array. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. note:: In ``cuda`` backend, only 2 and 3 dim arrays are supported as ``x`` because cuDNN pooling supports 2 and 3 spatial dimensions. """) def _docs_rnn(): _docs.set_doc( chainerx.n_step_lstm, """n_step_lstm(n_layers, hx, cx, ws, bs, xs) Stacked Uni-directional Long Short-Term Memory function. This function calculates stacked Uni-directional LSTM with sequences. This function gets an initial hidden state :math:`h_0`, an initial cell state :math:`c_0`, an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors :math:`b`. This function calculates hidden states :math:`h_t` and :math:`c_t` for each time :math:`t` from input :math:`x_t`. .. math:: i_t &= \\sigma(W_0 x_t + W_4 h_{t-1} + b_0 + b_4) \\\\ f_t &= \\sigma(W_1 x_t + W_5 h_{t-1} + b_1 + b_5) \\\\ o_t &= \\sigma(W_2 x_t + W_6 h_{t-1} + b_2 + b_6) \\\\ a_t &= \\tanh(W_3 x_t + W_7 h_{t-1} + b_3 + b_7) \\\\ c_t &= f_t \\cdot c_{t-1} + i_t \\cdot a_t \\\\ h_t &= o_t \\cdot \\tanh(c_t) As the function accepts a sequence, it calculates :math:`h_t` for all :math:`t` with one call. Eight weight matrices and eight bias vectors are required for each layer. So, when :math:`S` layers exist, you need to prepare :math:`8S` weight matrices and :math:`8S` bias vectors. If the number of layers ``n_layers`` is greater than :math:`1`, the input of the ``k``-th layer is the hidden state ``h_t`` of the ``k-1``-th layer. Note that all input variables except the first layer may have different shape from the first layer. Args: n_layers(int): The number of layers. hx (:class:`~chainerx.array`): Variable holding stacked hidden states. Its shape is ``(S, B, N)`` where ``S`` is the number of layers and is equal to ``n_layers``, ``B`` is the mini-batch size, and ``N`` is the dimension of the hidden units. cx (:class:`~chainerx.array`): Variable holding stacked cell states. It has the same shape as ``hx``. ws (list of list of :class:`~chainerx.array`): Weight matrices. ``ws[i]`` represents the weights for the i-th layer. Each ``ws[i]`` is a list containing eight matrices. ``ws[i][j]`` corresponds to :math:`W_j` in the equation. Only ``ws[0][j]`` where ``0 <= j < 4`` are ``(N, I)``-shaped as they are multiplied with input variables, where ``I`` is the size of the input and ``N`` is the dimension of the hidden units. All other matrices are ``(N, N)``-shaped. bs (list of list of :class:`~chainerx.array`): Bias vectors. ``bs[i]`` represents the biases for the i-th layer. Each ``bs[i]`` is a list containing eight vectors. ``bs[i][j]`` corresponds to :math:`b_j` in the equation. The shape of each matrix is ``(N,)`` where ``N`` is the dimension of the hidden units. xs (list of :class:`~chainerx.array`): A list of :class:`~chainerx.array` holding input values. Each element ``xs[t]`` holds input value for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is the mini-batch size for time ``t``. When sequences has different lengths, they must be sorted in descending order of their lengths. So ``xs`` needs to satisfy ``xs[t].shape[0] >= xs[t + 1].shape[0]``. Returns: tuple: This function returns a tuple containing three elements, ``hy``, ``cy`` and ``ys``. - ``hy`` is an updated hidden states whose shape is the same as ``hx``. - ``cy`` is an updated cell states whose shape is the same as ``cx``. - ``ys`` is a list of :class:`~chainerx.array` . Each element ``ys[t]`` holds hidden states of the last layer corresponding to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is the mini-batch size for time ``t``, and ``N`` is size of hidden units. Note that ``B_t`` is the same value as ``xs[t]``. .. note:: The dimension of hidden units is limited to only one size ``N``. If you want to use variable dimension of hidden units, please use :class:`chainerx.lstm`. .. seealso:: :func:`chainerx.lstm` .. admonition:: Example >>> import chainerx as chx >>> batchs = [3, 2, 1] # support variable length sequences >>> in_size, out_size, n_layers = 3, 2, 2 >>> xs = [chx.ones((b, in_size)).astype(chx.float32) for b in batchs] >>> [x.shape for x in xs] [(3, 3), (2, 3), (1, 3)] >>> h_shape = (n_layers, batchs[0], out_size) >>> hx = chx.ones(h_shape).astype(chx.float32) >>> cx = chx.ones(h_shape).astype(chx.float32) >>> w_in = lambda i, j: in_size if i == 0 and j < 4 else out_size >>> ws = [] >>> bs = [] >>> for n in range(n_layers): ... ws.append([chx.ones((out_size, w_in(n, i))).\ astype(np.float32) for i in range(8)]) ... bs.append([chx.ones((out_size,)).astype(chx.float32) \ for _ in range(8)]) ... >>> ws[0][0].shape # ws[0][:4].shape are (out_size, in_size) (2, 3) >>> ws[1][0].shape # others are (out_size, out_size) (2, 2) >>> bs[0][0].shape (2,) >>> hy, cy, ys = chx.n_step_lstm( ... n_layers, hx, cx, ws, bs, xs) >>> hy.shape (2, 3, 2) >>> cy.shape (2, 3, 2) >>> [y.shape for y in ys] [(3, 2), (2, 2), (1, 2)] """) _docs.set_doc( chainerx.n_step_bilstm, """n_step_bilstm(n_layers, hx, cx, ws, bs, xs) Stacked Bi-directional Long Short-Term Memory function. This function calculates stacked Bi-directional LSTM with sequences. This function gets an initial hidden state :math:`h_0`, an initial cell state :math:`c_0`, an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors :math:`b`. This function calculates hidden states :math:`h_t` and :math:`c_t` for each time :math:`t` from input :math:`x_t`. .. math:: i^{f}_t &=& \\sigma(W^{f}_0 x_t + W^{f}_4 h_{t-1} + b^{f}_0 + b^{f}_4), \\\\ f^{f}_t &=& \\sigma(W^{f}_1 x_t + W^{f}_5 h_{t-1} + b^{f}_1 + b^{f}_5), \\\\ o^{f}_t &=& \\sigma(W^{f}_2 x_t + W^{f}_6 h_{t-1} + b^{f}_2 + b^{f}_6), \\\\ a^{f}_t &=& \\tanh(W^{f}_3 x_t + W^{f}_7 h_{t-1} + b^{f}_3 + b^{f}_7), \\\\ c^{f}_t &=& f^{f}_t \\cdot c^{f}_{t-1} + i^{f}_t \\cdot a^{f}_t, \\\\ h^{f}_t &=& o^{f}_t \\cdot \\tanh(c^{f}_t), \\\\ i^{b}_t &=& \\sigma(W^{b}_0 x_t + W^{b}_4 h_{t-1} + b^{b}_0 + b^{b}_4), \\\\ f^{b}_t &=& \\sigma(W^{b}_1 x_t + W^{b}_5 h_{t-1} + b^{b}_1 + b^{b}_5), \\\\ o^{b}_t &=& \\sigma(W^{b}_2 x_t + W^{b}_6 h_{t-1} + b^{b}_2 + b^{b}_6), \\\\ a^{b}_t &=& \\tanh(W^{b}_3 x_t + W^{b}_7 h_{t-1} + b^{b}_3 + b^{b}_7), \\\\ c^{b}_t &=& f^{b}_t \\cdot c^{b}_{t-1} + i^{b}_t \\cdot a^{b}_t, \\\\ h^{b}_t &=& o^{b}_t \\cdot \\tanh(c^{b}_t), \\\\ h_t &=& [h^{f}_t; h^{b}_t] where :math:`W^{f}` is the weight matrices for forward-LSTM, :math:`W^{b}` is weight matrices for backward-LSTM. As the function accepts a sequence, it calculates :math:`h_t` for all :math:`t` with one call. Eight weight matrices and eight bias vectors are required for each layer of each direction. So, when :math:`S` layers exist, you need to prepare :math:`16S` weight matrices and :math:`16S` bias vectors. If the number of layers ``n_layers`` is greater than :math:`1`, the input of the ``k``-th layer is the hidden state ``h_t`` of the ``k-1``-th layer. Note that all input variables except the first layer may have different shape from the first layer. Args: n_layers(int): The number of layers. hx (:class:`~chainerx.array`): Variable holding stacked hidden states. Its shape is ``(2S, B, N)`` where ``S`` is the number of layers and is equal to ``n_layers``, ``B`` is the mini-batch size, and ``N`` is the dimension of the hidden units. Because of bi-direction, the first dimension length is ``2S``. cx (:class:`~chainerx.array`): Variable holding stacked cell states. It has the same shape as ``hx``. ws (list of list of :class:`~chainerx.array`): Weight matrices. ``ws[2 * l + m]`` represents the weights for the l-th layer of the m-th direction. (``m == 0`` means the forward direction and ``m == 1`` means the backward direction.) Each ``ws[i]`` is a list containing eight matrices. ``ws[i][j]`` corresponds to :math:`W_j` in the equation. ``ws[0][j]`` and ``ws[1][j]`` where ``0 <= j < 4`` are ``(N, I)``-shaped because they are multiplied with input variables, where ``I`` is the size of the input. ``ws[i][j]`` where ``2 <= i`` and ``0 <= j < 4`` are ``(N, 2N)``-shaped because they are multiplied with two hidden layers :math:`h_t = [h^{f}_t; h^{b}_t]`. All other matrices are ``(N, N)``-shaped. bs (list of list of :class:`~chainerx.array`): Bias vectors. ``bs[2 * l + m]`` represents the weights for the l-th layer of m-th direction. (``m == 0`` means the forward direction and ``m == 1`` means the backward direction.) Each ``bs[i]`` is a list containing eight vectors. ``bs[i][j]`` corresponds to :math:`b_j` in the equation. The shape of each matrix is ``(N,)``. xs (list of :class:`~chainerx.array`): A list of :class:`~chainerx.array` holding input values. Each element ``xs[t]`` holds input value for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is the mini-batch size for time ``t``. When sequences has different lengths, they must be sorted in descending order of their lengths. So ``xs`` needs to satisfy ``xs[t].shape[0] >= xs[t + 1].shape[0]``. Returns: tuple: This function returns a tuple containing three elements, ``hy``, ``cy`` and ``ys``. - ``hy`` is an updated hidden states whose shape is the same as ``hx``. - ``cy`` is an updated cell states whose shape is the same as ``cx``. - ``ys`` is a list of :class:`~chainer.array` . Each element ``ys[t]`` holds hidden states of the last layer corresponding to an input ``xs[t]``. Its shape is ``(B_t, 2N)`` where ``B_t`` is the mini-batch size for time ``t``, and ``N`` is size of hidden units. Note that ``B_t`` is the same value as ``xs[t]``. .. admonition:: Example >>> import chainerx as chx >>> batchs = [3, 2, 1] # support variable length sequences >>> in_size, out_size, n_layers = 3, 2, 2 >>> dropout_ratio = 0.0 >>> xs = [chx.ones((b, in_size)).astype(chx.float32) for b in batchs] >>> [x.shape for x in xs] [(3, 3), (2, 3), (1, 3)] >>> h_shape = (n_layers * 2, batchs[0], out_size) >>> hx = chx.ones(h_shape).astype(chx.float32) >>> cx = chx.ones(h_shape).astype(chx.float32) >>> def w_in(i, j): ... if i == 0 and j < 4: ... return in_size ... elif i > 0 and j < 4: ... return out_size * 2 ... else: ... return out_size ... >>> ws = [] >>> bs = [] >>> for n in range(n_layers): ... for direction in (0, 1): ... ws.append([chx.ones((out_size, w_in(n, i))).\ astype(np.float32) for i in range(8)]) ... bs.append([chx.ones((out_size,)).astype(chx.float32) \ for _ in range(8)]) ... >>> ws[0][0].shape # ws[0:2][:4].shape are (out_size, in_size) (2, 3) >>> ws[2][0].shape # ws[2:][:4].shape are (out_size, 2 * out_size) (2, 4) >>> ws[0][4].shape # others are (out_size, out_size) (2, 2) >>> bs[0][0].shape (2,) >>> hy, cy, ys = chx.n_step_bilstm( ... n_layers, hx, cx, ws, bs, xs) >>> hy.shape (4, 3, 2) >>> cy.shape (4, 3, 2) >>> [y.shape for y in ys] [(3, 4), (2, 4), (1, 4)] """) _docs.set_doc( chainerx.n_step_gru, """n_step_gru(n_layers, hx, ws, bs, xs) Stacked Uni-directional Gated Recurrent Unit function. This function calculates stacked Uni-directional GRU with sequences. This function gets an initial hidden state :math:`h_0`, an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors :math:`b`. This function calculates hidden states :math:`h_t` for each time :math:`t` from input :math:`x_t`. .. math:: r_t &= \\sigma(W_0 x_t + W_3 h_{t-1} + b_0 + b_3) \\\\ z_t &= \\sigma(W_1 x_t + W_4 h_{t-1} + b_1 + b_4) \\\\ h'_t &= \\tanh(W_2 x_t + b_2 + r_t \\cdot (W_5 h_{t-1} + b_5)) \\\\ h_t &= (1 - z_t) \\cdot h'_t + z_t \\cdot h_{t-1} As the function accepts a sequence, it calculates :math:`h_t` for all :math:`t` with one call. Six weight matrices and six bias vectors are required for each layers. So, when :math:`S` layers exists, you need to prepare :math:`6S` weight matrices and :math:`6S` bias vectors. If the number of layers ``n_layers`` is greather than :math:`1`, input of ``k``-th layer is hidden state ``h_t`` of ``k-1``-th layer. Note that all input variables except first layer may have different shape from the first layer. Args: n_layers(int): Number of layers. hx (~chainerx.array): Variable holding stacked hidden states. Its shape is ``(S, B, N)`` where ``S`` is number of layers and is equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is dimension of hidden units. ws (list of list of :class:`~chainerx.array`): Weight matrices. ``ws[i]`` represents weights for i-th layer. Each ``ws[i]`` is a list containing six matrices. ``ws[i][j]`` is corresponding with ``W_j`` in the equation. Only ``ws[0][j]`` where ``0 <= j < 3`` is ``(N, I)`` shape as they are multiplied with input variables. All other matrices has ``(N, N)`` shape. bs (list of list of :class:`~chainerx.array`): Bias vectors. ``bs[i]`` represnents biases for i-th layer. Each ``bs[i]`` is a list containing six vectors. ``bs[i][j]`` is corresponding with ``b_j`` in the equation. Shape of each matrix is ``(N,)`` where ``N`` is dimension of hidden units. xs (list of :class:`~chainerx.array`): A list of :class:`~chainerx.array` holding input values. Each element ``xs[t]`` holds input value for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is mini-batch size for time ``t``, and ``I`` is size of input units. Note that this function supports variable length sequences. When sequneces has different lengths, sort sequences in descending order by length. So ``xs`` needs to satisfy ``xs[t].shape[0] >= xs[t + 1].shape[0]``. Returns: tuple: This function returns a tuple containing two elements, ``hy`` and ``ys``. - ``hy`` is an updated hidden states whose shape is same as ``hx``. - ``ys`` is a list of :class:`~chainerx.array` . Each element ``ys[t]`` holds hidden states of the last layer corresponding to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is mini-batch size for time ``t``, and ``N`` is size of hidden units. Note that ``B_t`` is the same value as ``xs[t]`` """) _docs.set_doc( chainerx.n_step_bigru, """n_step_bigru(n_layers, hx, ws, bs, xs) Stacked Bi-directional Gated Recurrent Unit function. This function calculates stacked Bi-directional GRU with sequences. This function gets an initial hidden state :math:`h_0`, an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors :math:`b`. This function calculates hidden states :math:`h_t` for each time :math:`t` from input :math:`x_t`. .. math:: r^{f}_t &= \\sigma(W^{f}_0 x_t + W^{f}_3 h_{t-1} + b^{f}_0 + b^{f}_3) \\\\ z^{f}_t &= \\sigma(W^{f}_1 x_t + W^{f}_4 h_{t-1} + b^{f}_1 + b^{f}_4) \\\\ h^{f'}_t &= \\tanh(W^{f}_2 x_t + b^{f}_2 + r^{f}_t \\cdot (W^{f}_5 h_{t-1} + b^{f}_5)) \\\\ h^{f}_t &= (1 - z^{f}_t) \\cdot h^{f'}_t + z^{f}_t \\cdot h_{t-1} \\\\ r^{b}_t &= \\sigma(W^{b}_0 x_t + W^{b}_3 h_{t-1} + b^{b}_0 + b^{b}_3) \\\\ z^{b}_t &= \\sigma(W^{b}_1 x_t + W^{b}_4 h_{t-1} + b^{b}_1 + b^{b}_4) \\\\ h^{b'}_t &= \\tanh(W^{b}_2 x_t + b^{b}_2 + r^{b}_t \\cdot (W^{b}_5 h_{t-1} + b^{b}_5)) \\\\ h^{b}_t &= (1 - z^{b}_t) \\cdot h^{b'}_t + z^{b}_t \\cdot h_{t-1} \\\\ h_t &= [h^{f}_t; h^{b}_t] \\\\ where :math:`W^{f}` is weight matrices for forward-GRU, :math:`W^{b}` is weight matrices for backward-GRU. As the function accepts a sequence, it calculates :math:`h_t` for all :math:`t` with one call. Six weight matrices and six bias vectors are required for each layers. So, when :math:`S` layers exists, you need to prepare :math:`6S` weight matrices and :math:`6S` bias vectors. If the number of layers ``n_layers`` is greather than :math:`1`, input of ``k``-th layer is hidden state ``h_t`` of ``k-1``-th layer. Note that all input variables except first layer may have different shape from the first layer. Args: n_layers(int): Number of layers. hx (:class:`~chainerx.array`): Variable holding stacked hidden states. Its shape is ``(2S, B, N)`` where ``S`` is number of layers and is equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is dimension of hidden units. ws (list of list of :class:`~chainerx.array`): Weight matrices. ``ws[i]`` represents weights for i-th layer. Each ``ws[i]`` is a list containing six matrices. ``ws[i][j]`` is corresponding with ``W_j`` in the equation. Only ``ws[0][j]`` where ``0 <= j < 3`` is ``(N, I)`` shape as they are multiplied with input variables. All other matrices has ``(N, N)`` shape. bs (list of list of :class:`~chainerx.array`): Bias vectors. ``bs[i]`` represnents biases for i-th layer. Each ``bs[i]`` is a list containing six vectors. ``bs[i][j]`` is corresponding with ``b_j`` in the equation. Shape of each matrix is ``(N,)`` where ``N`` is dimension of hidden units. xs (list of :class:`~chainerx.array`): A list of :class:`~chainerx.array` holding input values. Each element ``xs[t]`` holds input value for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is mini-batch size for time ``t``, and ``I`` is size of input units. Note that this function supports variable length sequences. When sequneces has different lengths, sort sequences in descending order by length. So ``xs`` needs to satisfy ``xs[t].shape[0] >= xs[t + 1].shape[0]``. Returns: tuple: This function returns a tuple containing two elements, ``hy`` and ``ys``. - ``hy`` is an updated hidden states whose shape is same as ``hx``. - ``ys`` is a list of :class:`~chainerx.array` . Each element ``ys[t]`` holds hidden states of the last layer corresponding to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is mini-batch size for time ``t``, and ``N`` is size of hidden units. Note that ``B_t`` is the same value as ``xs[t]``. """) _docs.set_doc( chainerx.n_step_rnn, """n_step_rnn(n_layers, hx, ws, bs, xs, activation='tanh') Stacked Uni-directional RNN function for sequence inputs. This function calculates stacked Uni-directional RNN with sequences. This function gets an initial hidden state :math:`h_0`, an initial cell state :math:`c_0`, an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors :math:`b`. This function calculates hidden states :math:`h_t` and :math:`c_t` for each time :math:`t` from input :math:`x_t`. .. math:: h_t = f(W_0 x_t + W_1 h_{t-1} + b_0 + b_1) where :math:`f` is an activation function. Weight matrices :math:`W` contains two matrices :math:`W_0` and :math:`W_1`. :math:`W_0` is a parameter for an input sequence. :math:`W_1` is a parameter for a hidden state. Bias matrices :math:`b` contains two matrices :math:`b_0` and :math:`b_1`. :math:`b_0` is a parameter for an input sequence. :math:`b_1` is a parameter for a hidden state. As the function accepts a sequence, it calculates :math:`h_t` for all :math:`t` with one call. Two weight matrices and two bias vectors are required for each layer. So, when :math:`S` layers exist, you need to prepare :math:`2S` weight matrices and :math:`2S` bias vectors. If the number of layers ``n_layers`` is greather than :math:`1`, input of ``k``-th layer is hidden state ``h_t`` of ``k-1``-th layer. Note that all input variables except first layer may have different shape from the first layer. Args: n_layers(int): Number of layers. hx (:class:`~chainerx.array`): Variable holding stacked hidden states. Its shape is ``(S, B, N)`` where ``S`` is number of layers and is equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is dimension of hidden units. ws (list of list of :class:`~chainerx.array`): Weight matrices. ``ws[i]`` represents weights for i-th layer. Each ``ws[i]`` is a list containing two matrices. ``ws[i][j]`` is corresponding with ``W_j`` in the equation. Only ``ws[0][j]`` where ``0 <= j < 1`` is ``(N, I)`` shape as they are multiplied with input variables. All other matrices has ``(N, N)`` shape. bs (list of list of :class:`~chainerx.array`): Bias vectors. ``bs[i]`` represnents biases for i-th layer. Each ``bs[i]`` is a list containing two vectors. ``bs[i][j]`` is corresponding with ``b_j`` in the equation. Shape of each matrix is ``(N,)`` where ``N`` is dimension of hidden units. xs (list of :class:`~chainerx.array`): A list of :class:`~chainerx.array` holding input values. Each element ``xs[t]`` holds input value for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is mini-batch size for time ``t``, and ``I`` is size of input units. Note that this function supports variable length sequences. When sequneces has different lengths, sort sequences in descending order by length. So ``xs`` needs to satisfy ``xs[t].shape[0] >= xs[t + 1].shape[0]``. activation (str): Activation function name. Please select ``tanh`` or ``relu``. Returns: tuple: This function returns a tuple containing two elements, ``hy`` and ``ys``. - ``hy`` is an updated hidden states whose shape is same as ``hx``. - ``ys`` is a list of :class:`~chainerx.array` . Each element ``ys[t]`` holds hidden states of the last layer corresponding to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is mini-batch size for time ``t``, and ``N`` is size of hidden units. Note that ``B_t`` is the same value as ``xs[t]``. """) _docs.set_doc( chainerx.n_step_birnn, """n_step_birnn(n_layers, hx, ws, bs, xs, activation='tanh') Stacked Bi-directional RNN function for sequence inputs. This function calculates stacked Bi-directional RNN with sequences. This function gets an initial hidden state :math:`h_0`, an initial cell state :math:`c_0`, an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors :math:`b`. This function calculates hidden states :math:`h_t` and :math:`c_t` for each time :math:`t` from input :math:`x_t`. .. math:: h^{f}_t &=& f(W^{f}_0 x_t + W^{f}_1 h_{t-1} + b^{f}_0 + b^{f}_1), \\\\ h^{b}_t &=& f(W^{b}_0 x_t + W^{b}_1 h_{t-1} + b^{b}_0 + b^{b}_1), \\\\ h_t &=& [h^{f}_t; h^{f}_t], \\\\ where :math:`f` is an activation function. Weight matrices :math:`W` contains two matrices :math:`W^{f}` and :math:`W^{b}`. :math:`W^{f}` is weight matrices for forward directional RNN. :math:`W^{b}` is weight matrices for backward directional RNN. :math:`W^{f}` contains :math:`W^{f}_0` for an input sequence and :math:`W^{f}_1` for a hidden state. :math:`W^{b}` contains :math:`W^{b}_0` for an input sequence and :math:`W^{b}_1` for a hidden state. Bias matrices :math:`b` contains two matrices :math:`b^{f}` and :math:`b^{f}`. :math:`b^{f}` contains :math:`b^{f}_0` for an input sequence and :math:`b^{f}_1` for a hidden state. :math:`b^{b}` contains :math:`b^{b}_0` for an input sequence and :math:`b^{b}_1` for a hidden state. As the function accepts a sequence, it calculates :math:`h_t` for all :math:`t` with one call. Two weight matrices and two bias vectors are required for each layer. So, when :math:`S` layers exist, you need to prepare :math:`2S` weight matrices and :math:`2S` bias vectors. If the number of layers ``n_layers`` is greather than :math:`1`, input of ``k``-th layer is hidden state ``h_t`` of ``k-1``-th layer. Note that all input variables except first layer may have different shape from the first layer. Args: n_layers(int): Number of layers. hx (:class:`~chainerx.array`): Variable holding stacked hidden states. Its shape is ``(2S, B, N)`` where ``S`` is number of layers and is equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is dimension of hidden units. Because of bi-direction, the first dimension length is ``2S``. ws (list of list of :class:`~chainerx.array`): Weight matrices. ``ws[i + di]`` represents weights for i-th layer. Note that ``di = 0`` for forward-RNN and ``di = 1`` for backward-RNN. Each ``ws[i + di]`` is a list containing two matrices. ``ws[i + di][j]`` is corresponding with ``W^{f}_j`` if ``di = 0`` and corresponding with ``W^{b}_j`` if ``di = 1`` in the equation. Only ``ws[0][j]`` and ``ws[1][j]`` where ``0 <= j < 1`` are ``(I, N)`` shape as they are multiplied with input variables. All other matrices has ``(N, N)`` shape. bs (list of list of :class:`~chainerx.array`): Bias vectors. ``bs[i + di]`` represnents biases for i-th layer. Note that ``di = 0`` for forward-RNN and ``di = 1`` for backward-RNN. Each ``bs[i + di]`` is a list containing two vectors. ``bs[i + di][j]`` is corresponding with ``b^{f}_j`` if ``di = 0`` and corresponding with ``b^{b}_j`` if ``di = 1`` in the equation. Shape of each matrix is ``(N,)`` where ``N`` is dimension of hidden units. xs (list of :class:`~chainerx.array`): A list of :class:`~chainerx.array` holding input values. Each element ``xs[t]`` holds input value for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is mini-batch size for time ``t``, and ``I`` is size of input units. Note that this function supports variable length sequences. When sequneces has different lengths, sort sequences in descending order by length. So ``xs`` needs to satisfy ``xs[t].shape[0] >= xs[t + 1].shape[0]``. activation (str): Activation function name. Please select ``tanh`` or ``relu``. Returns: tuple: This function returns a tuple containing two elements, ``hy`` and ``ys``. - ``hy`` is an updated hidden states whose shape is same as ``hx``. - ``ys`` is a list of :class:`~chainerx.array` . Each element ``ys[t]`` holds hidden states of the last layer corresponding to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is mini-batch size for time ``t``, and ``N`` is size of hidden units. Note that ``B_t`` is the same value as ``xs[t]``. """)
mit
5,753,944,707,664,617,000
31.275539
86
0.637194
false
3.433753
false
false
false
jeremiedecock/snippets
python/pygtk/python_gtk3_pygobject/tree_view_cellrender_text_ellipsize.py
1
2818
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2015 Jérémie DECOCK (http://www.jdhp.org) """ This is a simple Python GTK+3 TreeView CellRenderText snippet. See: http://python-gtk-3-tutorial.readthedocs.org/en/latest/cellrenderers.html#cellrenderertext """ from gi.repository import Gtk as gtk from gi.repository import Pango as pango # Countries, population (as in 2015) and continent. DATA_LIST = [("China", 1370130000, "Asia"), ("India", 1271980000, "Asia"), ("United States", 321107000, "North America"), ("Indonesia", 255461700, "Asia"), ("Brazil", 204388000, "South America"), ("Pakistan", 189936000, "Asia"), ("Nigeria", 183523000, "Africa"), ("Bangladesh", 158425000, "Asia"), ("Russia", 146267288, "Eurasia"), ("Japan", 126880000, "Asia")] def main(): window = gtk.Window() window.set_default_size(300, 450) window.set_border_width(18) # Creating the ListStore model liststore = gtk.ListStore(str, int, str) for item in DATA_LIST: liststore.append(list(item)) # Creating the treeview and add the columns treeview = gtk.TreeView(liststore) for column_index, column_title in enumerate(["Country", "Population", "Continent"]): renderer = gtk.CellRendererText() column = gtk.TreeViewColumn(column_title, renderer, text=column_index) column.set_resizable(True) # Let the column be resizable # Use ellipsize for the "Population" and "Continent" columns if column_title in ("Population", "Continent"): renderer.set_property("ellipsize", pango.EllipsizeMode.END) renderer.set_property("ellipsize-set", True) if column_title == "Population": column.set_expand(True) # This column will use all the space left treeview.append_column(column) # Scrolled window scrolled_window = gtk.ScrolledWindow() scrolled_window.set_border_width(0) scrolled_window.set_shadow_type(gtk.ShadowType.IN) # should be gtk.ShadowType.IN, gtk.ShadowType.OUT, gtk.ShadowType.ETCHED_IN or gtk.ShadowType.ETCHED_OUT scrolled_window.set_policy(gtk.PolicyType.AUTOMATIC, gtk.PolicyType.ALWAYS) # should be gtk.PolicyType.AUTOMATIC, gtk.PolicyType.ALWAYS or gtk.PolicyType.NEVER scrolled_window.add(treeview) window.add(scrolled_window) window.connect("delete-event", gtk.main_quit) # ask to quit the application when the close button is clicked window.show_all() # display the window gtk.main() # GTK+ main loop if __name__ == '__main__': main()
mit
-8,133,782,412,095,077,000
39.228571
188
0.620384
false
3.537688
false
false
false
ikosenn/sms-log-handler
sms_log_handler/sms_handler.py
1
2049
import datetime import logging from typing import Dict from .utils import import_from_string class SMSHandler(logging.Handler): def __init__(self, provider_config: Dict) -> None: """ Initializes the SMSHandler params: provider_config: The provider configurations. { provider_key: <key_id> provider_secret: <secret_key> provider_send_to: [<an array of phone numbers>] } """ super().__init__(self) self.provider_class_str = provider_config.get( 'provider_class', 'sms_log_handler.providers.africastalking.AfricasTalkingProvider') self.provider_class = import_from_string(self.provider_class_str) self.key = provider_config.get('provider_key', '') self.secret = provider_config.get('provider_secret', '') self.phone_numbers = provider_config.get('provider_send_to', []) def emit(self, record) -> None: """ Sends the message """ to_send = self._construct_message(record) sms_provider = self.provider_class(self.key, self.secret) sms_provider.send(self.phone_numbers, to_send) def _construct_message(self, record) -> str: """ Contruct and format the mesage to be sent. i.e MODULE: sms_log_handler.sms_handler LEVEL: ERROR TIME: 21, May 2017 10:54 MESSAGE: Duplicate records found in the user model """ msg = ( 'MODULE: {module_path}\n\nLEVEL: {level}\n\nTIME: {time}\n\n' 'MESSAGE: {msg}') date_time = datetime.datetime.fromtimestamp(record.created) date_time = date_time.strftime('%d, %b %Y %H:%M') formatted_msg = msg.format( level=record.levelname, time=date_time, msg=record.getMessage(), module_path=record.name, line_no=record.lineno) return formatted_msg
mit
6,605,223,552,672,128,000
33.728814
79
0.564178
false
4.04142
true
false
false
QLRace/minqlx-plugins
spec_delay.py
1
2290
# This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. """ Stops people spectating then quickly joining the 'free' team. This is to stop people firing a rocket, then spectating and joining then using the knockback from the rocket which would count as a strafe time. """ import minqlx class spec_delay(minqlx.Plugin): def __init__(self): super().__init__() self.add_hook("player_disconnect", self.handle_player_disconnect) self.add_hook("team_switch_attempt", self.handle_team_switch_attempt) self.add_hook("team_switch", self.handle_team_switch) self.spec_delays = set() def handle_player_disconnect(self, player, reason): """Sets spec delay when a player disconnects.""" self.spec_delays.add(player.steam_id) self.allow_join(player) def handle_team_switch_attempt(self, player, old_team, new_team): """Stops the player joining if spec delay is true.""" if new_team != "spectator" and old_team == "spectator" and player.steam_id in self.spec_delays: player.tell("^6You must wait 15 seconds before joining after spectating") return minqlx.RET_STOP_EVENT def handle_team_switch(self, player, old_team, new_team): """Sets a delay on joining when the player joins spectator""" if new_team == "spectator" and old_team == "free": # Set spec delay self.spec_delays.add(player.steam_id) self.allow_join(player) # This is only needed to stop \team s; team f elif new_team == "free" and old_team == "spectator" and player.steam_id in self.spec_delays: player.tell("^6You must wait 15 seconds before joining after spectating") return minqlx.RET_STOP_EVENT @minqlx.delay(15.1) def allow_join(self, player): """Allows the player to join after 15.1 seconds.""" try: self.spec_delays.remove(player.steam_id) player.center_print("^6You can join now") except KeyError: return except AttributeError: return
gpl-3.0
6,870,827,062,680,719,000
41.407407
103
0.653275
false
3.760263
false
false
false
cmancone/mygrations
tests/formats/mysql/definitions/test_database.py
1
3304
import unittest from mygrations.formats.mysql.file_reader.database import database as database_reader from mygrations.formats.mysql.file_reader.create_parser import create_parser class test_database(unittest.TestCase): def _get_sample_db(self): strings = [ """ CREATE TABLE `logs` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `message` TEXT NOT NULL, `traceback` text, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; """, """ CREATE TABLE `more_logs` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `more_messages` TEXT NOT NULL, `traceback` text, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; """ ] return database_reader(strings) def test_simple(self): db1 = self._get_sample_db() strings = [ """ CREATE TABLE `logs` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `message` TEXT NOT NULL, `traceback` text, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; """, """ CREATE TABLE `less_logs` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `more_messages` TEXT NOT NULL, `traceback` text, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; """ ] db2 = database_reader(strings) #differences = db2 - db1 #self.assertEquals( [], differences ) def test_add_table(self): db = self._get_sample_db() new_table = create_parser() new_table.parse( """CREATE TABLE `log_changes` ( `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT, `log_id` INT(10) UNSIGNED NOT NULL, `type_id` INT(10) UNSIGNED NOT NULL, `change` VARCHAR(255), PRIMARY KEY (id), KEY `log_changes_log_id` (`log_id`), KEY `log_changes_type_id` (`type_id`) ); """ ) db.add_table(new_table) self.assertEquals(3, len(db.tables)) self.assertTrue('log_changes' in db.tables) self.assertEquals(new_table, db.tables['log_changes']) def test_remove_table(self): db1 = self._get_sample_db() db1.remove_table(db1.tables['more_logs']) self.assertEquals(1, len(db1.tables)) self.assertTrue('logs' in db1.tables) self.assertFalse('more_logs' in db1.tables) def test_exception_on_remove_invalid_table(self): db1 = self._get_sample_db() new_table = create_parser() new_table.parse( """CREATE TABLE `log_changes` ( `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT, `log_id` INT(10) UNSIGNED NOT NULL, `type_id` INT(10) UNSIGNED NOT NULL, `change` VARCHAR(255), PRIMARY KEY (id), KEY `log_changes_log_id` (`log_id`), KEY `log_changes_type_id` (`type_id`) ); """ ) with self.assertRaises(ValueError): db1.remove_table(new_table)
mit
6,008,796,254,061,185,000
31.07767
85
0.521186
false
3.882491
true
false
false
Tsumiki-Chan/Neko-Chan
commands/purge.py
1
1524
from functions import search, logger DESC = "Delete x messages" USAGE="purge [*amount*] [*user* `optional`]" async def init(bot): chat=bot.message.channel try: if len(bot.args) == 0: await bot.sendMessage( "Didn't receive any arguments! Usage: {}".format(USAGE)) return False try: bot.args[0] = int(bot.args[0]) except: await bot.sendMessage( "`{}` is not a valid number.".format(bot.args[0])) return False if len(bot.args) > 1: if len(bot.message.raw_mentions)>0: user = await search.user(chat, bot.message.raw_mentions[0]) else: user = list(bot.args) user.pop(0) user = await search.user(chat, " ".join(user)) if user is not None: def is_me(m): check = (m.author == user) if check: bot.args[0] = bot.args[0]-1 return (bot.args[0]>=0) await bot.client.purge_from(chat, limit=500, check=is_me) #await bot.sendMessage( user.display_name)) else: await bot.sendMessage( "Could not find any user with \"`{}`\"".format(user)) return False else: await bot.client.purge_from(chat, limit=bot.args[0]+1, check=None) return False except Exception: logger.PrintException(bot.message) return False
gpl-3.0
-421,751,238,183,873,100
33.636364
92
0.509186
false
3.917738
false
false
false
mSOHU/http2
test/benchmark2.py
1
1422
# -*- coding: utf-8 -*- """ copied from https://github.com/bdarnell/tornado_http2/blob/master/tornado_http2/test/benchmark.py """ import time import logging from tornado.ioloop import IOLoop from tornado.options import define, options, parse_command_line, enable_pretty_logging from http2 import SimpleAsyncHTTP2Client logging.getLogger('http2').setLevel(logging.INFO) enable_pretty_logging() define('n', help='number of queries', default=1000) define('h', help='host', default='http2.akamai.com') define('p', help='port', default=None, type=int) define('s', help='use https, [1|0]', default=True) define('c', help='max streams concurrency', default=30) done_count = [0] io_loop = IOLoop.instance() def callback(value): done_count[0] += 1 if done_count[0] == options.n: io_loop.stop() elapsed = time.time() - start_time print 'HTTP/2: %d requests in %0.3fs: %f QPS' % (options.n, elapsed, options.n / elapsed) if __name__ == '__main__': options.logging = "info" parse_command_line() client = SimpleAsyncHTTP2Client( host=options.h, port=options.p, secure=options.s, max_streams=options.c, connect_timeout=5, enable_push=False, initial_window_size=2**24-1, ) start_time = time.time() for i in range(options.n): io_loop.add_callback(lambda: client.fetch('/', callback=callback)) io_loop.start()
apache-2.0
-6,296,171,402,591,293,000
25.830189
97
0.658228
false
3.22449
false
false
false
masasin/advent_of_code_2015
day_11.py
1
3790
""" http://adventofcode.com/day/10 --- Day 11: Corporate Policy --- Santa's previous password expired, and he needs help choosing a new one. To help him remember his new password after the old one expires, Santa has devised a method of coming up with a password based on the previous one. Corporate policy dictates that passwords must be exactly eight lowercase letters (for security reasons), so he finds his new password by incrementing his old password string repeatedly until it is valid. Incrementing is just like counting with numbers: xx, xy, xz, ya, yb, and so on. Increase the rightmost letter one step; if it was z, it wraps around to a, and repeat with the next letter to the left until one doesn't wrap around. Unfortunately for Santa, a new Security-Elf recently started, and he has imposed some additional password requirements: - Passwords must include one increasing straight of at least three letters, like abc, bcd, cde, and so on, up to xyz. They cannot skip letters; abd doesn't count. - Passwords may not contain the letters i, o, or l, as these letters can be mistaken for other characters and are therefore confusing. - Passwords must contain at least two different, non-overlapping pairs of letters, like aa, bb, or zz. For example: - hijklmmn meets the first requirement (because it contains the straight hij) but fails the second requirement (because it contains i and l). - abbceffg meets the third requirement (because it repeats bb and ff) but fails the first requirement. - abbcegjk fails the third requirement, because it only has one double letter (bb). - The next password after abcdefgh is abcdffaa. - The next password after ghijklmn is ghjaabcc, because you eventually skip all the passwords that start with ghi..., since i is not allowed. Given Santa's current password (your puzzle input), what should his next password be? --- Part Two --- Santa's password expired again. What's the next one? """ import re from string import ascii_lowercase def find_next_password(password, n=1): for i in range(n): password = increment_password(password) while not validate(password): password = increment_password(password) return password def validate(password): # Requirement 2 if re.search(r"[iol]", password): return False # Requirement 1 for i in range(len(password) - 2): if password[i:i+3] in ascii_lowercase: break else: return False # Requirement 3 return True if re.search(r"(\w)\1.*(\w)\2", password) else False def increment_password(password): if password.endswith("z"): i_z = password.index("z") n_z = len(password) - i_z boundary_letter = password[i_z - 1] return password[:i_z - 1] + next_letter(boundary_letter) + "a" * n_z else: return password[:-1] + next_letter(password[-1]) def next_letter(c): try: return ascii_lowercase[ascii_lowercase.index(c) + 1] except IndexError: # z return "a" def part_one(): with open("inputs/day_11_input.txt") as fin: password = fin.readline().strip() print("Next password: {}".format(find_next_password(password))) def part_two(): with open("inputs/day_11_input.txt") as fin: password = fin.readline().strip() print("Next password: {}".format(find_next_password(password, 2))) def main(): with open("inputs/day_11_input.txt") as fin: password = fin.readline().strip() next_password = find_next_password(password) print("Next password: {}".format(next_password)) print("Next next password: {}".format(find_next_password(next_password))) if __name__ == "__main__": main()
mit
9,128,645,441,959,390,000
31.956522
80
0.683113
false
3.79
false
false
false
usc-isi/extra-specs
nova/api/openstack/compute/contrib/quotas.py
1
3875
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import webob from nova.api.openstack import extensions from nova.api.openstack import wsgi from nova.api.openstack import xmlutil from nova import db from nova.db.sqlalchemy import api as sqlalchemy_api from nova import exception from nova import quota authorize = extensions.extension_authorizer('compute', 'quotas') class QuotaTemplate(xmlutil.TemplateBuilder): def construct(self): root = xmlutil.TemplateElement('quota_set', selector='quota_set') root.set('id') for resource in quota.quota_resources: elem = xmlutil.SubTemplateElement(root, resource) elem.text = resource return xmlutil.MasterTemplate(root, 1) class QuotaSetsController(object): def _format_quota_set(self, project_id, quota_set): """Convert the quota object to a result dict""" result = dict(id=str(project_id)) for resource in quota.quota_resources: result[resource] = quota_set[resource] return dict(quota_set=result) def _validate_quota_limit(self, limit): # NOTE: -1 is a flag value for unlimited if limit < -1: msg = _("Quota limit must be -1 or greater.") raise webob.exc.HTTPBadRequest(explanation=msg) @wsgi.serializers(xml=QuotaTemplate) def show(self, req, id): context = req.environ['nova.context'] authorize(context) try: sqlalchemy_api.authorize_project_context(context, id) return self._format_quota_set(id, quota.get_project_quotas(context, id)) except exception.NotAuthorized: raise webob.exc.HTTPForbidden() @wsgi.serializers(xml=QuotaTemplate) def update(self, req, id, body): context = req.environ['nova.context'] authorize(context) project_id = id for key in body['quota_set'].keys(): if key in quota.quota_resources: value = int(body['quota_set'][key]) self._validate_quota_limit(value) try: db.quota_update(context, project_id, key, value) except exception.ProjectQuotaNotFound: db.quota_create(context, project_id, key, value) except exception.AdminRequired: raise webob.exc.HTTPForbidden() return {'quota_set': quota.get_project_quotas(context, project_id)} @wsgi.serializers(xml=QuotaTemplate) def defaults(self, req, id): authorize(req.environ['nova.context']) return self._format_quota_set(id, quota._get_default_quotas()) class Quotas(extensions.ExtensionDescriptor): """Quotas management support""" name = "Quotas" alias = "os-quota-sets" namespace = "http://docs.openstack.org/compute/ext/quotas-sets/api/v1.1" updated = "2011-08-08T00:00:00+00:00" def get_resources(self): resources = [] res = extensions.ResourceExtension('os-quota-sets', QuotaSetsController(), member_actions={'defaults': 'GET'}) resources.append(res) return resources
apache-2.0
-5,099,529,885,917,966,000
33.598214
79
0.634065
false
4.162191
false
false
false
isotoma/alm.solrindex
alm/solrindex/schema.py
1
2814
"""Parser of a Solr schema.xml""" from alm.solrindex.interfaces import ISolrField from alm.solrindex.interfaces import ISolrFieldHandler from alm.solrindex.interfaces import ISolrSchema from elementtree.ElementTree import parse from zope.component import getUtility from zope.component import queryUtility from zope.interface import implements import logging import urllib2 log = logging.getLogger(__name__) class SolrSchema(object): implements(ISolrSchema) uniqueKey = None defaultSearchField = None def __init__(self, solr_uri=None): self.fields = [] if solr_uri: f = self.download_from(solr_uri) try: self.xml_init(f) finally: f.close() def download_from(self, solr_uri): """Get schema.xml from a running Solr instance""" schema_uris = ('%s/admin/file/?file=schema.xml', # solr 1.3 '%s/admin/get-file.jsp?file=schema.xml') # solr 1.2 for i, uri in enumerate(schema_uris): uri = uri % solr_uri log.debug('getting schema from %s', uri) try: f = urllib2.urlopen(uri) except urllib2.URLError: if i < len(schema_uris) - 1: # try the next URI continue raise return f def xml_init(self, f): """Initialize this instance from a Solr schema.xml""" tree = parse(f) e = tree.find('uniqueKey') if e is not None: self.uniqueKey = e.text.strip() e = tree.find('defaultSearchField') if e is not None: self.defaultSearchField = e.text.strip() types = {} for e in tree.findall('types/fieldType'): types[e.attrib['name']] = e for e in tree.findall('fields/field'): t = types[e.attrib['type']] self.fields.append(SolrField(e, t)) class SolrField(object): implements(ISolrField) _boolean_attrs = ( 'indexed', 'stored', 'required', 'multiValued', ) def __init__(self, elem, fieldType): self.name = elem.attrib['name'] self.type = elem.attrib['type'] self.java_class = fieldType.attrib['class'] for attr in self._boolean_attrs: value = elem.get(attr) if value is not None: value = {'true': True, 'false': False}[value.lower()] setattr(self, attr, value) handler = queryUtility(ISolrFieldHandler, name=self.name) if handler is None: handler = queryUtility( ISolrFieldHandler, name=self.java_class) if handler is None: handler = getUtility(ISolrFieldHandler) self.handler = handler
bsd-3-clause
2,881,713,634,405,479,000
29.586957
75
0.569652
false
3.930168
false
false
false
yaukwankiu/armor
tests/modifiedMexicanHatTest5a.py
1
2438
# supplementing modifiedMexicanHatTest5.py # outputing the charts, given the results import numpy as np import matplotlib.pyplot as plt from armor import pattern from armor import defaultParameters as dp dbz = pattern.DBZ DS = pattern.DBZstream dataFolder = dp.root + "labLogs/2014-5-2-modifiedMexicanHatTest5/" outputFolder= dataFolder WRFnames = [ "WRF"+("0"+str(v))[-2:] for v in range(1,21)] sigmas = [1, 2, 4, 5, 8 ,10 ,16, 20, 32, 40, 64, 80, 128, 160, 256, 320,] allWRFsStreamMean = 0. dbzCount = 0 for WRFname in WRFnames: ds = DS(dataFolder=dataFolder, name="kongrey" + WRFname, outputFolder="", imageFolder="", key1=WRFname, # keywords to pick out specific files key2="LOGspec.dat", key3="kongreywrf", #safety check preload=True, imageExtension = '.png', #added 2013-09-27 dataExtension = '.dat', ) print "\n==================\nSaving histograms for ", ds.name for dbzpattern in ds: dbzCount += 1 streamMeanUpdate = np.array([(dbzpattern.matrix==v).sum() for v in sigmas]) allWRFsStreamMean = 1.* ((allWRFsStreamMean*(dbzCount -1)) + streamMeanUpdate ) / dbzCount histogramName = "kongreywrf" + dbzpattern.dataTime + WRFname + "_LOGspec_histogram"+ ds.imageExtension print dbzpattern.name, "->", histogramName plt.clf() dbzpattern.histogram(display=False, outputPath=outputFolder+histogramName) plt.close() plt.plot(sigmas, allWRFsStreamMean) plt.title(ds.name + '- average laplacian-of-gaussian max-response spectrum for ' +str(dbzCount) + 'WRF patterns') plt.savefig(outputFolder + ds.name + "_all_wrfs_average_LoG_max_response spectrum.png") plt.close() """ # run modifiedMexicanHatTest6a.py and then: allWRFsStreamMean = array([ 2562.4375, 655.5625, 526.15 , 741.51 , 858.6425, 1457.79 , 1710.095 , 2971.355 , 3561.9125, 4406.915 , 1488.0375, 59.5925, 0. , 0. , 0. , 0. ]) streamMeanCOMPREF = streamMean sigmas = np.array(sigmas) plt.close() plt.plot(sigmas, streamMeanCOMPREF) plt.plot(sigmas[:-4]*4, allWRFsStreamMean[:-4]*16) plt.title("COMPREF and WRFs mean max-response LOG spectra from Kong-Rey data") plt.show() """
cc0-1.0
-1,526,503,526,948,186,400
38.967213
113
0.609516
false
3.101781
false
false
false
matthiaskrgr/cppcheck
addons/naming.py
1
2383
#!/usr/bin/env python # # cppcheck addon for naming conventions # # Example usage (variable name must start with lowercase, function name must start with uppercase): # $ cppcheck --dump path-to-src/ # $ python addons/naming.py --var='[a-z].*' --function='[A-Z].*' path-to-src/*.dump # import cppcheckdata import sys import re RE_VARNAME = None RE_PRIVATE_MEMBER_VARIABLE = None RE_FUNCTIONNAME = None for arg in sys.argv[1:]: if arg[:6] == '--var=': RE_VARNAME = arg[6:] elif arg.startswith('--private-member-variable='): RE_PRIVATE_MEMBER_VARIABLE = arg[arg.find('=')+1:] elif arg[:11] == '--function=': RE_FUNCTIONNAME = arg[11:] FoundError = False def reportError(token, severity, msg): global FoundError FoundError = True sys.stderr.write( '[' + token.file + ':' + str(token.linenr) + '] (' + severity + ') naming.py: ' + msg + '\n') for arg in sys.argv[1:]: if not arg[-5:] == '.dump': continue print('Checking ' + arg + '...') data = cppcheckdata.parsedump(arg) for cfg in data.configurations: if len(data.configurations) > 1: print('Checking ' + arg + ', config "' + cfg.name + '"...') if RE_VARNAME: for var in cfg.variables: res = re.match(RE_VARNAME, var.nameToken.str) if not res: reportError(var.typeStartToken, 'style', 'Variable ' + var.nameToken.str + ' violates naming convention') if RE_PRIVATE_MEMBER_VARIABLE: for var in cfg.variables: if (var.access is None) or var.access != 'Private': continue res = re.match(RE_PRIVATE_MEMBER_VARIABLE, var.nameToken.str) if not res: reportError(var.typeStartToken, 'style', 'Private member variable ' + var.nameToken.str + ' violates naming convention') if RE_FUNCTIONNAME: for scope in cfg.scopes: if scope.type == 'Function': res = re.match(RE_FUNCTIONNAME, scope.className) if not res: reportError( scope.bodyStart, 'style', 'Function ' + scope.className + ' violates naming convention') if FoundError: print('FoundError') sys.exit(1)
gpl-3.0
-6,974,778,811,751,254,000
34.567164
116
0.5577
false
3.849758
false
false
false
enthought/traitsgui
enthought/pyface/action/action_item.py
1
4849
#------------------------------------------------------------------------------ # Copyright (c) 2005, Enthought, Inc. # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in enthought/LICENSE.txt and may be redistributed only # under the conditions described in the aforementioned license. The license # is also available online at http://www.enth373ought.com/licenses/BSD.txt # Thanks for using Enthought open source! # # Author: Enthought, Inc. # Description: <Enthought pyface package component> #------------------------------------------------------------------------------ """ An action manager item that represents an actual action. """ # Enthought library imports. from enthought.traits.api import Any, Instance, List, Property, Str # Local imports. from action import Action from action_manager_item import ActionManagerItem # Import the toolkit specific versions of the internal classes. from enthought.pyface.toolkit import toolkit_object _MenuItem = toolkit_object('action.action_item:_MenuItem') _Tool = toolkit_object('action.action_item:_Tool') _PaletteTool = toolkit_object('action.action_item:_PaletteTool') class ActionItem(ActionManagerItem): """ An action manager item that represents an actual action. """ #### 'ActionManagerItem' interface ######################################## # The item's unique identifier ('unique' in this case means unique within # its group). id = Property(Str) #### 'ActionItem' interface ############################################### # The action! action = Instance(Action) # The toolkit specific control created for this item. control = Any # The toolkit specific Id of the control created for this item. # # We have to keep the Id as well as the control because wx tool bar tools # are created as 'wxObjectPtr's which do not have Ids, and the Id is # required to manipulate the state of a tool via the tool bar 8^( # FIXME v3: Why is this part of the public interface? control_id = Any #### Private interface #################################################### # All of the internal instances that wrap this item. _wrappers = List(Any) ########################################################################### # 'ActionManagerItem' interface. ########################################################################### #### Trait properties ##################################################### def _get_id(self): """ Return's the item's Id. """ return self.action.id #### Trait change handlers ################################################ def _enabled_changed(self, trait_name, old, new): """ Static trait change handler. """ self.action.enabled = new return def _visible_changed(self, trait_name, old, new): """ Static trait change handler. """ self.action.visible = True return ########################################################################### # 'ActionItem' interface. ########################################################################### def add_to_menu(self, parent, menu, controller): """ Adds the item to a menu. """ if (controller is None) or controller.can_add_to_menu(self.action): wrapper = _MenuItem(parent, menu, self, controller) # fixme: Martin, who uses this information? if controller is None: self.control = wrapper.control self.control_id = wrapper.control_id self._wrappers.append(wrapper) return def add_to_toolbar(self, parent, tool_bar, image_cache, controller, show_labels=True): """ Adds the item to a tool bar. """ if (controller is None) or controller.can_add_to_toolbar(self.action): wrapper = _Tool( parent, tool_bar, image_cache, self, controller, show_labels ) # fixme: Martin, who uses this information? if controller is None: self.control = wrapper.control self.control_id = wrapper.control_id self._wrappers.append(wrapper) return def add_to_palette(self, tool_palette, image_cache, show_labels=True): """ Adds the item to a tool palette. """ wrapper = _PaletteTool(tool_palette, image_cache, self, show_labels) self._wrappers.append(wrapper) return def destroy(self): """ Called when the action is no longer required. By default this method calls 'destroy' on the action itself. """ self.action.destroy() return #### EOF ######################################################################
bsd-3-clause
2,791,425,329,490,104,300
32.673611
79
0.541761
false
4.849
false
false
false
simleo/pydoop-features
pyfeatures/app/deserialize.py
1
2362
# BEGIN_COPYRIGHT # # Copyright (C) 2014-2017 Open Microscopy Environment: # - University of Dundee # - CRS4 # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # END_COPYRIGHT """\ Deserialize BioImgPlane records. """ import sys import os import warnings from contextlib import closing import errno try: from pyavroc import AvroFileReader except ImportError: from pyfeatures.pyavroc_emu import AvroFileReader warnings.warn("pyavroc not found, using standard avro lib\n") import numpy as np from libtiff import TIFF from pyfeatures.bioimg import BioImgPlane # no schema needed for deserialization def iterplanes(avro_file): with open(avro_file, 'rb') as f: reader = AvroFileReader(f) for r in reader: yield BioImgPlane(r) def run(logger, args, extra_argv=None): try: os.makedirs(args.out_dir) except OSError as e: if e.errno != errno.EEXIST: sys.exit('Cannot create output dir: %s' % e) for p in iterplanes(args.avro_file): pixels = p.get_xy() out_tag = '%s-z%04d-c%04d-t%04d' % (p.name, p.z, p.c, p.t) logger.info("writing plane %s", out_tag) if args.img: out_fn = os.path.join(args.out_dir, '%s.tif' % out_tag) with closing(TIFF.open(out_fn, mode="w")) as fo: fo.write_image(pixels) else: out_fn = os.path.join(args.out_dir, '%s.npy' % out_tag) np.save(out_fn, pixels) return 0 def add_parser(subparsers): parser = subparsers.add_parser("deserialize", description=__doc__) parser.add_argument('avro_file', metavar='AVRO_FILE') parser.add_argument('out_dir', metavar='OUT_DIR') parser.add_argument('--img', action='store_true', help='write images instead of .npy dumps') parser.set_defaults(func=run) return parser
apache-2.0
2,729,805,358,433,821,700
29.675325
77
0.664691
false
3.413295
false
false
false
lakshmi-kannan/st2
st2common/st2common/models/api/action.py
1
24297
# Licensed to the StackStorm, Inc ('StackStorm') under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from st2common.util import isotime from st2common.util import schema as util_schema from st2common import log as logging from st2common.constants.pack import DEFAULT_PACK_NAME from st2common.models.api.base import BaseAPI from st2common.models.api.base import APIUIDMixin from st2common.models.api.tag import TagsHelper from st2common.models.api.notification import (NotificationSubSchemaAPI, NotificationsHelper) from st2common.models.db.action import ActionDB from st2common.models.db.actionalias import ActionAliasDB from st2common.models.db.executionstate import ActionExecutionStateDB from st2common.models.db.liveaction import LiveActionDB from st2common.models.db.runner import RunnerTypeDB from st2common.constants.action import LIVEACTION_STATUSES from st2common.models.system.common import ResourceReference __all__ = [ 'ActionAPI', 'ActionCreateAPI', 'LiveActionAPI', 'LiveActionCreateAPI', 'RunnerTypeAPI', 'AliasExecutionAPI', 'ActionAliasAPI', 'ActionAliasMatchAPI' ] LOG = logging.getLogger(__name__) class RunnerTypeAPI(BaseAPI): """ The representation of an RunnerType in the system. An RunnerType has a one-to-one mapping to a particular ActionRunner implementation. """ model = RunnerTypeDB schema = { "title": "Runner", "description": "A handler for a specific type of actions.", "type": "object", "properties": { "id": { "description": "The unique identifier for the action runner.", "type": "string", "default": None }, "uid": { "type": "string" }, "name": { "description": "The name of the action runner.", "type": "string", "required": True }, "description": { "description": "The description of the action runner.", "type": "string" }, "enabled": { "description": "Enable or disable the action runner.", "type": "boolean", "default": True }, "runner_module": { "description": "The python module that implements the " "action runner for this type.", "type": "string", "required": True }, "query_module": { "description": "The python module that implements the " "results tracker (querier) for the runner.", "type": "string", "required": False }, "runner_parameters": { "description": "Input parameters for the action runner.", "type": "object", "patternProperties": { "^\w+$": util_schema.get_action_parameters_schema() }, 'additionalProperties': False } }, "additionalProperties": False } def __init__(self, **kw): # Ideally, you should not do that. You should not redefine __init__ to validate and then set # default values, instead you should define defaults in schema and use BaseAPI __init__ # validator to unwrap them. The problem here is that draft schema also contains default # values and we don't want them to be unwrapped at the same time. I've tried to remove the # default values from draft schema, but, either because of a bug or some weird intention, it # has continued to resolve $ref'erenced properties against the initial draft schema, not the # modified one for key, value in kw.items(): setattr(self, key, value) if not hasattr(self, 'runner_parameters'): setattr(self, 'runner_parameters', dict()) @classmethod def to_model(cls, runner_type): name = runner_type.name description = runner_type.description enabled = getattr(runner_type, 'enabled', True) runner_module = str(runner_type.runner_module) runner_parameters = getattr(runner_type, 'runner_parameters', dict()) query_module = getattr(runner_type, 'query_module', None) model = cls.model(name=name, description=description, enabled=enabled, runner_module=runner_module, runner_parameters=runner_parameters, query_module=query_module) return model class ActionAPI(BaseAPI, APIUIDMixin): """ The system entity that represents a Stack Action/Automation in the system. """ model = ActionDB schema = { "title": "Action", "description": "An activity that happens as a response to the external event.", "type": "object", "properties": { "id": { "description": "The unique identifier for the action.", "type": "string" }, "ref": { "description": "System computed user friendly reference for the action. \ Provided value will be overridden by computed value.", "type": "string" }, "uid": { "type": "string" }, "name": { "description": "The name of the action.", "type": "string", "required": True }, "description": { "description": "The description of the action.", "type": "string" }, "enabled": { "description": "Enable or disable the action from invocation.", "type": "boolean", "default": True }, "runner_type": { "description": "The type of runner that executes the action.", "type": "string", "required": True }, "entry_point": { "description": "The entry point for the action.", "type": "string", "default": "" }, "pack": { "description": "The content pack this action belongs to.", "type": "string", "default": DEFAULT_PACK_NAME }, "parameters": { "description": "Input parameters for the action.", "type": "object", "patternProperties": { "^\w+$": util_schema.get_action_parameters_schema() }, 'additionalProperties': False, "default": {} }, "tags": { "description": "User associated metadata assigned to this object.", "type": "array", "items": {"type": "object"} }, "notify": { "description": "Notification settings for action.", "type": "object", "properties": { "on-complete": NotificationSubSchemaAPI, "on-failure": NotificationSubSchemaAPI, "on-success": NotificationSubSchemaAPI }, "additionalProperties": False } }, "additionalProperties": False } def __init__(self, **kw): for key, value in kw.items(): setattr(self, key, value) if not hasattr(self, 'parameters'): setattr(self, 'parameters', dict()) if not hasattr(self, 'entry_point'): setattr(self, 'entry_point', '') @classmethod def from_model(cls, model, mask_secrets=False): action = cls._from_model(model) action['runner_type'] = action['runner_type']['name'] action['tags'] = TagsHelper.from_model(model.tags) if getattr(model, 'notify', None): action['notify'] = NotificationsHelper.from_model(model.notify) return cls(**action) @classmethod def to_model(cls, action): name = getattr(action, 'name', None) description = getattr(action, 'description', None) enabled = bool(getattr(action, 'enabled', True)) entry_point = str(action.entry_point) pack = str(action.pack) runner_type = {'name': str(action.runner_type)} parameters = getattr(action, 'parameters', dict()) tags = TagsHelper.to_model(getattr(action, 'tags', [])) ref = ResourceReference.to_string_reference(pack=pack, name=name) if getattr(action, 'notify', None): notify = NotificationsHelper.to_model(action.notify) else: # We use embedded document model for ``notify`` in action model. If notify is # set notify to None, Mongoengine interprets ``None`` as unmodified # field therefore doesn't delete the embedded document. Therefore, we need # to use an empty document. notify = NotificationsHelper.to_model({}) model = cls.model(name=name, description=description, enabled=enabled, entry_point=entry_point, pack=pack, runner_type=runner_type, tags=tags, parameters=parameters, notify=notify, ref=ref) return model class ActionCreateAPI(ActionAPI, APIUIDMixin): """ API model for create action operation. """ schema = copy.deepcopy(ActionAPI.schema) schema['properties']['data_files'] = { 'description': 'Optional action script and data files which are written to the filesystem.', 'type': 'array', 'items': { 'type': 'object', 'properties': { 'file_path': { 'type': 'string', 'required': True }, 'content': { 'type': 'string', 'required': True }, }, 'additionalProperties': False }, 'default': [] } class ActionUpdateAPI(ActionAPI, APIUIDMixin): """ API model for update action operation. """ schema = copy.deepcopy(ActionCreateAPI.schema) del schema['properties']['pack']['default'] class LiveActionAPI(BaseAPI): """The system entity that represents the execution of a Stack Action/Automation in the system. """ model = LiveActionDB schema = { "title": "liveaction", "description": "An execution of an action.", "type": "object", "properties": { "id": { "description": "The unique identifier for the action execution.", "type": "string" }, "status": { "description": "The current status of the action execution.", "type": "string", "enum": LIVEACTION_STATUSES }, "start_timestamp": { "description": "The start time when the action is executed.", "type": "string", "pattern": isotime.ISO8601_UTC_REGEX }, "end_timestamp": { "description": "The timestamp when the action has finished.", "type": "string", "pattern": isotime.ISO8601_UTC_REGEX }, "action": { "description": "Reference to the action to be executed.", "type": "string", "required": True }, "parameters": { "description": "Input parameters for the action.", "type": "object", "patternProperties": { "^\w+$": { "anyOf": [ {"type": "array"}, {"type": "boolean"}, {"type": "integer"}, {"type": "number"}, {"type": "object"}, {"type": "string"}, {"type": "null"} ] } }, 'additionalProperties': False }, "result": { "anyOf": [{"type": "array"}, {"type": "boolean"}, {"type": "integer"}, {"type": "number"}, {"type": "object"}, {"type": "string"}] }, "context": { "type": "object" }, "callback": { "type": "object" }, "runner_info": { "type": "object" }, "notify": { "description": "Notification settings for liveaction.", "type": "object", "properties": { "on-complete": NotificationSubSchemaAPI, "on-failure": NotificationSubSchemaAPI, "on-success": NotificationSubSchemaAPI }, "additionalProperties": False } }, "additionalProperties": False } @classmethod def from_model(cls, model, mask_secrets=False): doc = super(cls, cls)._from_model(model, mask_secrets=mask_secrets) if model.start_timestamp: doc['start_timestamp'] = isotime.format(model.start_timestamp, offset=False) if model.end_timestamp: doc['end_timestamp'] = isotime.format(model.end_timestamp, offset=False) if getattr(model, 'notify', None): doc['notify'] = NotificationsHelper.from_model(model.notify) return cls(**doc) @classmethod def to_model(cls, live_action): action = live_action.action if getattr(live_action, 'start_timestamp', None): start_timestamp = isotime.parse(live_action.start_timestamp) else: start_timestamp = None if getattr(live_action, 'end_timestamp', None): end_timestamp = isotime.parse(live_action.end_timestamp) else: end_timestamp = None status = getattr(live_action, 'status', None) parameters = getattr(live_action, 'parameters', dict()) context = getattr(live_action, 'context', dict()) callback = getattr(live_action, 'callback', dict()) result = getattr(live_action, 'result', None) if getattr(live_action, 'notify', None): notify = NotificationsHelper.to_model(live_action.notify) else: notify = None model = cls.model(action=action, start_timestamp=start_timestamp, end_timestamp=end_timestamp, status=status, parameters=parameters, context=context, callback=callback, result=result, notify=notify) return model class LiveActionCreateAPI(LiveActionAPI): """ API model for action execution create (run action) operations. """ schema = copy.deepcopy(LiveActionAPI.schema) schema['properties']['user'] = { 'description': 'User context under which action should run (admins only)', 'type': 'string', 'default': None } class ActionExecutionStateAPI(BaseAPI): """ System entity that represents state of an action in the system. This is used only in tests for now. """ model = ActionExecutionStateDB schema = { "title": "ActionExecutionState", "description": "Execution state of an action.", "type": "object", "properties": { "id": { "description": "The unique identifier for the action execution state.", "type": "string" }, "execution_id": { "type": "string", "description": "ID of the action execution.", "required": True }, "query_context": { "type": "object", "description": "query context to be used by querier.", "required": True }, "query_module": { "type": "string", "description": "Name of the query module.", "required": True } }, "additionalProperties": False } @classmethod def to_model(cls, state): execution_id = state.execution_id query_module = state.query_module query_context = state.query_context model = cls.model(execution_id=execution_id, query_module=query_module, query_context=query_context) return model class ActionAliasAPI(BaseAPI, APIUIDMixin): """ Alias for an action in the system. """ model = ActionAliasDB schema = { "title": "ActionAlias", "description": "Alias for an action.", "type": "object", "properties": { "id": { "description": "The unique identifier for the action alias.", "type": "string" }, "ref": { "description": "System computed user friendly reference for the alias. \ Provided value will be overridden by computed value.", "type": "string" }, "uid": { "type": "string" }, "name": { "type": "string", "description": "Name of the action alias.", "required": True }, "pack": { "description": "The content pack this actionalias belongs to.", "type": "string", "required": True }, "description": { "type": "string", "description": "Description of the action alias.", "default": None }, "enabled": { "description": "Flag indicating of action alias is enabled.", "type": "boolean", "default": True }, "action_ref": { "type": "string", "description": "Reference to the aliased action.", "required": True }, "formats": { "type": "array", "items": { "anyOf": [ {"type": "string"}, { "type": "object", "properties": { "display": {"type": "string"}, "representation": { "type": "array", "items": {"type": "string"} } } } ] }, "description": "Possible parameter format." }, "ack": { "type": "object", "properties": { "enabled": {"type": "boolean"}, "format": {"type": "string"}, "extra": {"type": "object"}, "append_url": {"type": "boolean"} }, "description": "Acknowledgement message format." }, "result": { "type": "object", "properties": { "enabled": {"type": "boolean"}, "format": {"type": "string"}, "extra": {"type": "object"} }, "description": "Execution message format." }, "extra": { "type": "object", "description": "Extra parameters, usually adapter-specific." } }, "additionalProperties": False } @classmethod def to_model(cls, alias): name = alias.name description = getattr(alias, 'description', None) pack = alias.pack ref = ResourceReference.to_string_reference(pack=pack, name=name) enabled = getattr(alias, 'enabled', True) action_ref = alias.action_ref formats = alias.formats ack = getattr(alias, 'ack', None) result = getattr(alias, 'result', None) extra = getattr(alias, 'extra', None) model = cls.model(name=name, description=description, pack=pack, ref=ref, enabled=enabled, action_ref=action_ref, formats=formats, ack=ack, result=result, extra=extra) return model class AliasExecutionAPI(BaseAPI): """ Alias for an action in the system. """ model = None schema = { "title": "AliasExecution", "description": "Execution of an ActionAlias.", "type": "object", "properties": { "name": { "type": "string", "description": "Name of the action alias which matched.", "required": True }, "format": { "type": "string", "description": "Format string which matched.", "required": True }, "command": { "type": "string", "description": "Command used in chat.", "required": True }, "user": { "type": "string", "description": "User that requested the execution.", "default": "channel" # TODO: This value doesnt get set }, "source_channel": { "type": "string", "description": "Channel from which the execution was requested. This is not the \ channel as defined by the notification system.", "required": True }, "notification_channel": { "type": "string", "description": "StackStorm notification channel to use to respond.", "required": False }, "notification_route": { "type": "string", "description": "StackStorm notification route to use to respond.", "required": False } }, "additionalProperties": False } @classmethod def to_model(cls, aliasexecution): # probably should be unsupported raise NotImplementedError() @classmethod def from_model(cls, aliasexecution): raise NotImplementedError() class ActionAliasMatchAPI(BaseAPI): """ API model used for alias match API endpoint. """ model = None schema = { "title": "ActionAliasMatchAPI", "description": "ActionAliasMatchAPI.", "type": "object", "properties": { "command": { "type": "string", "description": "Command string to try to match the aliases against.", "required": True } }, "additionalProperties": False } @classmethod def to_model(cls, aliasexecution): raise NotImplementedError() @classmethod def from_model(cls, aliasexecution): raise NotImplementedError()
apache-2.0
578,311,950,099,190,000
34.52193
100
0.503519
false
4.886766
false
false
false
cagriulas/algorithm-analysis-17
w3/complexity_graphic.py
1
3297
import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.animation as animation import random import time def maxsubsumOn(vector): max_ending_here = max_so_far = vector[0] for x in vector[1:]: max_ending_here = max(x, max_ending_here + x) max_so_far = max(max_so_far, max_ending_here) return max_so_far def maxsubsumOn3(vector): maxsum = 0 vectorlen = len(vector) for i in range(vectorlen): for j in range(i,vectorlen): thissum=0 for k in range (i,j): thissum=thissum+vector[k] if(thissum>maxsum): maxsum=thissum return maxsum def find_max_triple(a,b,c): if a>b: if b>c: return a elif a>c: return a else: return c elif b>c: return b else: return c def find_middle(list): middle=int(len(list)/2) sum_left_max=0 sum_left=0 for i in range(middle-1,-1,-1): sum_left=sum_left+list[i] if sum_left>sum_left_max: sum_left_max=sum_left sum_right_max=0 sum_right=0 for i in range(middle,len(list)): sum_right=sum_right+list[i] if sum_right>sum_right_max: sum_right_max=sum_right return sum_left_max+sum_right_max def maxsubsumOnlogn(array): if(len(array)<2): return sum(array) else: middle=int(len(array)/2) sum_left=maxsubsumOnlogn(array[0:middle - 1]) sum_right=maxsubsumOnlogn(array[middle:]) sum_middle=find_middle(array) return find_max_triple(sum_left,sum_right,sum_middle) if __name__ == '__main__': nib = random.sample(range(-500, 500), k=100) nonib = random.sample(range(-5000, 5000), k=500) zuybin = random.sample(range(-50000, 50000), k=1000) noylim = random.sample(range(-500000, 500000), k=2000) circle = {'nib': nib, 'nonib': nonib, 'zuybin': zuybin, 'noylim': noylim} times = {} for key in circle: print(key) print(circle[key], times, time.time()) print(key) start = time.time() maxsubsumOnlogn(circle[key]) times['nlogn' + key] = time.time() - start # start = time.time() # maxsubsumOn3(circle[key]) # times['n3' + key] = time.time() - start start = time.time() maxsubsumOn(circle[key]) times['n' + key] = time.time() - start x = np.array([100, 500, 1000, 2000]) # n3 = np.array([times['n3nib'], # times['n3nonib'], # times['n3zuybin'], # times['n3noylim']]) nlogn = np.array([times['nlognnib'], times['nlognnonib'], times['nlognzuybin'], times['nlognnoylim']]) n = np.array([times['nnib'], times['nnonib'], times['nzuybin'], times['nnoylim']]) # plt.plot(x, n3*100) plt.plot(x, nlogn*100) plt.plot(x, n * 100) plt.xticks(x) plt.xlabel('Dizi uzunluğu') plt.ylabel('Zaman (milisaniye)') plt.legend(['n3', 'nlogn', 'n'], loc='upper left') plt.savefig('foo.png', dpi=1000)
unlicense
-8,398,150,691,713,920,000
25.376
58
0.533374
false
3.187621
false
false
false
maas/maas
src/maasserver/models/tests/test_filesystemgroup.py
1
104094
# Copyright 2015-2019 Canonical Ltd. This software is licensed under the # GNU Affero General Public License version 3 (see the file LICENSE). """Tests for `FilesystemGroup`.""" import random import re from unittest import skip from uuid import uuid4 from django.core.exceptions import PermissionDenied, ValidationError from django.http import Http404 from testtools import ExpectedException from testtools.matchers import Equals, Is, MatchesStructure, Not from maasserver.enum import ( CACHE_MODE_TYPE, FILESYSTEM_GROUP_RAID_TYPES, FILESYSTEM_GROUP_TYPE, FILESYSTEM_TYPE, PARTITION_TABLE_TYPE, ) from maasserver.models.blockdevice import MIN_BLOCK_DEVICE_SIZE from maasserver.models.filesystem import Filesystem from maasserver.models.filesystemgroup import ( Bcache, BcacheManager, FilesystemGroup, LVM_PE_SIZE, RAID, RAID_SUPERBLOCK_OVERHEAD, RAIDManager, VMFS, VolumeGroup, VolumeGroupManager, ) from maasserver.models.partition import PARTITION_ALIGNMENT_SIZE from maasserver.models.partitiontable import PARTITION_TABLE_EXTRA_SPACE from maasserver.models.physicalblockdevice import PhysicalBlockDevice from maasserver.models.virtualblockdevice import VirtualBlockDevice from maasserver.permissions import NodePermission from maasserver.testing.factory import factory from maasserver.testing.orm import reload_objects from maasserver.testing.testcase import MAASServerTestCase from maasserver.utils.converters import ( machine_readable_bytes, round_size_to_nearest_block, ) from maasserver.utils.orm import reload_object from maastesting.matchers import MockCalledOnceWith, MockNotCalled class TestManagersGetObjectOr404(MAASServerTestCase): """Tests for the `get_object_or_404` on the managers.""" scenarios = ( ("FilesystemGroup", {"model": FilesystemGroup, "type": None}), ( "VolumeGroup", {"model": VolumeGroup, "type": FILESYSTEM_GROUP_TYPE.LVM_VG}, ), ("RAID", {"model": RAID, "type": FILESYSTEM_GROUP_TYPE.RAID_0}), ("Bcache", {"model": Bcache, "type": FILESYSTEM_GROUP_TYPE.BCACHE}), ) def test_raises_Http404_when_invalid_node(self): user = factory.make_admin() filesystem_group = factory.make_FilesystemGroup(group_type=self.type) self.assertRaises( Http404, self.model.objects.get_object_or_404, factory.make_name("system_id"), filesystem_group.id, user, NodePermission.view, ) def test_raises_Http404_when_invalid_device(self): user = factory.make_admin() node = factory.make_Node() self.assertRaises( Http404, self.model.objects.get_object_or_404, node.system_id, random.randint(0, 100), user, NodePermission.view, ) def test_view_raises_PermissionDenied_when_user_not_owner(self): user = factory.make_User() node = factory.make_Node(owner=factory.make_User()) filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertRaises( PermissionDenied, self.model.objects.get_object_or_404, node.system_id, filesystem_group.id, user, NodePermission.view, ) def test_view_returns_device_by_name(self): user = factory.make_User() node = factory.make_Node() filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertEqual( filesystem_group.id, self.model.objects.get_object_or_404( node.system_id, filesystem_group.name, user, NodePermission.view, ).id, ) def test_view_returns_device_when_no_owner(self): user = factory.make_User() node = factory.make_Node() filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertEqual( filesystem_group.id, self.model.objects.get_object_or_404( node.system_id, filesystem_group.id, user, NodePermission.view ).id, ) def test_view_returns_device_when_owner(self): user = factory.make_User() node = factory.make_Node(owner=user) filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertEqual( filesystem_group.id, self.model.objects.get_object_or_404( node.system_id, filesystem_group.id, user, NodePermission.view ).id, ) def test_edit_raises_PermissionDenied_when_user_not_owner(self): user = factory.make_User() node = factory.make_Node(owner=factory.make_User()) filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertRaises( PermissionDenied, self.model.objects.get_object_or_404, node.system_id, filesystem_group.id, user, NodePermission.edit, ) def test_edit_returns_device_when_user_is_owner(self): user = factory.make_User() node = factory.make_Node(owner=user) filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertEqual( filesystem_group.id, self.model.objects.get_object_or_404( node.system_id, filesystem_group.id, user, NodePermission.edit ).id, ) def test_admin_raises_PermissionDenied_when_user_requests_admin(self): user = factory.make_User() node = factory.make_Node() filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertRaises( PermissionDenied, self.model.objects.get_object_or_404, node.system_id, filesystem_group.id, user, NodePermission.admin, ) def test_admin_returns_device_when_admin(self): user = factory.make_admin() node = factory.make_Node() filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertEqual( filesystem_group.id, self.model.objects.get_object_or_404( node.system_id, filesystem_group.id, user, NodePermission.admin ).id, ) class TestManagersFilterByBlockDevice(MAASServerTestCase): """Tests for the managers `filter_by_block_device`.""" def test_volume_group_on_block_device(self): block_device = factory.make_PhysicalBlockDevice() filesystem = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=block_device ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=[filesystem] ) filesystem_groups = VolumeGroup.objects.filter_by_block_device( block_device ) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_volume_group_on_partition(self): block_device = factory.make_PhysicalBlockDevice(size=10 * 1024 ** 3) partition_table = factory.make_PartitionTable( block_device=block_device ) partition = factory.make_Partition( size=5 * 1024 ** 3, partition_table=partition_table ) filesystem = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=partition ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=[filesystem] ) filesystem_groups = VolumeGroup.objects.filter_by_block_device( block_device ) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_volume_group_on_two_partitions(self): block_device = factory.make_PhysicalBlockDevice() partition_table = factory.make_PartitionTable( block_device=block_device ) partition_one = factory.make_Partition(partition_table=partition_table) partition_two = factory.make_Partition(partition_table=partition_table) filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=partition_one ) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=partition_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=[filesystem_one, filesystem_two], ) filesystem_groups = VolumeGroup.objects.filter_by_block_device( block_device ) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_raid_on_block_devices(self): node = factory.make_Node() block_device_one = factory.make_PhysicalBlockDevice(node=node) filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=block_device_one ) block_device_two = factory.make_PhysicalBlockDevice(node=node) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=block_device_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=[filesystem_one, filesystem_two], ) filesystem_groups = RAID.objects.filter_by_block_device( block_device_one ) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_raid_on_partitions(self): block_device = factory.make_PhysicalBlockDevice() partition_table = factory.make_PartitionTable( block_device=block_device ) partition_one = factory.make_Partition(partition_table=partition_table) partition_two = factory.make_Partition(partition_table=partition_table) filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, partition=partition_one ) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, partition=partition_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=[filesystem_one, filesystem_two], ) filesystem_groups = RAID.objects.filter_by_block_device(block_device) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_bcache_on_block_devices(self): node = factory.make_Node() block_device_one = factory.make_PhysicalBlockDevice(node=node) cache_set = factory.make_CacheSet(block_device=block_device_one) block_device_two = factory.make_PhysicalBlockDevice(node=node) filesystem_backing = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=block_device_two, ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_mode=CACHE_MODE_TYPE.WRITEBACK, cache_set=cache_set, filesystems=[filesystem_backing], ) filesystem_groups = Bcache.objects.filter_by_block_device( block_device_one ) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_bcache_on_partitions(self): device_size = random.randint( MIN_BLOCK_DEVICE_SIZE * 4, MIN_BLOCK_DEVICE_SIZE * 1024 ) block_device = factory.make_PhysicalBlockDevice( size=device_size + PARTITION_TABLE_EXTRA_SPACE ) partition_table = factory.make_PartitionTable( block_device=block_device ) partition_one = factory.make_Partition( partition_table=partition_table, size=device_size // 2 ) partition_two = factory.make_Partition( partition_table=partition_table, size=device_size // 2 ) cache_set = factory.make_CacheSet(partition=partition_one) filesystem_backing = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, partition=partition_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_mode=CACHE_MODE_TYPE.WRITEBACK, cache_set=cache_set, filesystems=[filesystem_backing], ) filesystem_groups = Bcache.objects.filter_by_block_device(block_device) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) class TestManagersFilterByNode(MAASServerTestCase): """Tests for the managers `filter_by_node`.""" def test_volume_group_on_block_device(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) filesystem = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=block_device ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=[filesystem] ) filesystem_groups = VolumeGroup.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_volume_group_on_partition(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) partition_table = factory.make_PartitionTable( block_device=block_device ) partition = factory.make_Partition(partition_table=partition_table) filesystem = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=partition ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=[filesystem] ) filesystem_groups = VolumeGroup.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_volume_group_on_two_partitions(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) partition_table = factory.make_PartitionTable( block_device=block_device ) partition_one = factory.make_Partition(partition_table=partition_table) partition_two = factory.make_Partition(partition_table=partition_table) filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=partition_one ) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=partition_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=[filesystem_one, filesystem_two], ) filesystem_groups = VolumeGroup.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_raid_on_block_devices(self): node = factory.make_Node() block_device_one = factory.make_PhysicalBlockDevice(node=node) filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=block_device_one ) block_device_two = factory.make_PhysicalBlockDevice(node=node) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=block_device_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=[filesystem_one, filesystem_two], ) filesystem_groups = RAID.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_raid_on_partitions(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) partition_table = factory.make_PartitionTable( block_device=block_device ) partition_one = factory.make_Partition(partition_table=partition_table) partition_two = factory.make_Partition(partition_table=partition_table) filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, partition=partition_one ) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, partition=partition_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=[filesystem_one, filesystem_two], ) filesystem_groups = RAID.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_bcache_on_block_devices(self): node = factory.make_Node() block_device_one = factory.make_PhysicalBlockDevice(node=node) cache_set = factory.make_CacheSet(block_device=block_device_one) block_device_two = factory.make_PhysicalBlockDevice(node=node) filesystem_backing = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=block_device_two, ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_mode=CACHE_MODE_TYPE.WRITEBACK, cache_set=cache_set, filesystems=[filesystem_backing], ) filesystem_groups = Bcache.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_bcache_on_partitions(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) partition_table = factory.make_PartitionTable( block_device=block_device ) partition_one = factory.make_Partition(partition_table=partition_table) partition_two = factory.make_Partition(partition_table=partition_table) cache_set = factory.make_CacheSet(partition=partition_one) filesystem_backing = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, partition=partition_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_mode=CACHE_MODE_TYPE.WRITEBACK, cache_set=cache_set, filesystems=[filesystem_backing], ) filesystem_groups = Bcache.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) class TestFilesystemGroupManager(MAASServerTestCase): """Tests for the `FilesystemGroupManager`.""" def test_get_available_name_for_returns_next_idx(self): filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE ) filesystem_group.save() prefix = filesystem_group.get_name_prefix() current_idx = int(filesystem_group.name.replace(prefix, "")) self.assertEqual( "%s%s" % (prefix, current_idx + 1), FilesystemGroup.objects.get_available_name_for(filesystem_group), ) def test_get_available_name_for_ignores_bad_int(self): filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE ) filesystem_group.save() prefix = filesystem_group.get_name_prefix() filesystem_group.name = "%s%s" % (prefix, factory.make_name("bad")) filesystem_group.save() self.assertEqual( "%s0" % prefix, FilesystemGroup.objects.get_available_name_for(filesystem_group), ) class TestVolumeGroupManager(MAASServerTestCase): """Tests for the `VolumeGroupManager`.""" def test_create_volume_group_with_name_and_uuid(self): block_device = factory.make_PhysicalBlockDevice() name = factory.make_name("vg") vguuid = "%s" % uuid4() volume_group = VolumeGroup.objects.create_volume_group( name, [block_device], [], uuid=vguuid ) self.assertEqual(name, volume_group.name) self.assertEqual(vguuid, volume_group.uuid) def test_create_volume_group_with_block_devices(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node) for _ in range(3) ] name = factory.make_name("vg") volume_group = VolumeGroup.objects.create_volume_group( name, block_devices, [] ) block_devices_in_vg = [ filesystem.block_device.actual_instance for filesystem in volume_group.filesystems.all() ] self.assertItemsEqual(block_devices, block_devices_in_vg) def test_create_volume_group_with_partitions(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice( node=node, size=(MIN_BLOCK_DEVICE_SIZE * 3) + PARTITION_TABLE_EXTRA_SPACE, ) partition_table = factory.make_PartitionTable( block_device=block_device ) partitions = [ partition_table.add_partition(size=MIN_BLOCK_DEVICE_SIZE) for _ in range(2) ] name = factory.make_name("vg") volume_group = VolumeGroup.objects.create_volume_group( name, [], partitions ) partitions_in_vg = [ filesystem.partition for filesystem in volume_group.filesystems.all() ] self.assertItemsEqual(partitions, partitions_in_vg) def test_create_volume_group_with_block_devices_and_partitions(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node) for _ in range(3) ] block_device = factory.make_PhysicalBlockDevice( node=node, size=(MIN_BLOCK_DEVICE_SIZE * 3) + PARTITION_TABLE_EXTRA_SPACE, ) partition_table = factory.make_PartitionTable( block_device=block_device ) partitions = [ partition_table.add_partition(size=MIN_BLOCK_DEVICE_SIZE) for _ in range(2) ] name = factory.make_name("vg") volume_group = VolumeGroup.objects.create_volume_group( name, block_devices, partitions ) block_devices_in_vg = [ filesystem.block_device.actual_instance for filesystem in volume_group.filesystems.all() if filesystem.block_device is not None ] partitions_in_vg = [ filesystem.partition for filesystem in volume_group.filesystems.all() if filesystem.partition is not None ] self.assertItemsEqual(block_devices, block_devices_in_vg) self.assertItemsEqual(partitions, partitions_in_vg) class TestFilesystemGroup(MAASServerTestCase): """Tests for the `FilesystemGroup` model.""" def test_virtual_device_raises_AttributeError_for_lvm(self): fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG ) with ExpectedException(AttributeError): fsgroup.virtual_device def test_virtual_device_returns_VirtualBlockDevice_for_group(self): fsgroup = factory.make_FilesystemGroup( group_type=factory.pick_enum( FILESYSTEM_GROUP_TYPE, but_not=FILESYSTEM_GROUP_TYPE.LVM_VG ) ) self.assertEqual( VirtualBlockDevice.objects.get(filesystem_group=fsgroup), fsgroup.virtual_device, ) def test_get_numa_node_indexes_all_same(self): fsgroup = factory.make_FilesystemGroup( group_type=factory.pick_enum( FILESYSTEM_GROUP_TYPE, but_not=FILESYSTEM_GROUP_TYPE.VMFS6 ) ) self.assertEqual(fsgroup.get_numa_node_indexes(), [0]) def test_get_numa_node_indexes_multiple(self): node = factory.make_Node() numa_nodes = [ node.default_numanode, factory.make_NUMANode(node=node), factory.make_NUMANode(node=node), ] block_devices = [ factory.make_PhysicalBlockDevice(numa_node=numa_node) for numa_node in numa_nodes ] filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=block_device ) for block_device in block_devices ] fsgroup = factory.make_FilesystemGroup( node=node, filesystems=filesystems, group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, ) self.assertEqual(fsgroup.get_numa_node_indexes(), [0, 1, 2]) def test_get_numa_node_indexes_nested(self): node = factory.make_Node() numa_nodes = [ node.default_numanode, factory.make_NUMANode(node=node), factory.make_NUMANode(node=node), factory.make_NUMANode(node=node), factory.make_NUMANode(node=node), ] # 2 physical disks have filesystems on them directly filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice( numa_node=numa_node ), ) for numa_node in numa_nodes[:2] ] # the 3 remaining disks are part of another filesystem group which gets # added to the first nested_filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice( numa_node=numa_node ), ) for numa_node in numa_nodes[2:] ] nested_group = factory.make_FilesystemGroup( node=node, filesystems=nested_filesystems, group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, ) virtual_block_device = factory.make_VirtualBlockDevice( filesystem_group=nested_group ) filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=virtual_block_device, ) ) fsgroup = factory.make_FilesystemGroup( node=node, filesystems=filesystems, group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, ) self.assertEqual(fsgroup.get_numa_node_indexes(), [0, 1, 2, 3, 4]) def test_get_node_returns_first_filesystem_node(self): fsgroup = factory.make_FilesystemGroup() self.assertEqual( fsgroup.filesystems.first().get_node(), fsgroup.get_node() ) def test_get_node_returns_None_if_no_filesystems(self): fsgroup = FilesystemGroup() self.assertIsNone(fsgroup.get_node()) def test_get_size_returns_0_if_lvm_without_filesystems(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.LVM_VG) self.assertEqual(0, fsgroup.get_size()) def test_get_size_returns_sum_of_all_filesystem_sizes_for_lvm(self): node = factory.make_Node() block_size = 4096 total_size = 0 filesystems = [] for _ in range(3): size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) total_size += size block_device = factory.make_PhysicalBlockDevice( node=node, size=size, block_size=block_size ) filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=block_device ) ) fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=filesystems ) # Reserve one extent per filesystem for LVM headers. extents = (total_size // LVM_PE_SIZE) - 3 self.assertEqual(extents * LVM_PE_SIZE, fsgroup.get_size()) def test_get_size_returns_0_if_raid_without_filesystems(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.RAID_0) self.assertEqual(0, fsgroup.get_size()) def test_get_size_returns_smallest_disk_size_for_raid_0(self): node = factory.make_Node() small_size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) large_size = random.randint(small_size + 1, small_size + (10 ** 5)) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=small_size ), ), factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=large_size ), ), ] fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=filesystems ) # Size should be twice the smallest device (the rest of the larger # device remains unused. self.assertEqual( (small_size * 2) - RAID_SUPERBLOCK_OVERHEAD, fsgroup.get_size() ) def test_get_size_returns_smallest_disk_size_for_raid_1(self): node = factory.make_Node() small_size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) large_size = random.randint(small_size + 1, small_size + (10 ** 5)) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=small_size ), ), factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=large_size ), ), ] fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_1, filesystems=filesystems ) self.assertEqual( small_size - RAID_SUPERBLOCK_OVERHEAD, fsgroup.get_size() ) def test_get_size_returns_correct_disk_size_for_raid_5(self): node = factory.make_Node() small_size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) other_size = random.randint(small_size + 1, small_size + (10 ** 5)) number_of_raid_devices = random.randint(2, 9) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=small_size ), ) ] for _ in range(number_of_raid_devices): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=other_size ), ) ) # Spares are ignored and not taken into calculation. for _ in range(3): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice( node=node, size=other_size ), ) ) fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_5, filesystems=filesystems ) self.assertEqual( (small_size * number_of_raid_devices) - RAID_SUPERBLOCK_OVERHEAD, fsgroup.get_size(), ) def test_get_size_returns_correct_disk_size_for_raid_6(self): node = factory.make_Node() small_size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) other_size = random.randint(small_size + 1, small_size + (10 ** 5)) number_of_raid_devices = random.randint(3, 9) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=small_size ), ) ] for _ in range(number_of_raid_devices): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=other_size ), ) ) # Spares are ignored and not taken into calculation. for _ in range(3): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice( node=node, size=other_size ), ) ) fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_6, filesystems=filesystems ) self.assertEqual( (small_size * (number_of_raid_devices - 1)) - RAID_SUPERBLOCK_OVERHEAD, fsgroup.get_size(), ) @skip("XXX: GavinPanella 2015-12-04 bug=1522965: Fails spuriously.") def test_get_size_returns_correct_disk_size_for_raid_10(self): node = factory.make_Node() small_size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) other_size = random.randint(small_size + 1, small_size + (10 ** 5)) number_of_raid_devices = random.randint(3, 9) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=small_size ), ) ] for _ in range(number_of_raid_devices): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=other_size ), ) ) # Spares are ignored and not taken into calculation. for _ in range(3): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice( node=node, size=other_size ), ) ) fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_10, filesystems=filesystems ) self.assertEqual( (small_size * (number_of_raid_devices + 1) // 2) - RAID_SUPERBLOCK_OVERHEAD, fsgroup.get_size(), ) def test_get_size_returns_0_if_bcache_without_backing(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.BCACHE) self.assertEqual(0, fsgroup.get_size()) def test_get_size_returns_size_of_backing_device_with_bcache(self): node = factory.make_Node() backing_size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) cache_set = factory.make_CacheSet(node=node) backing_block_device = factory.make_PhysicalBlockDevice( node=node, size=backing_size ) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=backing_block_device, ) ] fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_mode=CACHE_MODE_TYPE.WRITEBACK, cache_set=cache_set, filesystems=filesystems, ) self.assertEqual(backing_size, fsgroup.get_size()) def test_get_size_returns_total_size_with_vmfs(self): vmfs = factory.make_VMFS() self.assertEqual(vmfs.get_total_size(), vmfs.get_size()) def test_get_total_size(self): vmfs = factory.make_VMFS() size = 0 for fs in vmfs.filesystems.all(): size += fs.get_size() self.assertEqual(size, vmfs.get_total_size()) def test_is_lvm_returns_true_when_LVM_VG(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.LVM_VG) self.assertTrue(fsgroup.is_lvm()) def test_is_lvm_returns_false_when_not_LVM_VG(self): fsgroup = FilesystemGroup( group_type=factory.pick_enum( FILESYSTEM_GROUP_TYPE, but_not=FILESYSTEM_GROUP_TYPE.LVM_VG ) ) self.assertFalse(fsgroup.is_lvm()) def test_is_raid_returns_true_for_all_raid_types(self): fsgroup = FilesystemGroup() for raid_type in FILESYSTEM_GROUP_RAID_TYPES: fsgroup.group_type = raid_type self.assertTrue( fsgroup.is_raid(), "is_raid should return true for %s" % raid_type, ) def test_is_raid_returns_false_for_LVM_VG(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.LVM_VG) self.assertFalse(fsgroup.is_raid()) def test_is_raid_returns_false_for_BCACHE(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.BCACHE) self.assertFalse(fsgroup.is_raid()) def test_is_bcache_returns_true_when_BCACHE(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.BCACHE) self.assertTrue(fsgroup.is_bcache()) def test_is_bcache_returns_false_when_not_BCACHE(self): fsgroup = FilesystemGroup( group_type=factory.pick_enum( FILESYSTEM_GROUP_TYPE, but_not=FILESYSTEM_GROUP_TYPE.BCACHE ) ) self.assertFalse(fsgroup.is_bcache()) def test_is_vmfs(self): vmfs = factory.make_VMFS() self.assertTrue(vmfs.is_vmfs()) def test_creating_vmfs_automatically_creates_mounted_fs(self): part = factory.make_Partition() name = factory.make_name("datastore") vmfs = VMFS.objects.create_vmfs(name, [part]) self.assertEqual( "/vmfs/volumes/%s" % name, vmfs.virtual_device.get_effective_filesystem().mount_point, ) def test_can_save_new_filesystem_group_without_filesystems(self): fsgroup = FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, name=factory.make_name("vg"), ) fsgroup.save() self.expectThat(fsgroup.id, Not(Is(None))) self.expectThat(fsgroup.filesystems.count(), Equals(0)) def test_cannot_save_without_filesystems(self): fsgroup = FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, name=factory.make_name("vg"), ) fsgroup.save() with ExpectedException( ValidationError, re.escape( "{'__all__': ['At least one filesystem must have " "been added.']}" ), ): fsgroup.save(force_update=True) def test_cannot_save_without_filesystems_from_different_nodes(self): filesystems = [factory.make_Filesystem(), factory.make_Filesystem()] with ExpectedException( ValidationError, re.escape( "{'__all__': ['All added filesystems must belong to " "the same node.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=filesystems, ) def test_cannot_save_volume_group_if_invalid_filesystem(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice(node=node), ), factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ), ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['Volume group can only contain lvm " "physical volumes.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=filesystems, ) def test_can_save_volume_group_if_valid_filesystems(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice(node=node), ), factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice(node=node), ), ] # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=filesystems ) def test_cannot_save_volume_group_if_logical_volumes_larger(self): node = factory.make_Node() filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice(node=node), ) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice(node=node), ) filesystems = [filesystem_one, filesystem_two] volume_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=filesystems ) factory.make_VirtualBlockDevice( size=volume_group.get_size(), filesystem_group=volume_group ) filesystem_two.delete() with ExpectedException( ValidationError, re.escape( "['Volume group cannot be smaller than its " "logical volumes.']" ), ): volume_group.save() def test_cannot_save_raid_0_with_less_than_2_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 0 must have at least 2 raid " "devices and no spares.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=filesystems, ) def test_cannot_save_raid_0_with_spare_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(2) ] filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice(node=node), ) ) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 0 must have at least 2 raid " "devices and no spares.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=filesystems, ) def test_can_save_raid_0_with_exactly_2_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(2) ] # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=filesystems ) def test_can_save_raid_0_with_more_then_2_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(10) ] # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=filesystems ) def test_cannot_save_raid_1_with_less_than_2_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 1 must have at least 2 raid " "devices and any number of spares.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_1, filesystems=filesystems, ) def test_can_save_raid_1_with_spare_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(2) ] filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice(node=node), ) ) # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_1, filesystems=filesystems ) def test_can_save_raid_1_with_2_or_more_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(2, 10)) ] # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_1, filesystems=filesystems ) def test_cannot_save_raid_5_with_less_than_3_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(1, 2)) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 5 must have at least 3 raid " "devices and any number of spares.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_5, filesystems=filesystems, ) def test_can_save_raid_5_with_3_or_more_raid_devices_and_spares(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(3, 10)) ] for _ in range(random.randint(1, 5)): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice(node=node), ) ) # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_5, filesystems=filesystems ) def test_cannot_save_raid_6_with_less_than_4_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(1, 3)) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 6 must have at least 4 raid " "devices and any number of spares.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_6, filesystems=filesystems, ) def test_can_save_raid_6_with_4_or_more_raid_devices_and_spares(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(4, 10)) ] for _ in range(random.randint(1, 5)): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice(node=node), ) ) # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_6, filesystems=filesystems ) def test_cannot_save_raid_10_with_less_than_3_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(1, 2)) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 10 must have at least 3 raid " "devices and any number of spares.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_10, filesystems=filesystems, ) def test_can_save_raid_10_with_3_raid_devices_and_spares(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(3) ] for _ in range(random.randint(1, 5)): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice(node=node), ) ) # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_10, filesystems=filesystems ) def test_can_save_raid_10_with_4_or_more_raid_devices_and_spares(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(4, 10)) ] for _ in range(random.randint(1, 5)): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice(node=node), ) ) # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_10, filesystems=filesystems ) def test_cannot_save_bcache_without_cache_set(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=factory.make_PhysicalBlockDevice(node=node), ) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['Bcache requires an assigned cache set.']}" ), ): filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, filesystems=filesystems, ) filesystem_group.cache_set = None filesystem_group.save() def test_cannot_save_bcache_without_backing(self): node = factory.make_Node() cache_set = factory.make_CacheSet(node=node) with ExpectedException( ValidationError, re.escape( "{'__all__': ['At least one filesystem must have " "been added.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_set=cache_set, filesystems=[], ) def test_cannot_save_bcache_with_logical_volume_as_backing(self): node = factory.make_Node() cache_set = factory.make_CacheSet(node=node) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=factory.make_VirtualBlockDevice(node=node), ) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['Bcache cannot use a logical volume as a " "backing device.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_set=cache_set, filesystems=filesystems, ) def test_can_save_bcache_with_cache_set_and_backing(self): node = factory.make_Node() cache_set = factory.make_CacheSet(node=node) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=factory.make_PhysicalBlockDevice(node=node), ) ] # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_set=cache_set, filesystems=filesystems, ) def test_cannot_save_bcache_with_multiple_backings(self): node = factory.make_Node() cache_set = factory.make_CacheSet(node=node) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(2, 10)) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['Bcache can only contain one backing " "device.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_set=cache_set, filesystems=filesystems, ) def test_save_doesnt_overwrite_uuid(self): uuid = uuid4() fsgroup = factory.make_FilesystemGroup(uuid=uuid) self.assertEqual("%s" % uuid, fsgroup.uuid) def test_save_doesnt_allow_changing_group_type(self): fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0 ) fsgroup.save() fsgroup.group_type = FILESYSTEM_GROUP_TYPE.RAID_1 error = self.assertRaises(ValidationError, fsgroup.save) self.assertEqual( "Cannot change the group_type of a FilesystemGroup.", error.message ) def test_save_calls_create_or_update_for_when_filesystems_linked(self): mock_create_or_update_for = self.patch( VirtualBlockDevice.objects, "create_or_update_for" ) filesystem_group = factory.make_FilesystemGroup() self.assertThat( mock_create_or_update_for, MockCalledOnceWith(filesystem_group) ) def test_save_doesnt_call_create_or_update_for_when_no_filesystems(self): mock_create_or_update_for = self.patch( VirtualBlockDevice.objects, "create_or_update_for" ) filesystem_group = FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, name=factory.make_name("vg"), ) filesystem_group.save() self.assertThat(mock_create_or_update_for, MockNotCalled()) def test_get_lvm_allocated_size_and_get_lvm_free_space(self): """Check get_lvm_allocated_size and get_lvm_free_space methods.""" backing_volume_size = machine_readable_bytes("10G") node = factory.make_Node() fsgroup = FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, name=factory.make_name("vg"), ) fsgroup.save() block_size = 4096 for i in range(5): block_device = factory.make_BlockDevice( node=node, size=backing_volume_size, block_size=block_size ) factory.make_Filesystem( filesystem_group=fsgroup, fstype=FILESYSTEM_TYPE.LVM_PV, block_device=block_device, ) # Size should be 50 GB minus one extent per filesystem for LVM headers. pv_total_size = 50 * 1000 ** 3 extents = (pv_total_size // LVM_PE_SIZE) - 5 usable_size = extents * LVM_PE_SIZE self.assertEqual(usable_size, fsgroup.get_size()) # Allocate two VirtualBlockDevice's factory.make_VirtualBlockDevice( filesystem_group=fsgroup, size=35 * 1000 ** 3 ) factory.make_VirtualBlockDevice( filesystem_group=fsgroup, size=5 * 1000 ** 3 ) expected_size = round_size_to_nearest_block( 40 * 1000 ** 3, PARTITION_ALIGNMENT_SIZE, False ) self.assertEqual(expected_size, fsgroup.get_lvm_allocated_size()) self.assertEqual( usable_size - expected_size, fsgroup.get_lvm_free_space() ) def test_get_virtual_block_device_block_size_returns_backing_for_bc(self): # This test is not included in the scenario below # `TestFilesystemGroupGetVirtualBlockDeviceBlockSize` because it has # different logic that doesn't fit in the scenario. filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE ) filesystem = filesystem_group.get_bcache_backing_filesystem() self.assertEqual( filesystem.get_block_size(), filesystem_group.get_virtual_block_device_block_size(), ) def test_delete_deletes_filesystems_not_block_devices(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node) for _ in range(3) ] filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=bd ) for bd in block_devices ] filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=filesystems ) filesystem_group.delete() deleted_filesystems = reload_objects(Filesystem, filesystems) kept_block_devices = reload_objects(PhysicalBlockDevice, block_devices) self.assertItemsEqual([], deleted_filesystems) self.assertItemsEqual(block_devices, kept_block_devices) def test_delete_cannot_delete_volume_group_with_logical_volumes(self): volume_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG ) factory.make_VirtualBlockDevice( size=volume_group.get_size(), filesystem_group=volume_group ) error = self.assertRaises(ValidationError, volume_group.delete) self.assertEqual( "This volume group has logical volumes; it cannot be deleted.", error.message, ) def test_delete_deletes_virtual_block_device(self): filesystem_group = factory.make_FilesystemGroup( group_type=factory.pick_enum( FILESYSTEM_GROUP_TYPE, but_not=FILESYSTEM_GROUP_TYPE.LVM_VG ) ) virtual_device = filesystem_group.virtual_device filesystem_group.delete() self.assertIsNone( reload_object(virtual_device), "VirtualBlockDevice should have been deleted.", ) class TestFilesystemGroupGetNiceName(MAASServerTestCase): scenarios = [ ( FILESYSTEM_GROUP_TYPE.LVM_VG, { "group_type": FILESYSTEM_GROUP_TYPE.LVM_VG, "name": "volume group", }, ), ( FILESYSTEM_GROUP_TYPE.RAID_0, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_0, "name": "RAID"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_1, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_1, "name": "RAID"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_5, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_5, "name": "RAID"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_6, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_6, "name": "RAID"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_10, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_10, "name": "RAID"}, ), ( FILESYSTEM_GROUP_TYPE.BCACHE, {"group_type": FILESYSTEM_GROUP_TYPE.BCACHE, "name": "Bcache"}, ), ( FILESYSTEM_GROUP_TYPE.VMFS6, {"group_type": FILESYSTEM_GROUP_TYPE.VMFS6, "name": "VMFS"}, ), ] def test_returns_prefix(self): filesystem_group = factory.make_FilesystemGroup( group_type=self.group_type ) self.assertEqual(self.name, filesystem_group.get_nice_name()) class TestFilesystemGroupGetNamePrefix(MAASServerTestCase): scenarios = [ ( FILESYSTEM_GROUP_TYPE.LVM_VG, {"group_type": FILESYSTEM_GROUP_TYPE.LVM_VG, "prefix": "vg"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_0, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_0, "prefix": "md"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_1, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_1, "prefix": "md"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_5, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_5, "prefix": "md"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_6, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_6, "prefix": "md"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_10, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_10, "prefix": "md"}, ), ( FILESYSTEM_GROUP_TYPE.BCACHE, {"group_type": FILESYSTEM_GROUP_TYPE.BCACHE, "prefix": "bcache"}, ), ( FILESYSTEM_GROUP_TYPE.VMFS6, {"group_type": FILESYSTEM_GROUP_TYPE.VMFS6, "prefix": "vmfs"}, ), ] def test_returns_prefix(self): filesystem_group = factory.make_FilesystemGroup( group_type=self.group_type ) self.assertEqual(self.prefix, filesystem_group.get_name_prefix()) class TestFilesystemGroupGetVirtualBlockDeviceBlockSize(MAASServerTestCase): scenarios = [ ( FILESYSTEM_GROUP_TYPE.LVM_VG, {"group_type": FILESYSTEM_GROUP_TYPE.LVM_VG, "block_size": 4096}, ), ( FILESYSTEM_GROUP_TYPE.RAID_0, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_0, "block_size": 512}, ), ( FILESYSTEM_GROUP_TYPE.RAID_1, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_1, "block_size": 512}, ), ( FILESYSTEM_GROUP_TYPE.RAID_5, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_5, "block_size": 512}, ), ( FILESYSTEM_GROUP_TYPE.RAID_6, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_6, "block_size": 512}, ), ( FILESYSTEM_GROUP_TYPE.RAID_10, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_10, "block_size": 512}, ), ( FILESYSTEM_GROUP_TYPE.VMFS6, {"group_type": FILESYSTEM_GROUP_TYPE.VMFS6, "block_size": 1024}, ), # For BCACHE see # `test_get_virtual_block_device_block_size_returns_backing_for_bc` # above. ] def test_returns_block_size(self): filesystem_group = factory.make_FilesystemGroup( group_type=self.group_type ) self.assertEqual( self.block_size, filesystem_group.get_virtual_block_device_block_size(), ) class TestVolumeGroup(MAASServerTestCase): def test_objects_is_VolumeGroupManager(self): self.assertIsInstance(VolumeGroup.objects, VolumeGroupManager) def test_group_type_set_to_LVM_VG(self): obj = VolumeGroup() self.assertEqual(FILESYSTEM_GROUP_TYPE.LVM_VG, obj.group_type) def test_update_block_devices_and_partitions(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node) for _ in range(3) ] new_block_device = factory.make_PhysicalBlockDevice(node=node) partition_block_device = factory.make_PhysicalBlockDevice( node=node, size=(MIN_BLOCK_DEVICE_SIZE * 4) + PARTITION_TABLE_EXTRA_SPACE, ) partition_table = factory.make_PartitionTable( block_device=partition_block_device ) partitions = [ partition_table.add_partition(size=MIN_BLOCK_DEVICE_SIZE) for _ in range(2) ] new_partition = partition_table.add_partition( size=MIN_BLOCK_DEVICE_SIZE ) initial_bd_filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=bd ) for bd in block_devices ] initial_part_filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=part ) for part in partitions ] volume_group = factory.make_VolumeGroup( filesystems=initial_bd_filesystems + initial_part_filesystems ) deleted_block_device = block_devices[0] updated_block_devices = [new_block_device] + block_devices[1:] deleted_partition = partitions[0] update_partitions = [new_partition] + partitions[1:] volume_group.update_block_devices_and_partitions( updated_block_devices, update_partitions ) self.assertIsNone(deleted_block_device.get_effective_filesystem()) self.assertIsNone(deleted_partition.get_effective_filesystem()) self.assertEqual( volume_group.id, new_block_device.get_effective_filesystem().filesystem_group.id, ) self.assertEqual( volume_group.id, new_partition.get_effective_filesystem().filesystem_group.id, ) for device in block_devices[1:] + partitions[1:]: self.assertEqual( volume_group.id, device.get_effective_filesystem().filesystem_group.id, ) def test_create_logical_volume(self): volume_group = factory.make_VolumeGroup() name = factory.make_name() vguuid = "%s" % uuid4() size = random.randint(MIN_BLOCK_DEVICE_SIZE, volume_group.get_size()) logical_volume = volume_group.create_logical_volume( name=name, uuid=vguuid, size=size ) logical_volume = reload_object(logical_volume) expected_size = round_size_to_nearest_block( size, PARTITION_ALIGNMENT_SIZE, False ) self.assertThat( logical_volume, MatchesStructure.byEquality( name=name, uuid=vguuid, size=expected_size, block_size=volume_group.get_virtual_block_device_block_size(), ), ) class TestRAID(MAASServerTestCase): def test_objects_is_RAIDManager(self): self.assertIsInstance(RAID.objects, RAIDManager) def test_init_raises_ValueError_if_group_type_not_set_to_raid_type(self): self.assertRaises( ValueError, RAID, group_type=FILESYSTEM_GROUP_TYPE.LVM_VG ) def test_create_raid(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] for bd in block_devices[5:]: factory.make_PartitionTable(block_device=bd) partitions = [ bd.get_partitiontable().add_partition() for bd in block_devices[5:] ] spare_block_device = block_devices[0] spare_partition = partitions[0] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_6, uuid=uuid, block_devices=block_devices[1:5], partitions=partitions[1:], spare_devices=[spare_block_device], spare_partitions=[spare_partition], ) self.assertEqual("md0", raid.name) self.assertEqual( (6 * partitions[1].size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size(), ) self.assertEqual(FILESYSTEM_GROUP_TYPE.RAID_6, raid.group_type) self.assertEqual(uuid, raid.uuid) self.assertEqual(10, raid.filesystems.count()) self.assertEqual( 8, raid.filesystems.filter(fstype=FILESYSTEM_TYPE.RAID).count() ) self.assertEqual( 2, raid.filesystems.filter(fstype=FILESYSTEM_TYPE.RAID_SPARE).count(), ) def test_create_raid_0_with_a_spare_fails(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=10 * 1000 ** 4) for _ in range(10) ] uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 0 must have at least 2 raid " "devices and no spares.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_0, uuid=uuid, block_devices=block_devices[1:], partitions=[], spare_devices=block_devices[:1], spare_partitions=[], ) def test_create_raid_without_devices_fails(self): uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['At least one filesystem must have been " "added.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_0, uuid=uuid, block_devices=[], partitions=[], spare_devices=[], spare_partitions=[], ) def test_create_raid_0_with_one_element_fails(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 0 must have at least 2 raid " "devices and no spares.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_0, uuid=uuid, block_devices=[block_device], partitions=[], spare_devices=[], spare_partitions=[], ) def test_create_raid_1_with_spares(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] for bd in block_devices[5:]: factory.make_PartitionTable(block_device=bd) partitions = [ bd.get_partitiontable().add_partition() for bd in block_devices[5:] ] # Partition size will be smaller than the disk, because of overhead. spare_block_device = block_devices[0] spare_partition = partitions[0] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_1, uuid=uuid, block_devices=block_devices[1:5], partitions=partitions[1:], spare_devices=[spare_block_device], spare_partitions=[spare_partition], ) self.assertEqual("md0", raid.name) self.assertEqual( partitions[1].size - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) self.assertEqual(FILESYSTEM_GROUP_TYPE.RAID_1, raid.group_type) self.assertEqual(uuid, raid.uuid) self.assertEqual(10, raid.filesystems.count()) self.assertEqual( 8, raid.filesystems.filter(fstype=FILESYSTEM_TYPE.RAID).count() ) self.assertEqual( 2, raid.filesystems.filter(fstype=FILESYSTEM_TYPE.RAID_SPARE).count(), ) def test_create_raid_1_with_one_element_fails(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 1 must have at least 2 raid " "devices and any number of spares.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_1, uuid=uuid, block_devices=[block_device], partitions=[], spare_devices=[], spare_partitions=[], ) def test_create_raid_5_with_spares(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] for bd in block_devices[5:]: factory.make_PartitionTable(block_device=bd) partitions = [ bd.get_partitiontable().add_partition() for bd in block_devices[5:] ] spare_block_device = block_devices[0] spare_partition = partitions[0] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices[1:5], partitions=partitions[1:], spare_devices=[spare_block_device], spare_partitions=[spare_partition], ) self.assertEqual("md0", raid.name) self.assertEqual( (7 * partitions[1].size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size(), ) self.assertEqual(FILESYSTEM_GROUP_TYPE.RAID_5, raid.group_type) self.assertEqual(uuid, raid.uuid) self.assertEqual(10, raid.filesystems.count()) self.assertEqual( 8, raid.filesystems.filter(fstype=FILESYSTEM_TYPE.RAID).count() ) self.assertEqual( 2, raid.filesystems.filter(fstype=FILESYSTEM_TYPE.RAID_SPARE).count(), ) def test_create_raid_5_with_2_elements_fails(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=10 * 1000 ** 4) for _ in range(2) ] uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 5 must have at least 3 raid " "devices and any number of spares.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, partitions=[], spare_devices=[], spare_partitions=[], ) def test_create_raid_6_with_3_elements_fails(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node) for _ in range(3) ] uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 6 must have at least 4 raid " "devices and any number of spares.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_6, uuid=uuid, block_devices=block_devices, partitions=[], spare_devices=[], spare_partitions=[], ) def test_create_raid_10_with_2_elements_fails(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node) for _ in range(2) ] uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 10 must have at least 3 raid " "devices and any number of spares.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_10, uuid=uuid, block_devices=block_devices, partitions=[], spare_devices=[], spare_partitions=[], ) def test_create_raid_with_block_device_from_other_node_fails(self): node1 = factory.make_Node() node2 = factory.make_Node() block_devices_1 = [ factory.make_PhysicalBlockDevice(node=node1) for _ in range(5) ] block_devices_2 = [ factory.make_PhysicalBlockDevice(node=node2) for _ in range(5) ] uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['All added filesystems must belong to the " "same node.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_1, uuid=uuid, block_devices=block_devices_1 + block_devices_2, partitions=[], spare_devices=[], spare_partitions=[], ) def test_add_device_to_array(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) device = factory.make_PhysicalBlockDevice(node=node, size=device_size) raid.add_device(device, FILESYSTEM_TYPE.RAID) self.assertEqual(11, raid.filesystems.count()) self.assertEqual( (10 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_add_spare_device_to_array(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) device = factory.make_PhysicalBlockDevice(node=node, size=device_size) raid.add_device(device, FILESYSTEM_TYPE.RAID_SPARE) self.assertEqual(11, raid.filesystems.count()) self.assertEqual( (9 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_add_partition_to_array(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) partition = factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=device_size ) ).add_partition() raid.add_partition(partition, FILESYSTEM_TYPE.RAID) self.assertEqual(11, raid.filesystems.count()) self.assertEqual( (10 * partition.size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_add_spare_partition_to_array(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) partition = factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=device_size ) ).add_partition() raid.add_partition(partition, FILESYSTEM_TYPE.RAID_SPARE) self.assertEqual(11, raid.filesystems.count()) self.assertEqual( (9 * partition.size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_add_device_from_another_node_to_array_fails(self): node = factory.make_Node() other_node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) device = factory.make_PhysicalBlockDevice( node=other_node, size=device_size ) with ExpectedException( ValidationError, re.escape( "['Device needs to be from the same node as the rest of the " "array.']" ), ): raid.add_device(device, FILESYSTEM_TYPE.RAID) self.assertEqual(10, raid.filesystems.count()) # Still 10 devices self.assertEqual( (9 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_add_partition_from_another_node_to_array_fails(self): node = factory.make_Node() other_node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) partition = factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=other_node, size=device_size ) ).add_partition() with ExpectedException( ValidationError, re.escape( "['Partition must be on a device from the same node as " "the rest of the array.']" ), ): raid.add_partition(partition, FILESYSTEM_TYPE.RAID) self.assertEqual(10, raid.filesystems.count()) # Nothing added self.assertEqual( (9 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_add_already_used_device_to_array_fails(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) device = factory.make_PhysicalBlockDevice(node=node, size=device_size) Filesystem.objects.create( block_device=device, mount_point="/export/home", fstype=FILESYSTEM_TYPE.EXT4, ) with ExpectedException( ValidationError, re.escape("['There is another filesystem on this device.']"), ): raid.add_device(device, FILESYSTEM_TYPE.RAID) self.assertEqual(10, raid.filesystems.count()) # Nothing added. self.assertEqual( (9 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_remove_device_from_array_invalidates_array_fails(self): """Checks it's not possible to remove a device from an RAID in such way as to make the RAID invalid (a 1-device RAID-0/1, a 2-device RAID-5 etc). The goal is to make sure we trigger the RAID internal validation. """ node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(4) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_6, uuid=uuid, block_devices=block_devices, ) fsids_before = [fs.id for fs in raid.filesystems.all()] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 6 must have at least 4 raid " "devices and any number of spares.']}" ), ): raid.remove_device(block_devices[0]) self.assertEqual(4, raid.filesystems.count()) self.assertEqual( (2 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) # Ensure the filesystems are the exact same before and after. self.assertItemsEqual( fsids_before, [fs.id for fs in raid.filesystems.all()] ) def test_remove_partition_from_array_invalidates_array_fails(self): """Checks it's not possible to remove a partition from an RAID in such way as to make the RAID invalid (a 1-device RAID-0/1, a 2-device RAID-5 etc). The goal is to make sure we trigger the RAID internal validation. """ node = factory.make_Node(bios_boot_method="uefi") device_size = 10 * 1000 ** 4 partitions = [ factory.make_PartitionTable( table_type=PARTITION_TABLE_TYPE.GPT, block_device=factory.make_PhysicalBlockDevice( node=node, size=device_size ), ).add_partition() for _ in range(4) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_6, uuid=uuid, partitions=partitions, ) fsids_before = [fs.id for fs in raid.filesystems.all()] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 6 must have at least 4 raid " "devices and any number of spares.']}" ), ): raid.remove_partition(partitions[0]) self.assertEqual(4, raid.filesystems.count()) self.assertEqual( (2 * partitions[0].size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size(), ) # Ensure the filesystems are the exact same before and after. self.assertItemsEqual( fsids_before, [fs.id for fs in raid.filesystems.all()] ) def test_remove_device_from_array(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices[:-2], spare_devices=block_devices[-2:], ) raid.remove_device(block_devices[0]) self.assertEqual(9, raid.filesystems.count()) self.assertEqual( (6 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_remove_partition_from_array(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 partitions = [ factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=device_size ) ).add_partition() for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, partitions=partitions[:-2], spare_partitions=partitions[-2:], ) raid.remove_partition(partitions[0]) self.assertEqual(9, raid.filesystems.count()) self.assertEqual( (6 * partitions[0].size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size(), ) def test_remove_invalid_partition_from_array_fails(self): node = factory.make_Node(bios_boot_method="uefi") device_size = 10 * 1000 ** 4 partitions = [ factory.make_PartitionTable( table_type=PARTITION_TABLE_TYPE.GPT, block_device=factory.make_PhysicalBlockDevice( node=node, size=device_size ), ).add_partition() for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, partitions=partitions, ) with ExpectedException( ValidationError, re.escape("['Partition does not belong to this array.']"), ): raid.remove_partition( factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=device_size ) ).add_partition() ) self.assertEqual(10, raid.filesystems.count()) self.assertEqual( (9 * partitions[0].size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size(), ) def test_remove_device_from_array_fails(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) with ExpectedException( ValidationError, re.escape("['Device does not belong to this array.']"), ): raid.remove_device( factory.make_PhysicalBlockDevice(node=node, size=device_size) ) self.assertEqual(10, raid.filesystems.count()) self.assertEqual( (9 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) class TestBcache(MAASServerTestCase): def test_objects_is_BcacheManager(self): self.assertIsInstance(Bcache.objects, BcacheManager) def test_group_type_set_to_BCACHE(self): obj = Bcache() self.assertEqual(FILESYSTEM_GROUP_TYPE.BCACHE, obj.group_type) def test_create_bcache_with_physical_block_devices(self): """Checks creation of a Bcache with physical block devices for caching and backing roles.""" node = factory.make_Node() backing_size = 10 * 1000 ** 4 cache_set = factory.make_CacheSet(node=node) backing_device = factory.make_PhysicalBlockDevice( node=node, size=backing_size ) uuid = str(uuid4()) bcache = Bcache.objects.create_bcache( name="bcache0", uuid=uuid, cache_set=cache_set, backing_device=backing_device, cache_mode=CACHE_MODE_TYPE.WRITEBACK, ) # Verify the filesystems were properly created on the target devices self.assertEqual(backing_size, bcache.get_size()) self.assertEqual( FILESYSTEM_TYPE.BCACHE_BACKING, backing_device.get_effective_filesystem().fstype, ) self.assertEqual(cache_set, bcache.cache_set) self.assertEqual( bcache, backing_device.get_effective_filesystem().filesystem_group ) def test_create_bcache_with_virtual_block_devices(self): """Checks creation of a Bcache with virtual block devices for caching and backing roles.""" node = factory.make_Node() backing_size = 10 * 1000 ** 4 cache_size = 1000 ** 4 # A caching device that's ridiculously fast to read from, but slow for # writing to it. cache_device = RAID.objects.create_raid( block_devices=[ factory.make_PhysicalBlockDevice(node=node, size=cache_size) for _ in range(10) ], level=FILESYSTEM_GROUP_TYPE.RAID_1, ).virtual_device cache_set = factory.make_CacheSet(block_device=cache_device) # A ridiculously reliable backing store. backing_device = RAID.objects.create_raid( block_devices=[ factory.make_PhysicalBlockDevice(node=node, size=backing_size) for _ in range(12) ], # 10 data devices, 2 checksum devices. level=FILESYSTEM_GROUP_TYPE.RAID_6, ).virtual_device bcache = Bcache.objects.create_bcache( cache_set=cache_set, backing_device=backing_device, cache_mode=CACHE_MODE_TYPE.WRITEAROUND, ) # Verify the filesystems were properly created on the target devices self.assertEqual( (10 * backing_size) - RAID_SUPERBLOCK_OVERHEAD, bcache.get_size() ) self.assertEqual( FILESYSTEM_TYPE.BCACHE_CACHE, cache_device.get_effective_filesystem().fstype, ) self.assertEqual( FILESYSTEM_TYPE.BCACHE_BACKING, backing_device.get_effective_filesystem().fstype, ) self.assertEqual(cache_set, bcache.cache_set) self.assertEqual( bcache, backing_device.get_effective_filesystem().filesystem_group ) def test_create_bcache_with_partitions(self): """Checks creation of a Bcache with partitions for caching and backing roles.""" node = factory.make_Node() backing_size = 10 * 1000 ** 4 cache_size = 1000 ** 4 cache_partition = factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=cache_size ) ).add_partition() cache_set = factory.make_CacheSet(partition=cache_partition) backing_partition = factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=backing_size ) ).add_partition() uuid = str(uuid4()) bcache = Bcache.objects.create_bcache( name="bcache0", uuid=uuid, cache_set=cache_set, backing_partition=backing_partition, cache_mode=CACHE_MODE_TYPE.WRITEBACK, ) # Verify the filesystems were properly created on the target devices self.assertEqual(backing_partition.size, bcache.get_size()) self.assertEqual( FILESYSTEM_TYPE.BCACHE_CACHE, cache_partition.get_effective_filesystem().fstype, ) self.assertEqual( FILESYSTEM_TYPE.BCACHE_BACKING, backing_partition.get_effective_filesystem().fstype, ) self.assertEqual(cache_set, bcache.cache_set) self.assertEqual( bcache, backing_partition.get_effective_filesystem().filesystem_group, ) def test_create_bcache_with_block_devices_and_partition(self): """Checks creation of a Bcache with a partition for caching and a physical block device for backing.""" node = factory.make_Node() backing_size = 10 * 1000 ** 4 cache_size = 1000 ** 4 cache_partition = factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=cache_size ) ).add_partition() cache_set = factory.make_CacheSet(partition=cache_partition) backing_device = factory.make_PhysicalBlockDevice( node=node, size=backing_size ) uuid = str(uuid4()) bcache = Bcache.objects.create_bcache( name="bcache0", uuid=uuid, cache_set=cache_set, backing_device=backing_device, cache_mode=CACHE_MODE_TYPE.WRITEBACK, ) # Verify the filesystems were properly created on the target devices self.assertEqual(backing_size, bcache.get_size()) self.assertEqual( FILESYSTEM_TYPE.BCACHE_CACHE, cache_partition.get_effective_filesystem().fstype, ) self.assertEqual( FILESYSTEM_TYPE.BCACHE_BACKING, backing_device.get_effective_filesystem().fstype, ) self.assertEqual(cache_set, bcache.cache_set) self.assertEqual( bcache, backing_device.get_effective_filesystem().filesystem_group ) def test_delete_bcache(self): """Ensures deletion of a bcache also deletes bcache filesystems from caching and backing devices.""" node = factory.make_Node() backing_size = 10 * 1000 ** 4 cache_set = factory.make_CacheSet(node=node) backing_device = factory.make_PhysicalBlockDevice( node=node, size=backing_size ) bcache = Bcache.objects.create_bcache( cache_set=cache_set, backing_device=backing_device, cache_mode=CACHE_MODE_TYPE.WRITEBACK, ) bcache.delete() # Verify both filesystems were deleted. self.assertIsNone(backing_device.get_effective_filesystem()) # Verify the cache_set is not deleted. self.assertIsNotNone(reload_object(cache_set))
agpl-3.0
4,331,299,812,725,828,600
36.123395
79
0.574106
false
3.977456
true
false
false
MGEScan/mgescan
mgescan/utils.py
1
1147
import time import os, errno import subprocess as sub def get_abspath(path): try: return os.path.abspath(path) except: # print [DEBUG] Failed to convert a path to an absolute path return path def create_directory(path, skipifexists=True): if not os.path.exists(path): os.makedirs(path) else: if skipifexists: new_path = path + ".1" return create_directory(new_path, skipifexists) return get_abspath(path) def exists(path): try: return os.path.exists(path) except: return False def silentremove(filename): try: os.remove(filename) except OSError as e: # this would be "except OSError, e:" before Python 2.6 if e.errno != errno.ENOENT: # errno.ENOENT = no such file or directory raise # re-raise exception if a different error occured def cmd_exists(cmd): return sub.call(["which", cmd], stdout=sub.PIPE, stderr=sub.PIPE) == 0 def check_cmd(cmd): if not cmd_exists(cmd): print "=" * 50 print "[Error] " + cmd + " is not found. " print "=" * 50 time.sleep(3)
gpl-3.0
8,974,377,971,734,298,000
25.674419
79
0.61116
false
3.7
false
false
false
edineicolli/daruma-exemplo-python
scripts/fiscal/ui_fiscal_icfefetuarpagamentoformatado.py
1
4753
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'ui_fiscal_icfefetuarpagamentoformatado.ui' # # Created: Mon Nov 24 22:25:42 2014 # by: pyside-uic 0.2.15 running on PySide 1.2.2 # # WARNING! All changes made in this file will be lost! from PySide import QtCore, QtGui from pydaruma.pydaruma import iCFEfetuarPagamentoFormatado_ECF_Daruma from scripts.fiscal.retornofiscal import tratarRetornoFiscal class Ui_ui_FISCAL_iCFEfetuarPagamentoFormatado(QtGui.QWidget): def __init__(self): super(Ui_ui_FISCAL_iCFEfetuarPagamentoFormatado, self).__init__() self.setupUi(self) self.pushButtonEnviar.clicked.connect(self.on_pushButtonEnviar_clicked) self.pushButtonCancelar.clicked.connect(self.on_pushButtonCancelar_clicked) def on_pushButtonEnviar_clicked(self): StrFPGTO = self.lineEditFormaPGTO.text() StrValor = self.lineEditValor.text() tratarRetornoFiscal(iCFEfetuarPagamentoFormatado_ECF_Daruma(StrFPGTO,StrValor), self) def on_pushButtonCancelar_clicked(self): self.close() def setupUi(self, ui_FISCAL_iCFEfetuarPagamentoFormatado): ui_FISCAL_iCFEfetuarPagamentoFormatado.setObjectName("ui_FISCAL_iCFEfetuarPagamentoFormatado") ui_FISCAL_iCFEfetuarPagamentoFormatado.resize(309, 132) ui_FISCAL_iCFEfetuarPagamentoFormatado.setMinimumSize(QtCore.QSize(309, 132)) ui_FISCAL_iCFEfetuarPagamentoFormatado.setMaximumSize(QtCore.QSize(309, 132)) self.verticalLayout = QtGui.QVBoxLayout(ui_FISCAL_iCFEfetuarPagamentoFormatado) self.verticalLayout.setObjectName("verticalLayout") self.gridLayout = QtGui.QGridLayout() self.gridLayout.setObjectName("gridLayout") self.labelForma = QtGui.QLabel(ui_FISCAL_iCFEfetuarPagamentoFormatado) self.labelForma.setObjectName("labelForma") self.gridLayout.addWidget(self.labelForma, 0, 0, 1, 1) self.lineEditFormaPGTO = QtGui.QLineEdit(ui_FISCAL_iCFEfetuarPagamentoFormatado) self.lineEditFormaPGTO.setMaximumSize(QtCore.QSize(100, 16777215)) self.lineEditFormaPGTO.setObjectName("lineEditFormaPGTO") self.gridLayout.addWidget(self.lineEditFormaPGTO, 0, 1, 1, 1) self.labelValor = QtGui.QLabel(ui_FISCAL_iCFEfetuarPagamentoFormatado) self.labelValor.setObjectName("labelValor") self.gridLayout.addWidget(self.labelValor, 1, 0, 1, 1) self.lineEditValor = QtGui.QLineEdit(ui_FISCAL_iCFEfetuarPagamentoFormatado) self.lineEditValor.setMaximumSize(QtCore.QSize(70, 25)) self.lineEditValor.setObjectName("lineEditValor") self.gridLayout.addWidget(self.lineEditValor, 1, 1, 1, 1) self.verticalLayout.addLayout(self.gridLayout) self.horizontalLayout = QtGui.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") spacerItem = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem) self.pushButtonEnviar = QtGui.QPushButton(ui_FISCAL_iCFEfetuarPagamentoFormatado) self.pushButtonEnviar.setObjectName("pushButtonEnviar") self.horizontalLayout.addWidget(self.pushButtonEnviar) self.pushButtonCancelar = QtGui.QPushButton(ui_FISCAL_iCFEfetuarPagamentoFormatado) self.pushButtonCancelar.setObjectName("pushButtonCancelar") self.horizontalLayout.addWidget(self.pushButtonCancelar) spacerItem1 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem1) self.verticalLayout.addLayout(self.horizontalLayout) self.retranslateUi(ui_FISCAL_iCFEfetuarPagamentoFormatado) QtCore.QMetaObject.connectSlotsByName(ui_FISCAL_iCFEfetuarPagamentoFormatado) def retranslateUi(self, ui_FISCAL_iCFEfetuarPagamentoFormatado): ui_FISCAL_iCFEfetuarPagamentoFormatado.setWindowTitle(QtGui.QApplication.translate("ui_FISCAL_iCFEfetuarPagamentoFormatado", "iCFEfetuarPagamentoFormatado_ECF_Daruma", None, QtGui.QApplication.UnicodeUTF8)) self.labelForma.setText(QtGui.QApplication.translate("ui_FISCAL_iCFEfetuarPagamentoFormatado", "Forma Pagto:", None, QtGui.QApplication.UnicodeUTF8)) self.labelValor.setText(QtGui.QApplication.translate("ui_FISCAL_iCFEfetuarPagamentoFormatado", "Valor:", None, QtGui.QApplication.UnicodeUTF8)) self.pushButtonEnviar.setText(QtGui.QApplication.translate("ui_FISCAL_iCFEfetuarPagamentoFormatado", "Enviar", None, QtGui.QApplication.UnicodeUTF8)) self.pushButtonCancelar.setText(QtGui.QApplication.translate("ui_FISCAL_iCFEfetuarPagamentoFormatado", "Cancelar", None, QtGui.QApplication.UnicodeUTF8))
gpl-2.0
5,616,585,045,271,257,000
59.164557
214
0.764149
false
3.207152
false
false
false
zibawa/zibawa
zibawa/urls.py
1
1400
"""zibawa URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from django.conf.urls import include from rest_framework import routers from rest_framework.documentation import include_docs_urls from IoT_pki import views router = routers.DefaultRouter() urlpatterns = [ url(r'^devices/', include('devices.urls',namespace='devices')), url(r'^front/', include('front.urls',namespace='front')), url(r'^admin/', admin.site.urls), url(r'^', include('front.urls')), url(r'^IoT_pki/', include('IoT_pki.urls',namespace='IoT_pki')), url(r'^', include(router.urls)), url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')), url(r'^docs/', include_docs_urls(title='zibawa_PKI')) ]
gpl-3.0
-6,997,898,641,479,709,000
30.111111
83
0.681429
false
3.45679
false
false
false
plotly/plotly.py
packages/python/plotly/plotly/validators/_splom.py
1
12883
import _plotly_utils.basevalidators class SplomValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__(self, plotly_name="splom", parent_name="", **kwargs): super(SplomValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Splom"), data_docs=kwargs.pop( "data_docs", """ customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for customdata . diagonal :class:`plotly.graph_objects.splom.Diagonal` instance or dict with compatible properties dimensions A tuple of :class:`plotly.graph_objects.splom.Dimension` instances or dicts with compatible properties dimensiondefaults When used in a template (as layout.template.data.splom.dimensiondefaults), sets the default property values to use for elements of splom.dimensions hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for hoverinfo . hoverlabel :class:`plotly.graph_objects.splom.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}" as well as %{xother}, {%_xother}, {%_xother_}, {%xother_}. When showing info for several points, "xother" will be added to those with different x positions from the first point. An underscore before or after "(x|y)other" will add a space on that side, only when this field is shown. Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs- events/#event-data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . hovertext Same as `text`. hovertextsrc Sets the source reference on Chart Studio Cloud for hovertext . ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for ids . legendgroup Sets the legend group for this trace. Traces part of the same legend group hide/show at the same time when toggling legend items. legendgrouptitle :class:`plotly.graph_objects.splom.Legendgroupt itle` instance or dict with compatible properties legendrank Sets the legend rank for this trace. Items and groups with smaller ranks are presented on top/left side while with `*reversed* `legend.traceorder` they are on bottom/right side. The default legendrank is 1000, so that you can use ranks less than 1000 to place certain items before all unranked items, and ranks greater than 1000 to go after all unranked items. marker :class:`plotly.graph_objects.splom.Marker` instance or dict with compatible properties meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for meta . name Sets the trace name. The trace name appear as the legend item and on hover. opacity Sets the opacity of the trace. selected :class:`plotly.graph_objects.splom.Selected` instance or dict with compatible properties selectedpoints Array containing integer indices of selected points. Has an effect only for traces that support selections. Note that an empty array means an empty selection where the `unselected` are turned on for all points, whereas, any other non-array values means no selection all where the `selected` and `unselected` styles have no effect. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. showlowerhalf Determines whether or not subplots on the lower half from the diagonal are displayed. showupperhalf Determines whether or not subplots on the upper half from the diagonal are displayed. stream :class:`plotly.graph_objects.splom.Stream` instance or dict with compatible properties text Sets text elements associated with each (x,y) pair to appear on hover. If a single string, the same string appears over all the data points. If an array of string, the items are mapped in order to the this trace's (x,y) coordinates. textsrc Sets the source reference on Chart Studio Cloud for text . uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user- driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user- driven changes if you give each trace a `uid` that stays with it as it moves. unselected :class:`plotly.graph_objects.splom.Unselected` instance or dict with compatible properties visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). xaxes Sets the list of x axes corresponding to dimensions of this splom trace. By default, a splom will match the first N xaxes where N is the number of input dimensions. Note that, in case where `diagonal.visible` is false and `showupperhalf` or `showlowerhalf` is false, this splom trace will generate one less x-axis and one less y-axis. xhoverformat Sets the hover text formatting rulefor `x` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format. And for dates see: https://github.com/d3/d3-time- format#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `xaxis.hoverformat`. yaxes Sets the list of y axes corresponding to dimensions of this splom trace. By default, a splom will match the first N yaxes where N is the number of input dimensions. Note that, in case where `diagonal.visible` is false and `showupperhalf` or `showlowerhalf` is false, this splom trace will generate one less x-axis and one less y-axis. yhoverformat Sets the hover text formatting rulefor `y` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format. And for dates see: https://github.com/d3/d3-time- format#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `yaxis.hoverformat`. """, ), **kwargs )
mit
1,610,731,165,411,505,000
48.55
70
0.54731
false
5.084057
false
false
false
nakagami/reportlab
src/reportlab/platypus/flowables.py
1
68383
#Copyright ReportLab Europe Ltd. 2000-2012 #see license.txt for license details #history http://www.reportlab.co.uk/cgi-bin/viewcvs.cgi/public/reportlab/trunk/reportlab/platypus/flowables.py __version__=''' $Id: flowables.py 3959 2012-09-27 14:39:39Z robin $ ''' __doc__=""" A flowable is a "floating element" in a document whose exact position is determined by the other elements that precede it, such as a paragraph, a diagram interspersed between paragraphs, a section header, etcetera. Examples of non-flowables include page numbering annotations, headers, footers, fixed diagrams or logos, among others. Flowables are defined here as objects which know how to determine their size and which can draw themselves onto a page with respect to a relative "origin" position determined at a higher level. The object's draw() method should assume that (0,0) corresponds to the bottom left corner of the enclosing rectangle that will contain the object. The attributes vAlign and hAlign may be used by 'packers' as hints as to how the object should be placed. Some Flowables also know how to "split themselves". For example a long paragraph might split itself between one page and the next. Packers should set the canv attribute during wrap, split & draw operations to allow the flowable to work out sizes etc in the proper context. The "text" of a document usually consists mainly of a sequence of flowables which flow into a document from top to bottom (with column and page breaks controlled by higher level components). """ import os from copy import deepcopy, copy from reportlab.lib.colors import red, gray, lightgrey from reportlab.lib.utils import fp_str, isStrType from reportlab.lib.enums import TA_LEFT, TA_CENTER, TA_RIGHT, TA_JUSTIFY from reportlab.lib.styles import _baseFontName from reportlab.pdfbase import pdfutils from reportlab.pdfbase.pdfmetrics import stringWidth from reportlab.rl_config import _FUZZ, overlapAttachedSpace, ignoreContainerActions __all__=('TraceInfo','Flowable','XBox','Preformatted','Image','Spacer','PageBreak','SlowPageBreak', 'CondPageBreak','KeepTogether','Macro','CallerMacro','ParagraphAndImage', 'FailOnWrap','HRFlowable','PTOContainer','KeepInFrame','UseUpSpace', 'ListFlowable','ListItem','DDIndenter','LIIndenter', 'DocAssign', 'DocExec', 'DocAssert', 'DocPara', 'DocIf', 'DocWhile', ) class TraceInfo: "Holder for info about where an object originated" def __init__(self): self.srcFile = '(unknown)' self.startLineNo = -1 self.startLinePos = -1 self.endLineNo = -1 self.endLinePos = -1 ############################################################# # Flowable Objects - a base class and a few examples. # One is just a box to get some metrics. We also have # a paragraph, an image and a special 'page break' # object which fills the space. ############################################################# class Flowable: """Abstract base class for things to be drawn. Key concepts: 1. It knows its size 2. It draws in its own coordinate system (this requires the base API to provide a translate() function. """ _fixedWidth = 0 #assume wrap results depend on arguments? _fixedHeight = 0 def __init__(self): self.width = 0 self.height = 0 self.wrapped = 0 #these are hints to packers/frames as to how the floable should be positioned self.hAlign = 'LEFT' #CENTER/CENTRE or RIGHT self.vAlign = 'BOTTOM' #MIDDLE or TOP #optional holder for trace info self._traceInfo = None self._showBoundary = None #many flowables handle text and must be processed in the #absence of a canvas. tagging them with their encoding #helps us to get conversions right. Use Python codec names. self.encoding = None def _drawOn(self,canv): '''ensure canv is set on and then draw''' self.canv = canv self.draw()#this is the bit you overload del self.canv def _hAlignAdjust(self,x,sW=0): if sW and hasattr(self,'hAlign'): a = self.hAlign if a in ('CENTER','CENTRE', TA_CENTER): x += 0.5*sW elif a in ('RIGHT',TA_RIGHT): x += sW elif a not in ('LEFT',TA_LEFT): raise ValueError("Bad hAlign value "+str(a)) return x def drawOn(self, canvas, x, y, _sW=0): "Tell it to draw itself on the canvas. Do not override" x = self._hAlignAdjust(x,_sW) canvas.saveState() canvas.translate(x, y) self._drawOn(canvas) if hasattr(self, '_showBoundary') and self._showBoundary: #diagnostic tool support canvas.setStrokeColor(gray) canvas.rect(0,0,self.width, self.height) canvas.restoreState() def wrapOn(self, canv, aW, aH): '''intended for use by packers allows setting the canvas on during the actual wrap''' self.canv = canv w, h = self.wrap(aW,aH) del self.canv return w, h def wrap(self, availWidth, availHeight): """This will be called by the enclosing frame before objects are asked their size, drawn or whatever. It returns the size actually used.""" return (self.width, self.height) def minWidth(self): """This should return the minimum required width""" return getattr(self,'_minWidth',self.width) def splitOn(self, canv, aW, aH): '''intended for use by packers allows setting the canvas on during the actual split''' self.canv = canv S = self.split(aW,aH) del self.canv return S def split(self, availWidth, availheight): """This will be called by more sophisticated frames when wrap fails. Stupid flowables should return []. Clever flowables should split themselves and return a list of flowables. If they decide that nothing useful can be fitted in the available space (e.g. if you have a table and not enough space for the first row), also return []""" return [] def getKeepWithNext(self): """returns boolean determining whether the next flowable should stay with this one""" if hasattr(self,'keepWithNext'): return self.keepWithNext elif hasattr(self,'style') and hasattr(self.style,'keepWithNext'): return self.style.keepWithNext else: return 0 def getSpaceAfter(self): """returns how much space should follow this item if another item follows on the same page.""" if hasattr(self,'spaceAfter'): return self.spaceAfter elif hasattr(self,'style') and hasattr(self.style,'spaceAfter'): return self.style.spaceAfter else: return 0 def getSpaceBefore(self): """returns how much space should precede this item if another item precedess on the same page.""" if hasattr(self,'spaceBefore'): return self.spaceBefore elif hasattr(self,'style') and hasattr(self.style,'spaceBefore'): return self.style.spaceBefore else: return 0 def isIndexing(self): """Hook for IndexingFlowables - things which have cross references""" return 0 def identity(self, maxLen=None): ''' This method should attempt to return a string that can be used to identify a particular flowable uniquely. The result can then be used for debugging and or error printouts ''' if hasattr(self, 'getPlainText'): r = self.getPlainText(identify=1) elif hasattr(self, 'text'): r = str(self.text) else: r = '...' if r and maxLen: r = r[:maxLen] return "<%s at %s%s>%s" % (self.__class__.__name__, hex(id(self)), self._frameName(), r) def _doctemplateAttr(self,a): return getattr(getattr(getattr(self,'canv',None),'_doctemplate',None),a,None) def _frameName(self): f = getattr(self,'_frame',None) if not f: f = self._doctemplateAttr('frame') if f and f.id: return ' frame=%s' % f.id return '' class XBox(Flowable): """Example flowable - a box with an x through it and a caption. This has a known size, so does not need to respond to wrap().""" def __init__(self, width, height, text = 'A Box'): Flowable.__init__(self) self.width = width self.height = height self.text = text def __repr__(self): return "XBox(w=%s, h=%s, t=%s)" % (self.width, self.height, self.text) def draw(self): self.canv.rect(0, 0, self.width, self.height) self.canv.line(0, 0, self.width, self.height) self.canv.line(0, self.height, self.width, 0) #centre the text self.canv.setFont(_baseFontName,12) self.canv.drawCentredString(0.5*self.width, 0.5*self.height, self.text) def _trimEmptyLines(lines): #don't want the first or last to be empty while len(lines) and lines[0].strip() == '': lines = lines[1:] while len(lines) and lines[-1].strip() == '': lines = lines[:-1] return lines def _dedenter(text,dedent=0): ''' tidy up text - carefully, it is probably code. If people want to indent code within a source script, you can supply an arg to dedent and it will chop off that many character, otherwise it leaves left edge intact. ''' lines = text.split('\n') if dedent>0: templines = _trimEmptyLines(lines) lines = [] for line in templines: line = line[dedent:].rstrip() lines.append(line) else: lines = _trimEmptyLines(lines) return lines SPLIT_CHARS = "[{( ,.;:/\\-" def splitLines(lines, maximum_length, split_characters, new_line_characters): if split_characters is None: split_characters = SPLIT_CHARS if new_line_characters is None: new_line_characters = "" # Return a table of lines lines_splitted = [] for line in lines: if len(line) > maximum_length: splitLine(line, lines_splitted, maximum_length, \ split_characters, new_line_characters) else: lines_splitted.append(line) return lines_splitted def splitLine(line_to_split, lines_splitted, maximum_length, \ split_characters, new_line_characters): # Used to implement the characters added #at the beginning of each new line created first_line = True # Check if the text can be splitted while line_to_split and len(line_to_split)>0: # Index of the character where we can split split_index = 0 # Check if the line length still exceeds the maximum length if len(line_to_split) <= maximum_length: # Return the remaining of the line split_index = len(line_to_split) else: # Iterate for each character of the line for line_index in range(maximum_length): # Check if the character is in the list # of allowed characters to split on if line_to_split[line_index] in split_characters: split_index = line_index + 1 # If the end of the line was reached # with no character to split on if split_index==0: split_index = line_index + 1 if first_line: lines_splitted.append(line_to_split[0:split_index]) first_line = False maximum_length -= len(new_line_characters) else: lines_splitted.append(new_line_characters + \ line_to_split[0:split_index]) # Remaining text to split line_to_split = line_to_split[split_index:] class Preformatted(Flowable): """This is like the HTML <PRE> tag. It attempts to display text exactly as you typed it in a fixed width "typewriter" font. By default the line breaks are exactly where you put them, and it will not be wrapped. You can optionally define a maximum line length and the code will be wrapped; and extra characters to be inserted at the beginning of each wrapped line (e.g. '> '). """ def __init__(self, text, style, bulletText = None, dedent=0, maxLineLength=None, splitChars=None, newLineChars=""): """text is the text to display. If dedent is set then common leading space will be chopped off the front (for example if the entire text is indented 6 spaces or more then each line will have 6 spaces removed from the front). """ self.style = style self.bulletText = bulletText self.lines = _dedenter(text,dedent) if text and maxLineLength: self.lines = splitLines( self.lines, maxLineLength, splitChars, newLineChars ) def __repr__(self): bT = self.bulletText H = "Preformatted(" if bT is not None: H = "Preformatted(bulletText=%s," % repr(bT) return "%s'''\\ \n%s''')" % (H, '\n'.join(self.lines)) def wrap(self, availWidth, availHeight): self.width = availWidth self.height = self.style.leading*len(self.lines) return (self.width, self.height) def minWidth(self): style = self.style fontSize = style.fontSize fontName = style.fontName return max([stringWidth(line,fontName,fontSize) for line in self.lines]) def split(self, availWidth, availHeight): #returns two Preformatted objects #not sure why they can be called with a negative height if availHeight < self.style.leading: return [] linesThatFit = int(availHeight * 1.0 / self.style.leading) text1 = '\n'.join(self.lines[0:linesThatFit]) text2 = '\n'.join(self.lines[linesThatFit:]) style = self.style if style.firstLineIndent != 0: style = deepcopy(style) style.firstLineIndent = 0 return [Preformatted(text1, self.style), Preformatted(text2, style)] def draw(self): #call another method for historical reasons. Besides, I #suspect I will be playing with alternate drawing routines #so not doing it here makes it easier to switch. cur_x = self.style.leftIndent cur_y = self.height - self.style.fontSize self.canv.addLiteral('%PreformattedPara') if self.style.textColor: self.canv.setFillColor(self.style.textColor) tx = self.canv.beginText(cur_x, cur_y) #set up the font etc. tx.setFont( self.style.fontName, self.style.fontSize, self.style.leading) for text in self.lines: tx.textLine(text) self.canv.drawText(tx) class Image(Flowable): """an image (digital picture). Formats supported by PIL/Java 1.4 (the Python/Java Imaging Library are supported. At the present time images as flowables are always centered horozontally in the frame. We allow for two kinds of lazyness to allow for many images in a document which could lead to file handle starvation. lazy=1 don't open image until required. lazy=2 open image when required then shut it. """ _fixedWidth = 1 _fixedHeight = 1 def __init__(self, filename, width=None, height=None, kind='direct', mask="auto", lazy=1): """If size to draw at not specified, get it from the image.""" self.hAlign = 'CENTER' self._mask = mask fp = hasattr(filename,'read') if fp: self._file = filename self.filename = repr(filename) else: self._file = self.filename = filename if not fp and os.path.splitext(filename)[1] in ['.jpg', '.JPG', '.jpeg', '.JPEG']: # if it is a JPEG, will be inlined within the file - # but we still need to know its size now from reportlab.lib.utils import open_for_read f = open_for_read(filename, 'b') try: try: info = pdfutils.readJPEGInfo(f) except: #couldn't read as a JPEG, try like normal self._setup(width,height,kind,lazy) return finally: f.close() self.imageWidth = info[0] self.imageHeight = info[1] self._img = None self._setup(width,height,kind,0) elif fp: self._setup(width,height,kind,0) else: self._setup(width,height,kind,lazy) def _setup(self,width,height,kind,lazy): self._lazy = lazy self._width = width self._height = height self._kind = kind if lazy<=0: self._setup_inner() def _setup_inner(self): width = self._width height = self._height kind = self._kind img = self._img if img: self.imageWidth, self.imageHeight = img.getSize() if self._lazy>=2: del self._img if kind in ['direct','absolute']: self.drawWidth = width or self.imageWidth self.drawHeight = height or self.imageHeight elif kind in ['percentage','%']: self.drawWidth = self.imageWidth*width*0.01 self.drawHeight = self.imageHeight*height*0.01 elif kind in ['bound','proportional']: factor = min(float(width)/self.imageWidth,float(height)/self.imageHeight) self.drawWidth = self.imageWidth*factor self.drawHeight = self.imageHeight*factor def _restrictSize(self,aW,aH): if self.drawWidth>aW+_FUZZ or self.drawHeight>aH+_FUZZ: self._oldDrawSize = self.drawWidth, self.drawHeight factor = min(float(aW)/self.drawWidth,float(aH)/self.drawHeight) self.drawWidth *= factor self.drawHeight *= factor return self.drawWidth, self.drawHeight def _unRestrictSize(self): dwh = getattr(self,'_oldDrawSize',None) if dwh: self.drawWidth, self.drawHeight = dwh def __getattr__(self,a): if a=='_img': from reportlab.lib.utils import ImageReader #this may raise an error self._img = ImageReader(self._file) del self._file return self._img elif a in ('drawWidth','drawHeight','imageWidth','imageHeight'): self._setup_inner() return self.__dict__[a] raise AttributeError("<Image @ 0x%x>.%s" % (id(self),a)) def wrap(self, availWidth, availHeight): #the caller may decide it does not fit. return self.drawWidth, self.drawHeight def draw(self): lazy = self._lazy if lazy>=2: self._lazy = 1 self.canv.drawImage( self._img or self.filename, getattr(self,'_offs_x',0), getattr(self,'_offs_y',0), self.drawWidth, self.drawHeight, mask=self._mask, ) if lazy>=2: self._img = None self._lazy = lazy def identity(self,maxLen=None): r = Flowable.identity(self,maxLen) if r[-4:]=='>...' and isStrType(self.filename): r = "%s filename=%s>" % (r[:-4],self.filename) return r class NullDraw(Flowable): def draw(self): pass class Spacer(NullDraw): """A spacer just takes up space and doesn't draw anything - it guarantees a gap between objects.""" _fixedWidth = 1 _fixedHeight = 1 def __init__(self, width, height, isGlue=False): self.width = width if isGlue: self.height = 1e-4 self.spacebefore = height self.height = height def __repr__(self): return "%s(%s, %s)" % (self.__class__.__name__,self.width, self.height) class UseUpSpace(NullDraw): def __init__(self): pass def __repr__(self): return "%s()" % self.__class__.__name__ def wrap(self, availWidth, availHeight): self.width = availWidth self.height = availHeight return (availWidth,availHeight-1e-8) #step back a point class PageBreak(UseUpSpace): """Move on to the next page in the document. This works by consuming all remaining space in the frame!""" class SlowPageBreak(PageBreak): pass class CondPageBreak(Spacer): """use up a frame if not enough vertical space effectively CondFrameBreak""" def __init__(self, height): self.height = height def __repr__(self): return "CondPageBreak(%s)" %(self.height,) def wrap(self, availWidth, availHeight): if availHeight<self.height: f = self._doctemplateAttr('frame') if not f: return availWidth, availHeight from reportlab.platypus.doctemplate import FrameBreak f.add_generated_content(FrameBreak) return 0, 0 def identity(self,maxLen=None): return repr(self).replace(')',',frame=%s)'%self._frameName()) def _listWrapOn(F,availWidth,canv,mergeSpace=1,obj=None,dims=None): '''return max width, required height for a list of flowables F''' doct = getattr(canv,'_doctemplate',None) cframe = getattr(doct,'frame',None) if cframe: from reportlab.platypus.doctemplate import _addGeneratedContent doct_frame = cframe cframe = doct.frame = deepcopy(doct_frame) cframe._generated_content = None del cframe._generated_content try: W = 0 H = 0 pS = 0 atTop = 1 F = F[:] while F: f = F.pop(0) if hasattr(f,'frameAction'): continue w,h = f.wrapOn(canv,availWidth,0xfffffff) if dims is not None: dims.append((w,h)) if cframe: _addGeneratedContent(F,cframe) if w<=_FUZZ or h<=_FUZZ: continue W = max(W,w) H += h if not atTop: h = f.getSpaceBefore() if mergeSpace: h = max(h-pS,0) H += h else: if obj is not None: obj._spaceBefore = f.getSpaceBefore() atTop = 0 pS = f.getSpaceAfter() H += pS if obj is not None: obj._spaceAfter = pS return W, H-pS finally: if cframe: doct.frame = doct_frame def _flowableSublist(V): "if it isn't a list or tuple, wrap it in a list" if not isinstance(V,(list,tuple)): V = V is not None and [V] or [] from reportlab.platypus.doctemplate import LCActionFlowable assert not [x for x in V if isinstance(x,LCActionFlowable)],'LCActionFlowables not allowed in sublists' return V class _ContainerSpace: #Abstract some common container like behaviour def getSpaceBefore(self): for c in self._content: if not hasattr(c,'frameAction'): return c.getSpaceBefore() return 0 def getSpaceAfter(self,content=None): #this needs 2.4 #for c in reversed(content or self._content): reverseContent = (content or self._content)[:] reverseContent.reverse() for c in reverseContent: if not hasattr(c,'frameAction'): return c.getSpaceAfter() return 0 class KeepTogether(_ContainerSpace,Flowable): def __init__(self,flowables,maxHeight=None): self._content = _flowableSublist(flowables) self._maxHeight = maxHeight def __repr__(self): f = self._content L = map(repr,f) L = "\n"+"\n".join(L) L = L.replace("\n", "\n ") return "%s(%s,maxHeight=%s)" % (self.__class__.__name__,L,self._maxHeight) def wrap(self, aW, aH): dims = [] W,H = _listWrapOn(self._content,aW,self.canv,dims=dims) self._H = H self._H0 = dims and dims[0][1] or 0 self._wrapInfo = aW,aH return W, 0xffffff # force a split def split(self, aW, aH): if getattr(self,'_wrapInfo',None)!=(aW,aH): self.wrap(aW,aH) S = self._content[:] atTop = getattr(self,'_frame',None) if atTop: atTop = getattr(atTop,'_atTop',None) C0 = self._H>aH and (not self._maxHeight or aH>self._maxHeight) C1 = (self._H0>aH) or C0 and atTop if C0 or C1: if C0: from reportlab.platypus.doctemplate import FrameBreak A = FrameBreak else: from reportlab.platypus.doctemplate import NullActionFlowable A = NullActionFlowable S.insert(0,A()) return S def identity(self, maxLen=None): msg = "<%s at %s%s> containing :%s" % (self.__class__.__name__,hex(id(self)),self._frameName(),"\n".join([f.identity() for f in self._content])) if maxLen: return msg[0:maxLen] else: return msg class Macro(Flowable): """This is not actually drawn (i.e. it has zero height) but is executed when it would fit in the frame. Allows direct access to the canvas through the object 'canvas'""" def __init__(self, command): self.command = command def __repr__(self): return "Macro(%s)" % repr(self.command) def wrap(self, availWidth, availHeight): return (0,0) def draw(self): exec(self.command) in globals(), {'canvas':self.canv} class CallerMacro(Flowable): ''' like Macro, but with callable command(s) drawCallable(self) wrapCallable(self,aW,aH) ''' def __init__(self, drawCallable=None, wrapCallable=None): _ = lambda *args: None self._drawCallable = drawCallable or _ self._wrapCallable = wrapCallable or _ def __repr__(self): return "CallerMacro(%s)" % repr(self.command) def wrap(self, aW, aH): self._wrapCallable(self,aW,aH) return (0,0) def draw(self): self._drawCallable(self) class ParagraphAndImage(Flowable): '''combine a Paragraph and an Image''' def __init__(self,P,I,xpad=3,ypad=3,side='right'): self.P = P self.I = I self.xpad = xpad self.ypad = ypad self._side = side def getSpaceBefore(self): return max(self.P.getSpaceBefore(),self.I.getSpaceBefore()) def getSpaceAfter(self): return max(self.P.getSpaceAfter(),self.I.getSpaceAfter()) def wrap(self,availWidth,availHeight): wI, hI = self.I.wrap(availWidth,availHeight) self.wI = wI self.hI = hI # work out widths array for breaking self.width = availWidth P = self.P style = P.style xpad = self.xpad ypad = self.ypad leading = style.leading leftIndent = style.leftIndent later_widths = availWidth - leftIndent - style.rightIndent intermediate_widths = later_widths - xpad - wI first_line_width = intermediate_widths - style.firstLineIndent P.width = 0 nIW = int((hI+ypad)/(leading*1.0)) P.blPara = P.breakLines([first_line_width] + nIW*[intermediate_widths]+[later_widths]) if self._side=='left': self._offsets = [wI+xpad]*(1+nIW)+[0] P.height = len(P.blPara.lines)*leading self.height = max(hI,P.height) return (self.width, self.height) def split(self,availWidth, availHeight): P, wI, hI, ypad = self.P, self.wI, self.hI, self.ypad if hI+ypad>availHeight or len(P.frags)<=0: return [] S = P.split(availWidth,availHeight) if not S: return S P = self.P = S[0] del S[0] style = P.style P.height = len(self.P.blPara.lines)*style.leading self.height = max(hI,P.height) return [self]+S def draw(self): canv = self.canv if self._side=='left': self.I.drawOn(canv,0,self.height-self.hI) self.P._offsets = self._offsets try: self.P.drawOn(canv,0,0) finally: del self.P._offsets else: self.I.drawOn(canv,self.width-self.wI-self.xpad,self.height-self.hI) self.P.drawOn(canv,0,0) class FailOnWrap(NullDraw): def wrap(self, availWidth, availHeight): raise ValueError("FailOnWrap flowable wrapped and failing as ordered!") class FailOnDraw(Flowable): def wrap(self, availWidth, availHeight): return 0,0 def draw(self): raise ValueError("FailOnDraw flowable drawn, and failing as ordered!") class HRFlowable(Flowable): '''Like the hr tag''' def __init__(self, width="80%", thickness=1, lineCap='round', color=lightgrey, spaceBefore=1, spaceAfter=1, hAlign='CENTER', vAlign='BOTTOM', dash=None): Flowable.__init__(self) self.width = width self.lineWidth = thickness self.lineCap=lineCap self.spaceBefore = spaceBefore self.spaceAfter = spaceAfter self.color = color self.hAlign = hAlign self.vAlign = vAlign self.dash = dash def __repr__(self): return "HRFlowable(width=%s, height=%s)" % (self.width, self.height) def wrap(self, availWidth, availHeight): w = self.width if type(w) is type(''): w = w.strip() if w.endswith('%'): w = availWidth*float(w[:-1])*0.01 else: w = float(w) w = min(w,availWidth) self._width = w return w, self.lineWidth def draw(self): canv = self.canv canv.saveState() canv.setLineWidth(self.lineWidth) canv.setLineCap({'butt':0,'round':1, 'square': 2}[self.lineCap.lower()]) canv.setStrokeColor(self.color) if self.dash: canv.setDash(self.dash) canv.line(0, 0, self._width, self.height) canv.restoreState() class _PTOInfo: def __init__(self,trailer,header): self.trailer = _flowableSublist(trailer) self.header = _flowableSublist(header) def cdeepcopy(obj): if hasattr(obj,'deepcopy'): return obj.deepcopy() else: return deepcopy(obj) class _Container(_ContainerSpace): #Abstract some common container like behaviour def drawOn(self, canv, x, y, _sW=0, scale=1.0, content=None, aW=None): '''we simulate being added to a frame''' from reportlab.platypus.doctemplate import ActionFlowable pS = 0 if aW is None: aW = self.width aW *= scale if content is None: content = self._content x = self._hAlignAdjust(x,_sW*scale) y += self.height*scale for c in content: if not ignoreContainerActions and isinstance(c,ActionFlowable): c.apply(self.canv._doctemplate) continue w, h = c.wrapOn(canv,aW,0xfffffff) if (w<_FUZZ or h<_FUZZ) and not getattr(c,'_ZEROSIZE',None): continue if c is not content[0]: h += max(c.getSpaceBefore()-pS,0) y -= h c.drawOn(canv,x,y,_sW=aW-w) if c is not content[-1]: pS = c.getSpaceAfter() y -= pS def copyContent(self,content=None): C = [].append for c in (content or self._content): C(cdeepcopy(c)) self._content = C.__self__ class PTOContainer(_Container,Flowable): '''PTOContainer(contentList,trailerList,headerList) A container for flowables decorated with trailer & header lists. If the split operation would be called then the trailer and header lists are injected before and after the split. This allows specialist "please turn over" and "continued from previous" like behaviours.''' def __init__(self,content,trailer=None,header=None): I = _PTOInfo(trailer,header) self._content = C = [] for _ in _flowableSublist(content): if isinstance(_,PTOContainer): C.extend(_._content) else: C.append(_) if not hasattr(_,'_ptoinfo'): _._ptoinfo = I def wrap(self,availWidth,availHeight): self.width, self.height = _listWrapOn(self._content,availWidth,self.canv) return self.width,self.height def split(self, availWidth, availHeight): if availHeight<0: return [] canv = self.canv C = self._content x = i = H = pS = hx = 0 n = len(C) I2W = {} for x in range(n): c = C[x] I = c._ptoinfo if I not in I2W.keys(): T = I.trailer Hdr = I.header tW, tH = _listWrapOn(T, availWidth, self.canv) if len(T): #trailer may have no content tSB = T[0].getSpaceBefore() else: tSB = 0 I2W[I] = T,tW,tH,tSB else: T,tW,tH,tSB = I2W[I] _, h = c.wrapOn(canv,availWidth,0xfffffff) if x: hx = max(c.getSpaceBefore()-pS,0) h += hx pS = c.getSpaceAfter() H += h+pS tHS = tH+max(tSB,pS) if H+tHS>=availHeight-_FUZZ: break i += 1 #first retract last thing we tried H -= (h+pS) #attempt a sub split on the last one we have aH = (availHeight-H-tHS-hx)*0.99999 if aH>=0.05*availHeight: SS = c.splitOn(canv,availWidth,aH) else: SS = [] if not SS: j = i while i>1 and C[i-1].getKeepWithNext(): i -= 1 C[i].keepWithNext = 0 if i==1 and C[0].getKeepWithNext(): #robin's black sheep i = j C[0].keepWithNext = 0 F = [UseUpSpace()] if len(SS)>1: R1 = C[:i] + SS[:1] + T + F R2 = Hdr + SS[1:]+C[i+1:] elif not i: return [] else: R1 = C[:i]+T+F R2 = Hdr + C[i:] T = R1 + [PTOContainer(R2,[copy(x) for x in I.trailer],[copy(x) for x in I.header])] return T #utility functions used by KeepInFrame def _hmodel(s0,s1,h0,h1): # calculate the parameters in the model # h = a/s**2 + b/s a11 = 1./s0**2 a12 = 1./s0 a21 = 1./s1**2 a22 = 1./s1 det = a11*a22-a12*a21 b11 = a22/det b12 = -a12/det b21 = -a21/det b22 = a11/det a = b11*h0+b12*h1 b = b21*h0+b22*h1 return a,b def _qsolve(h,ab): '''solve the model v = a/s**2 + b/s for an s which gives us v==h''' a,b = ab if abs(a)<=_FUZZ: return b/h t = 0.5*b/a from math import sqrt f = -h/a r = t*t-f if r<0: return None r = sqrt(r) if t>=0: s1 = -t - r else: s1 = -t + r s2 = f/s1 return max(1./s1, 1./s2) class KeepInFrame(_Container,Flowable): def __init__(self, maxWidth, maxHeight, content=[], mergeSpace=1, mode='shrink', name='',hAlign='LEFT',vAlign='BOTTOM'): '''mode describes the action to take when overflowing error raise an error in the normal way continue ignore ie just draw it and report maxWidth, maxHeight shrink shrinkToFit truncate fit as much as possible ''' self.name = name self.maxWidth = maxWidth self.maxHeight = maxHeight self.mode = mode assert mode in ('error','overflow','shrink','truncate'), '%s invalid mode value %s' % (self.identity(),mode) assert maxHeight>=0, '%s invalid maxHeight value %s' % (self.identity(),maxHeight) if mergeSpace is None: mergeSpace = overlapAttachedSpace self.mergespace = mergeSpace self._content = content or [] self.vAlign = vAlign self.hAlign = hAlign def _getAvailableWidth(self): return self.maxWidth - self._leftExtraIndent - self._rightExtraIndent def identity(self, maxLen=None): return "<%s at %s%s%s> size=%sx%s" % (self.__class__.__name__, hex(id(self)), self._frameName(), getattr(self,'name','') and (' name="%s"'% getattr(self,'name','')) or '', getattr(self,'maxWidth','') and (' maxWidth=%s'%fp_str(getattr(self,'maxWidth',0))) or '', getattr(self,'maxHeight','')and (' maxHeight=%s' % fp_str(getattr(self,'maxHeight')))or '') def wrap(self,availWidth,availHeight): from reportlab.platypus.doctemplate import LayoutError mode = self.mode maxWidth = float(min(self.maxWidth or availWidth,availWidth)) maxHeight = float(min(self.maxHeight or availHeight,availHeight)) W, H = _listWrapOn(self._content,maxWidth,self.canv) if (mode=='error' and (W>maxWidth+_FUZZ or H>maxHeight+_FUZZ)): ident = 'content %sx%s too large for %s' % (W,H,self.identity(30)) #leave to keep apart from the raise raise LayoutError(ident) elif W<=maxWidth+_FUZZ and H<=maxHeight+_FUZZ: self.width = W-_FUZZ #we take what we get self.height = H-_FUZZ elif mode in ('overflow','truncate'): #we lie self.width = min(maxWidth,W)-_FUZZ self.height = min(maxHeight,H)-_FUZZ else: def func(x): W, H = _listWrapOn(self._content,x*maxWidth,self.canv) W /= x H /= x return W, H W0 = W H0 = H s0 = 1 if W>maxWidth+_FUZZ: #squeeze out the excess width and or Height s1 = W/maxWidth W, H = func(s1) if H<=maxHeight+_FUZZ: self.width = W-_FUZZ self.height = H-_FUZZ self._scale = s1 return W,H s0 = s1 H0 = H W0 = W s1 = H/maxHeight W, H = func(s1) self.width = W-_FUZZ self.height = H-_FUZZ self._scale = s1 if H<min(0.95*maxHeight,maxHeight-10) or H>=maxHeight+_FUZZ: #the standard case W should be OK, H is short we want #to find the smallest s with H<=maxHeight H1 = H for f in 0, 0.01, 0.05, 0.10, 0.15: #apply the quadratic model s = _qsolve(maxHeight*(1-f),_hmodel(s0,s1,H0,H1)) W, H = func(s) if H<=maxHeight+_FUZZ and W<=maxWidth+_FUZZ: self.width = W-_FUZZ self.height = H-_FUZZ self._scale = s break return self.width, self.height def drawOn(self, canv, x, y, _sW=0): scale = getattr(self,'_scale',1.0) truncate = self.mode=='truncate' ss = scale!=1.0 or truncate if ss: canv.saveState() if truncate: p = canv.beginPath() p.rect(x, y, self.width,self.height) canv.clipPath(p,stroke=0) else: canv.translate(x,y) x=y=0 canv.scale(1.0/scale, 1.0/scale) _Container.drawOn(self, canv, x, y, _sW=_sW, scale=scale) if ss: canv.restoreState() class ImageAndFlowables(_Container,Flowable): '''combine a list of flowables and an Image''' def __init__(self,I,F,imageLeftPadding=0,imageRightPadding=3,imageTopPadding=0,imageBottomPadding=3, imageSide='right', imageHref=None): self._content = _flowableSublist(F) self._I = I self._irpad = imageRightPadding self._ilpad = imageLeftPadding self._ibpad = imageBottomPadding self._itpad = imageTopPadding self._side = imageSide self.imageHref = imageHref def deepcopy(self): c = copy(self) #shallow self._reset() c.copyContent() #partially deep? return c def getSpaceAfter(self): if hasattr(self,'_C1'): C = self._C1 elif hasattr(self,'_C0'): C = self._C0 else: C = self._content return _Container.getSpaceAfter(self,C) def getSpaceBefore(self): return max(self._I.getSpaceBefore(),_Container.getSpaceBefore(self)) def _reset(self): for a in ('_wrapArgs','_C0','_C1'): try: delattr(self,a) except: pass def wrap(self,availWidth,availHeight): canv = self.canv I = self._I if hasattr(self,'_wrapArgs'): if self._wrapArgs==(availWidth,availHeight) and getattr(I,'_oldDrawSize',None) is None: return self.width,self.height self._reset() I._unRestrictSize() self._wrapArgs = availWidth, availHeight I.wrap(availWidth,availHeight) wI, hI = I._restrictSize(availWidth,availHeight) self._wI = wI self._hI = hI ilpad = self._ilpad irpad = self._irpad ibpad = self._ibpad itpad = self._itpad self._iW = availWidth - irpad - wI - ilpad aH = itpad + hI + ibpad W,H0,self._C0,self._C1 = self._findSplit(canv,self._iW,aH) if W>self._iW+_FUZZ: self._C0 = [] self._C1 = self._content aH = self._aH = max(aH,H0) self.width = availWidth if not self._C1: self.height = aH else: W1,H1 = _listWrapOn(self._C1,availWidth,canv) self.height = aH+H1 return self.width, self.height def split(self,availWidth, availHeight): if hasattr(self,'_wrapArgs'): I = self._I if self._wrapArgs!=(availWidth,availHeight) or getattr(I,'_oldDrawSize',None) is not None: self._reset() I._unRestrictSize() W,H=self.wrap(availWidth,availHeight) if self._aH>availHeight: return [] C1 = self._C1 if C1: S = C1[0].split(availWidth,availHeight-self._aH) if not S: _C1 = [] else: _C1 = [S[0]] C1 = S[1:]+C1[1:] else: _C1 = [] return [ImageAndFlowables( self._I, self._C0+_C1, imageLeftPadding=self._ilpad, imageRightPadding=self._irpad, imageTopPadding=self._itpad, imageBottomPadding=self._ibpad, imageSide=self._side, imageHref=self.imageHref) ]+C1 def drawOn(self, canv, x, y, _sW=0): if self._side=='left': Ix = x + self._ilpad Fx = Ix+ self._irpad + self._wI else: Ix = x + self.width-self._wI-self._irpad Fx = x self._I.drawOn(canv,Ix,y+self.height-self._itpad-self._hI) if self.imageHref: canv.linkURL(self.imageHref, (Ix, y+self.height-self._itpad-self._hI, Ix + self._wI, y+self.height), relative=1) if self._C0: _Container.drawOn(self, canv, Fx, y, content=self._C0, aW=self._iW) if self._C1: _Container.drawOn(self, canv, x, y-self._aH,content=self._C1) def _findSplit(self,canv,availWidth,availHeight,mergeSpace=1,obj=None): '''return max width, required height for a list of flowables F''' W = 0 H = 0 pS = sB = 0 atTop = 1 F = self._content for i,f in enumerate(F): w,h = f.wrapOn(canv,availWidth,0xfffffff) if w<=_FUZZ or h<=_FUZZ: continue W = max(W,w) if not atTop: s = f.getSpaceBefore() if mergeSpace: s = max(s-pS,0) H += s else: if obj is not None: obj._spaceBefore = f.getSpaceBefore() atTop = 0 if H>=availHeight or w>availWidth: return W, availHeight, F[:i],F[i:] H += h if H>availHeight: from reportlab.platypus.paragraph import Paragraph aH = availHeight-(H-h) if isinstance(f,(Paragraph,Preformatted)): leading = f.style.leading nH = leading*int(aH/float(leading))+_FUZZ if nH<aH: nH += leading availHeight += nH-aH aH = nH S = cdeepcopy(f).splitOn(canv,availWidth,aH) if not S: return W, availHeight, F[:i],F[i:] else: return W,availHeight,F[:i]+S[:1],S[1:]+F[i+1:] pS = f.getSpaceAfter() H += pS if obj is not None: obj._spaceAfter = pS return W, H-pS, F, [] class AnchorFlowable(Spacer): '''create a bookmark in the pdf''' _ZEROSIZE=1 def __init__(self,name): Spacer.__init__(self,0,0) self._name = name def __repr__(self): return "%s(%s)" % (self.__class__.__name__,self._name) def wrap(self,aW,aH): return 0,0 def draw(self): self.canv.bookmarkHorizontal(self._name,0,0) class FrameSplitter(NullDraw): '''When encountered this flowable should either switch directly to nextTemplate if remaining space in the current frame is less than gap+required or it should temporarily modify the current template to have the frames from nextTemplate that are listed in nextFrames and switch to the first of those frames. ''' _ZEROSIZE=1 def __init__(self,nextTemplate,nextFrames=[],gap=10,required=72): self.nextTemplate=nextTemplate self.nextFrames=nextFrames or [] self.gap=gap self.required=required def wrap(self,aW,aH): frame = self._frame from reportlab.platypus.doctemplate import NextPageTemplate,CurrentFrameFlowable,LayoutError G=[NextPageTemplate(self.nextTemplate)] if aH<self.gap+self.required-_FUZZ: #we are going straight to the nextTemplate with no attempt to modify the frames G.append(PageBreak()) else: #we are going to modify the incoming templates templates = self._doctemplateAttr('pageTemplates') if templates is None: raise LayoutError('%s called in non-doctemplate environment'%self.identity()) T=[t for t in templates if t.id==self.nextTemplate] if not T: raise LayoutError('%s.nextTemplate=%s not found' % (self.identity(),self.nextTemplate)) T=T[0] F=[f for f in T.frames if f.id in self.nextFrames] N=[f.id for f in F] N=[f for f in self.nextFrames if f not in N] if N: raise LayoutError('%s frames=%r not found in pageTemplate(%s)\n%r has frames %r' % (self.identity(),N,T.id,T,[f.id for f in T.frames])) T=self._doctemplateAttr('pageTemplate') def unwrap(canv,doc,T=T,onPage=T.onPage,oldFrames=T.frames): T.frames=oldFrames T.onPage=onPage onPage(canv,doc) T.onPage=unwrap h=aH-self.gap for i,f in enumerate(F): f=copy(f) f.height=h f._reset() F[i]=f T.frames=F G.append(CurrentFrameFlowable(F[0].id)) frame.add_generated_content(*G) return 0,0 from reportlab.lib.sequencer import _type2formatter _bulletNames = dict( circle=u'\u25cf', square=u'\u25a0', disc=u'\u25cf', diamond=u'\u25c6', rarrowhead=u'\u27a4', ) def _bulletFormat(value,type='1',format=None): if type=='bullet': s = _bulletNames.get(value,value) else: s = _type2formatter[type](int(value)) if format: if isinstance(format,basestring): s = format % s elif callable(format): s = format(s) else: raise ValueError('unexpected BulletDrawer format %r' % format) return s class BulletDrawer: def __init__(self, value='0', bulletAlign='left', bulletType='1', bulletColor='black', bulletFontName='Helvetica', bulletFontSize=12, bulletOffsetY=0, bulletDedent=0, bulletDir='ltr', bulletFormat=None, ): self.value = value self._bulletAlign = bulletAlign self._bulletType = bulletType self._bulletColor = bulletColor self._bulletFontName = bulletFontName self._bulletFontSize = bulletFontSize self._bulletOffsetY = bulletOffsetY self._bulletDedent = bulletDedent self._bulletDir = bulletDir self._bulletFormat = bulletFormat def drawOn(self,indenter,canv,x,y,_sW=0): value = self.value if not value: return canv.saveState() canv.translate(x, y) y = indenter.height-self._bulletFontSize+self._bulletOffsetY if self._bulletDir=='rtl': x = indenter.width - indenter._rightIndent + self._bulletDedent else: x = indenter._leftIndent - self._bulletDedent canv.setFont(self._bulletFontName,self._bulletFontSize) canv.setFillColor(self._bulletColor) bulletAlign = self._bulletAlign value = _bulletFormat(value,self._bulletType,self._bulletFormat) if bulletAlign=='left': canv.drawString(x,y,value) elif bulletAlign=='right': canv.drawRightString(x,y,value) elif bulletAlign in ('center','centre'): canv.drawCentredString(x,y,value) elif bulletAlign.startswith('numeric') or bulletAlign.startswith('decimal'): pc = bulletAlign[7:].strip() or '.' canv.drawAlignedString(x,y,value,pc) else: raise ValueError('Invalid bulletAlign: %r' % bulletAlign) canv.restoreState() def _computeBulletWidth(b,value): value = _bulletFormat(value,b._bulletType,b._bulletFormat) return stringWidth(value,b._bulletFontName,b._bulletFontSize) class DDIndenter(Flowable): _IndenterAttrs = '_flowable _leftIndent _rightIndent width height'.split() def __init__(self,flowable,leftIndent=0,rightIndent=0): self._flowable = flowable self._leftIndent = leftIndent self._rightIndent = rightIndent self.width = None self.height = None def split(self, aW, aH): S = self._flowable.split(aW-self._leftIndent-self._rightIndent, aH) return [ DDIndenter(s, leftIndent=self._leftIndent, rightIndent=self._rightIndent, ) for s in S ] def drawOn(self, canv, x, y, _sW=0): self._flowable.drawOn(canv,x+self._leftIndent,y,max(0,_sW-self._leftIndent-self._rightIndent)) def wrap(self, aW, aH): w,h = self._flowable.wrap(aW-self._leftIndent-self._rightIndent, aH) self.width = w+self._leftIndent+self._rightIndent self.height = h return self.width,h def __getattr__(self,a): if a in self._IndenterAttrs: try: return self.__dict__[a] except KeyError: if a not in ('spaceBefore','spaceAfter'): raise return getattr(self._flowable,a) def __setattr__(self,a,v): if a in self._IndenterAttrs: self.__dict__[a] = v else: setattr(self._flowable,a,v) def __delattr__(self,a): if a in self._IndenterAttrs: del self.__dict__[a] else: delattr(self._flowable,a) def identity(self,maxLen=None): return '%s containing %s' % (self.__class__.__name__,self._flowable.identity(maxLen)) class LIIndenter(DDIndenter): _IndenterAttrs = '_flowable _bullet _leftIndent _rightIndent width height spaceBefore spaceAfter'.split() def __init__(self,flowable,leftIndent=0,rightIndent=0,bullet=None, spaceBefore=None, spaceAfter=None): self._flowable = flowable self._bullet = bullet self._leftIndent = leftIndent self._rightIndent = rightIndent self.width = None self.height = None if spaceBefore is not None: self.spaceBefore = spaceBefore if spaceAfter is not None: self.spaceAfter = spaceAfter def split(self, aW, aH): S = self._flowable.split(aW-self._leftIndent-self._rightIndent, aH) return [ LIIndenter(s, leftIndent=self._leftIndent, rightIndent=self._rightIndent, bullet = (s is S[0] and self._bullet or None), ) for s in S ] def drawOn(self, canv, x, y, _sW=0): if self._bullet: self._bullet.drawOn(self,canv,x,y,0) self._flowable.drawOn(canv,x+self._leftIndent,y,max(0,_sW-self._leftIndent-self._rightIndent)) from reportlab.lib.styles import ListStyle class ListItem: def __init__(self, flowables, #the initial flowables style=None, #leftIndent=18, #rightIndent=0, #spaceBefore=None, #spaceAfter=None, #bulletType='1', #bulletColor='black', #bulletFontName='Helvetica', #bulletFontSize=12, #bulletOffsetY=0, #bulletDedent='auto', #bulletDir='ltr', #bulletFormat=None, **kwds ): if not isinstance(flowables,(list,tuple)): flowables = (flowables,) self._flowables = flowables params = self._params = {} if style: if not isinstance(style,ListStyle): raise ValueError('%s style argument (%r) not a ListStyle' % (self.__class__.__name__,style)) self._style = style for k in ListStyle.defaults: if k in kwds: v = kwds.get(k) elif style: v = getattr(style,k) else: continue params[k] = v for k in ('value', 'spaceBefore','spaceAfter'): v = kwds.get(k,getattr(style,k,None)) if v is not None: params[k] = v class _LIParams: def __init__(self,flowable,params,value,first): self.flowable = flowable self.params = params self.value = value self.first= first class ListFlowable(_Container,Flowable): def __init__(self, flowables, #the initial flowables start=1, style=None, #leftIndent=18, #rightIndent=0, #spaceBefore=None, #spaceAfter=None, #bulletType='1', #bulletColor='black', #bulletFontName='Helvetica', #bulletFontSize=12, #bulletOffsetY=0, #bulletDedent='auto', #bulletDir='ltr', #bulletFormat=None, **kwds ): self._flowables = flowables if style: if not isinstance(style,ListStyle): raise ValueError('%s style argument not a ListStyle' % self.__class__.__name__) self.style = style for k,v in ListStyle.defaults.items(): setattr(self,'_'+k,kwds.get(k,getattr(style,k,v))) if start is None: start = getattr(self,'_start',None) if start is None: if getattr(self,'_bulletType','1')=='bullet': start = 'circle' else: start = '1' self._start = start for k in ('spaceBefore','spaceAfter'): v = kwds.get(k,getattr(style,k,None)) if v is not None: setattr(self,k,v) self._content = self._getContent() del self._flowables self._dims = None def wrap(self,aW,aH): if self._dims!=aW: self.width, self.height = _listWrapOn(self._content,aW,self.canv) self._dims = aW return self.width,self.height def split(self,aW,aH): return self._content def _flowablesIter(self): for f in self._flowables: if isinstance(f,(list,tuple)): if f: for i, z in enumerate(f): yield i==0 and not isinstance(z,LIIndenter), z elif isinstance(f,ListItem): params = f._params if not params: #meerkat simples just a list like object for i, z in enumerate(f._flowables): if isinstance(z,LIIndenter): raise ValueError('LIIndenter not allowed in ListItem') yield i==0, z else: params = params.copy() value = params.pop('value',None) spaceBefore = params.pop('spaceBefore',None) spaceAfter = params.pop('spaceAfter',None) n = len(f._flowables) - 1 for i, z in enumerate(f._flowables): P = params.copy() if not i and spaceBefore is not None: P['spaceBefore'] = spaceBefore if i==n and spaceAfter is not None: P['spaceAfter'] = spaceAfter if i: value=None yield 0, _LIParams(z,P,value,i==0) else: yield not isinstance(f,LIIndenter), f def _makeLIIndenter(self,flowable, bullet, params=None): if params: leftIndent = params.get('leftIndent',self._leftIndent) rightIndent = params.get('rightIndent',self._rightIndent) spaceBefore = params.get('spaceBefore',None) spaceAfter = params.get('spaceAfter',None) return LIIndenter(flowable,leftIndent,rightIndent,bullet,spaceBefore=spaceBefore,spaceAfter=spaceAfter) else: return LIIndenter(flowable,self._leftIndent,self._rightIndent,bullet) def _makeBullet(self,value,params=None): if params is None: def getp(a): return getattr(self,'_'+a) else: style = getattr(params,'style',None) def getp(a): if a in params: return params[a] if style and a in style.__dict__: return getattr(self,a) return getattr(self,'_'+a) return BulletDrawer( value=value, bulletAlign=getp('bulletAlign'), bulletType=getp('bulletType'), bulletColor=getp('bulletColor'), bulletFontName=getp('bulletFontName'), bulletFontSize=getp('bulletFontSize'), bulletOffsetY=getp('bulletOffsetY'), bulletDedent=getp('calcBulletDedent'), bulletDir=getp('bulletDir'), bulletFormat=getp('bulletFormat'), ) def _getContent(self): value = self._start bt = self._bulletType inc = int(bt in '1aAiI') if inc: value = int(value) bd = self._bulletDedent if bd=='auto': align = self._bulletAlign dir = self._bulletDir if dir=='ltr' and align=='left': bd = self._leftIndent elif align=='right': bd = self._rightIndent else: #we need to work out the maximum width of any of the labels tvalue = value maxW = 0 for d,f in self._flowablesIter(): if d: maxW = max(maxW,_computeBulletWidth(self,tvalue)) if inc: tvalue += inc elif isinstance(f,LIIndenter): b = f._bullet if b: if b.bulletType==bt: maxW = max(maxW,_computeBulletWidth(b,b.value)) tvalue = int(b.value) else: maxW = max(maxW,_computeBulletWidth(self,tvalue)) if inc: tvalue += inc if dir=='ltr': if align=='right': bd = self._leftIndent - maxW else: bd = self._leftIndent - maxW*0.5 elif align=='left': bd = self._rightIndent - maxW else: bd = self._rightIndent - maxW*0.5 self._calcBulletDedent = bd S = [] aS = S.append i=0 for d,f in self._flowablesIter(): fparams = {} if not i: i += 1 spaceBefore = getattr(self,'spaceBefore',None) if spaceBefore is not None: fparams['spaceBefore'] = spaceBefore if d: aS(self._makeLIIndenter(f,bullet=self._makeBullet(value),params=fparams)) if inc: value += inc elif isinstance(f,LIIndenter): b = f._bullet if b: if b.bulletType!=bt: raise ValueError('Included LIIndenter bulletType=%s != OrderedList bulletType=%s' % (b.bulletType,bt)) value = int(b.value) else: f._bullet = self._makeBullet(value,params=getattr(f,'params',None)) if fparams: f.__dict__['spaceBefore'] = max(f.__dict__.get('spaceBefore',0),spaceBefore) aS(f) if inc: value += inc elif isinstance(f,_LIParams): fparams.update(f.params) z = self._makeLIIndenter(f.flowable,bullet=None,params=fparams) if f.first: if f.value is not None: value = f.value if inc: value = int(value) z._bullet = self._makeBullet(value,f.params) if inc: value += inc aS(z) else: aS(self._makeLIIndenter(f,bullet=None,params=fparams)) spaceAfter = getattr(self,'spaceAfter',None) if spaceAfter is not None: f=S[-1] f.__dict__['spaceAfter'] = max(f.__dict__.get('spaceAfter',0),spaceAfter) return S class TopPadder(Flowable): '''wrap a single flowable so that its first bit will be padded to fill out the space so that it appears at the bottom of its frame''' def __init__(self,f): self.__dict__['_TopPadder__f'] = f def wrap(self,aW,aH): w,h = self.__f.wrap(aW,aH) self.__dict__['_TopPadder__dh'] = aH-h return w,h def split(self,aW,aH): S = self.__f.split(aW,aH) if len(S)>1: S[0] = TopPadder(S[0]) return S def drawOn(self, canvas, x, y, _sW=0): self.__f.drawOn(canvas,x,y-max(0,self.__dh-1e-8),_sW) def __setattr__(self,a,v): setattr(self.__f,a,v) def __getattr__(self,a): return getattr(self.__f,a) def __delattr__(self,a): delattr(self.__f,a) class DocAssign(NullDraw): '''At wrap time this flowable evaluates var=expr in the doctemplate namespace''' _ZEROSIZE=1 def __init__(self,var,expr,life='forever'): Flowable.__init__(self) self.args = var,expr,life def funcWrap(self,aW,aH): NS=self._doctemplateAttr('_nameSpace') NS.update(dict(availableWidth=aW,availableHeight=aH)) try: return self.func() finally: for k in 'availableWidth','availableHeight': try: del NS[k] except: pass def func(self): return self._doctemplateAttr('d'+self.__class__.__name__[1:])(*self.args) def wrap(self,aW,aH): self.funcWrap(aW,aH) return 0,0 class DocExec(DocAssign): '''at wrap time exec stmt in doc._nameSpace''' def __init__(self,stmt,lifetime='forever'): Flowable.__init__(self) self.args=stmt,lifetime class DocPara(DocAssign): '''at wrap time create a paragraph with the value of expr as text if format is specified it should use %(__expr__)s for string interpolation of the expression expr (if any). It may also use %(name)s interpolations for other variables in the namespace. suitable defaults will be used if style and klass are None ''' def __init__(self,expr,format=None,style=None,klass=None,escape=True): Flowable.__init__(self) self.expr=expr self.format=format self.style=style self.klass=klass self.escape=escape def func(self): expr = self.expr if expr: if not isStrType(expr): expr = str(expr) return self._doctemplateAttr('docEval')(expr) def add_content(self,*args): self._doctemplateAttr('frame').add_generated_content(*args) def get_value(self,aW,aH): value = self.funcWrap(aW,aH) if self.format: NS=self._doctemplateAttr('_nameSpace').copy() NS.update(dict(availableWidth=aW,availableHeight=aH)) NS['__expr__'] = value value = self.format % NS else: value = str(value) return value def wrap(self,aW,aH): value = self.get_value(aW,aH) P = self.klass if not P: from reportlab.platypus.paragraph import Paragraph as P style = self.style if not style: from reportlab.lib.styles import getSampleStyleSheet style=getSampleStyleSheet()['Code'] if self.escape: from xml.sax.saxutils import escape value=escape(value) self.add_content(P(value,style=style)) return 0,0 class DocAssert(DocPara): def __init__(self,cond,format=None): Flowable.__init__(self) self.expr=cond self.format=format def funcWrap(self,aW,aH): self._cond = DocPara.funcWrap(self,aW,aH) return self._cond def wrap(self,aW,aH): value = self.get_value(aW,aH) if not bool(self._cond): raise AssertionError(value) return 0,0 class DocIf(DocPara): def __init__(self,cond,thenBlock,elseBlock=[]): Flowable.__init__(self) self.expr = cond self.blocks = elseBlock or [],thenBlock def checkBlock(self,block): if not isinstance(block,(list,tuple)): block = (block,) return block def wrap(self,aW,aH): self.add_content(*self.checkBlock(self.blocks[int(bool(self.funcWrap(aW,aH)))])) return 0,0 class DocWhile(DocIf): def __init__(self,cond,whileBlock): Flowable.__init__(self) self.expr = cond self.block = self.checkBlock(whileBlock) def wrap(self,aW,aH): if bool(self.funcWrap(aW,aH)): self.add_content(*(list(self.block)+[self])) return 0,0
bsd-3-clause
-4,955,683,830,492,444,000
35.490395
152
0.553047
false
3.812399
false
false
false
stoilov/Programming101
week3/HackBulgariaAPI/team_matcher.py
1
2715
import requests import random class MatchCourse: def __init__(self): self.url = "https://hackbulgaria.com/api/students/" self.records = [] self.courses = None def get_info(self): self.records = requests.get(self.url, verify=False) if self.records.status_code != 200: return False self.records = self.records.json() return self.records def print_messages(self): print("\nHello, you can use one the following commands") print("list_courses - this lists all the courses that are available now.") print("match_teams <course_id>, <team_size>, <group_time>\n\n") def list_courses(self): if self.records is False: return False self.courses = set() for record in self.records: for course in record["courses"]: self.courses.add(course["name"]) self.courses = list(self.courses) for key, course in enumerate(self.courses): print("[{}] {}".format(key + 1, course)) def match_teams(self, course_id, team_size, group_time): people_in_teams = [] for record in self.records: for course in record["courses"]: course_group = course["group"] == group_time course_name = course["name"] == self.courses[course_id - 1] available = record["available"] is True if course_name and course_group and available: people_in_teams.append(record["name"]) random.shuffle(people_in_teams) for key, student in enumerate(people_in_teams): print(student) if (key + 1) % team_size == 0: print("==========") def get_input(self): command = input("Enter command> ") command = command.split(" ") return command def interface(self): command = self.get_input() while command[0] != "exit": if command[0] == "list_courses": self.list_courses() command = self.get_input() elif command[0] == "match_teams": command[1] = int(command[1]) command[2] = int(command[2]) command[3] = int(command[3]) self.match_teams(command[1], command[2], command[3]) command = self.get_input() else: print("Bad input!") command = self.get_input() else: print("Goodbye!") def main(): hackbulgaria = MatchCourse() hackbulgaria.get_info() hackbulgaria.print_messages() hackbulgaria.interface() if __name__ == "__main__": main()
mit
-4,352,641,921,128,700,400
30.569767
82
0.539963
false
4.12614
false
false
false
PnX-SI/GeoNature
backend/geonature/utils/module.py
1
4711
import os import sys from pathlib import Path from importlib import import_module from pkg_resources import load_entry_point, get_entry_info, iter_entry_points from geonature.utils.utilstoml import load_and_validate_toml from geonature.utils.config_schema import ManifestSchemaProdConf from geonature.utils.env import GN_EXTERNAL_MODULE from geonature.core.gn_commons.models import TModules class NoManifestFound(Exception): pass def import_legacy_module(module_object): sys.path.insert(0, str(GN_EXTERNAL_MODULE)) # to be able to import non-packaged modules try: # module dist is module_code.lower() because the symlink is created like this # in utils.gn_module_import.copy_in_external_mods module_dist = module_object.module_code.lower() module_dir = GN_EXTERNAL_MODULE / module_dist manifest_path = module_dir / 'manifest.toml' if not manifest_path.is_file(): raise NoManifestFound() module_manifest = load_and_validate_toml(manifest_path, ManifestSchemaProdConf) module_blueprint = import_module(f'{module_dist}.backend.blueprint').blueprint module_config = { 'ID_MODULE': module_object.id_module, 'MODULE_CODE': module_object.module_code, 'MODULE_URL': '/' + module_object.module_path.replace(' ', ''), 'FRONTEND_PATH': str(module_dir / 'frontend'), } module_schema = import_module(f'{module_object.module_code.lower()}.config.conf_schema_toml').GnModuleSchemaConf config_path = module_dir / "config/conf_gn_module.toml" module_config.update(load_and_validate_toml(config_path, module_schema)) module_blueprint.config = module_config return module_config, module_blueprint finally: sys.path.pop(0) def import_packaged_module(module_dist, module_object): module_code = module_object.module_code module_dir = GN_EXTERNAL_MODULE / module_object.module_path frontend_path = os.environ.get(f'GEONATURE_{module_code}_FRONTEND_PATH', str(module_dir / 'frontend')) module_config = { 'MODULE_CODE': module_code, 'MODULE_URL': '/' + module_object.module_path, 'FRONTEND_PATH': frontend_path, } module_schema = load_entry_point(module_dist, 'gn_module', 'config_schema') config_path = os.environ.get(f'GEONATURE_{module_object.module_code}_CONFIG_FILE') if not config_path: # fallback to legacy conf path guessing config_path = str(module_dir / 'config/conf_gn_module.toml') module_config.update(load_and_validate_toml(config_path, module_schema)) blueprint_entry_point = get_entry_info(module_dist, 'gn_module', 'blueprint') if blueprint_entry_point: module_blueprint = blueprint_entry_point.load() module_blueprint.config = module_config else: module_blueprint = None return (module_object, module_config, module_blueprint) def get_dist_from_code(module_code): for entry_point in iter_entry_points('gn_module', 'code'): if module_code == entry_point.load(): return entry_point.dist def import_gn_module(module_object): """ return (module_object, module_config, module_blueprint) module_blueprint may be None in case of front-only module """ # try to find a packaged module with the given code module_dist = get_dist_from_code(module_object.module_code) if module_dist: return import_packaged_module(module_dist, module_object) else: module_config, module_blueprint = import_legacy_module(module_object) return (module_object, module_config, module_blueprint) def import_backend_enabled_modules(): """ yield (module_object, module_config, module_blueprint) for backend-enabled modules in gn_commons.t_modules """ enabled_modules = TModules.query.filter_by(active_backend=True).all() for module_object in enabled_modules: # ignore internal module (i.e. without symlink in external module directory) if not Path(GN_EXTERNAL_MODULE / module_object.module_code.lower()).exists(): continue yield import_gn_module(module_object) def list_frontend_enabled_modules(): """ yield module_config for frontend-enabled modules in gn_commons.t_modules """ enabled_modules = TModules.query.filter_by(active_frontend=True).all() for module_object in enabled_modules: # ignore internal module (i.e. without symlink in external module directory) if not Path(GN_EXTERNAL_MODULE / module_object.module_code.lower()).exists(): continue yield module_object
gpl-3.0
4,306,982,387,413,549,600
40.690265
120
0.680959
false
3.738889
true
false
false
alexanderfefelov/nav
python/nav/eventengine/topology.py
1
7788
# # Copyright (C) 2012 UNINETT # # This file is part of Network Administration Visualized (NAV). # # NAV is free software: you can redistribute it and/or modify it under # the terms of the GNU General Public License version 2 as published by # the Free Software Foundation. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. You should have received a copy of the GNU General Public License # along with NAV. If not, see <http://www.gnu.org/licenses/>. # """Topology evaluation functions for event processing""" import socket import datetime import networkx from networkx.exception import NetworkXException from nav.models.manage import SwPortVlan, Netbox, Prefix, Arp, Cam import logging _logger = logging.getLogger(__name__) def netbox_appears_reachable(netbox): """Returns True if netbox appears to be reachable through the known topology. """ target_path = get_path_to_netbox(netbox) nav = NAVServer.make_for(netbox.ip) nav_path = get_path_to_netbox(nav) if nav else True _logger.debug("reachability paths, target_path=%(target_path)r, " "nav_path=%(nav_path)r", locals()) return bool(target_path and nav_path) def get_path_to_netbox(netbox): """Returns a likely path from netbox to its apparent gateway/router. If any switches on the path, or the router itself is down, no current path exists and a False value is returned. However, if there is insufficient information for NAV to find a likely path, a True value is returned. """ prefix = netbox.get_prefix() if not prefix: _logger.warning("couldn't find prefix for %s", netbox) return True router_ports = prefix.get_router_ports() if router_ports: router_port = router_ports[0] else: _logger.warning("couldn't find router ports for %s", prefix) return True router = router_port.interface.netbox _logger.debug("reachability check for %s on %s (router: %s)", netbox, prefix, router) graph = get_graph_for_vlan(prefix.vlan) try: netbox.add_to_graph(graph) except AttributeError: pass strip_down_nodes_from_graph(graph, keep=netbox) if netbox not in graph or router not in graph: if router.up == router.UP_UP: _logger.warning("%(netbox)s topology problem: router %(router)s " "is up, but not in VLAN graph for %(prefix)r. " "Defaulting to 'reachable' status.", locals()) return True _logger.debug("%s not reachable, router or box not in graph: %r", netbox, graph.edges()) return False try: path = networkx.shortest_path(graph, netbox, router) except NetworkXException as error: _logger.debug("an internal networkx exception was raised in " "shortest_path, assuming no path was found: %s", error) path = [] else: _logger.debug("path to %s: %r", netbox, path) return path def get_graph_for_vlan(vlan): """Builds a simple topology graph of the active netboxes in vlan. Any netbox that seems to be down at the moment will not be included in the graph. :returns: A networkx.Graph object. """ swpvlan = SwPortVlan.objects.filter(vlan=vlan).select_related( 'interface', 'interface__netbox', 'interface__to_netbox', 'interface__to_interface') graph = networkx.MultiGraph(name='graph for vlan %s' % vlan) for swp in swpvlan: source = swp.interface.netbox source_ifc = swp.interface target = swp.interface.to_netbox target_ifc = swp.interface.to_interface if target: key = tuple(sorted( (source_ifc.id, target_ifc.id if target_ifc else None))) data = set([source_ifc, target_ifc]) graph.add_edge(source, target, key=key, data=data) return graph def strip_down_nodes_from_graph(graph, keep=None): """Strips all nodes (netboxes) from graph that are currently down. :param keep: A node to keep regardless of its current status. """ removable = set(node for node in graph.nodes_iter() if node.up != node.UP_UP and node != keep) graph.remove_nodes_from(removable) return len(removable) def strip_down_links_from_graph(graph): """Strips all edges (links) from graph where any of the involved interfaces are down. """ def _is_down(data): ifcs = data.get('data', []) return any(ifc and ifc.ifoperstatus == ifc.OPER_DOWN for ifc in ifcs) removable = set( (u, v, key) for u, v, key, data in graph.edges_iter(data=True, keys=True) if _is_down(data) ) graph.remove_edges_from(removable) return len(removable) ### ### Functions for locating the NAV server itself ### class NAVServer(object): """A simple mockup of a Netbox representing the NAV server itself""" UP_UP = Netbox.UP_UP @classmethod def make_for(cls, dest): """Creates a NAVServer instance with the source IP address of the local host used for routing traffic to dest. :param dest: An IP address """ ipaddr = get_source_address_for(dest) if ipaddr: return cls(ipaddr) def __init__(self, ip): self.sysname = "NAV" self.ip = ip self.up = Netbox.UP_UP def get_prefix(self): """Gets the prefix for the NAV servers ip""" matches = Prefix.objects.contains_ip(self.ip) if matches: return matches[0] def add_to_graph(self, graph): """Adds edge between myself and all neighboring switches""" for switch in self.get_switches_from_cam(): graph.add_edge(self, switch) def get_switches_from_cam(self): """Gets all neighboring switches""" mac = self.get_mac_from_arp() if mac: records = Cam.objects.filter( mac=mac, end_time__gte=datetime.datetime.max ).select_related('netbox') return list(set(cam.netbox for cam in records)) else: return [] def get_mac_from_arp(self): """Finds the NAV server's MAC address based on its IP address""" arp = Arp.objects.extra( where=['ip = %s'], params=[self.ip] ).filter(end_time__gte=datetime.datetime.max) if arp: return arp[0].mac def __repr__(self): return "{self.__class__.__name__}({self.ip!r})".format(self=self) def get_source_address_for(dest): """Gets the source IP address used by this host when attempting to contact the destination host. :param dest: An IP address string. :return: And IP address string, or None if no address was found. """ family, sockaddr = _get_target_dgram_addr(dest) sock = socket.socket(family, socket.SOCK_DGRAM) try: sock.connect(sockaddr) except socket.error, err: _logger.warning("Error when getting NAV's source address for " "connecting to %(dest)s: %(err)s", locals()) return addrinfo = sock.getsockname() sock.close() return addrinfo[0] def _get_target_dgram_addr(target): """Returns a (family, sockaddr) tuple for the target address for a SOCK_DGRAM socket type. """ for (family, socktype, _proto, _canonname, sockaddr) in socket.getaddrinfo(target, 1): if socktype == socket.SOCK_DGRAM: return family, sockaddr
gpl-2.0
4,639,183,928,962,233,000
31.45
79
0.626605
false
3.795322
false
false
false
MikeLaptev/sandbox_python
mera/unittest_example/generate_and_load_unittest_update_four.py
1
4101
''' Created on Jul 30, 2015 @author: Mikhail ''' import unittest import re from json_file_generator import MyOwnJSONProcessing as json_processing from json_file_generator import __version__ as json_file_generator_version from unittest.case import skip, skipIf class GenerateAndLoadJSONTestUpdateFour(unittest.TestCase): expected_data = {} @classmethod def setUpClass(cls): print "{} for {} has been called".format(cls.setUpClass.__name__, cls.__name__) cls.expected_data = json_processing.generate_data_for_json_obj() def setUp(self): print "{} for {} has been called".format(self.setUp.__name__, self._testMethodName) self.file_name = "generate_and_load_unittest.json" self.original_name = json_processing.generate_json_file_with_data(self.file_name, self.expected_data) def tearDown(self): print "{} for {} has been called".format(self.tearDown.__name__, self._testMethodName) @classmethod def tearDownClass(cls): print "{} for {} has been called".format(cls.tearDownClass.__name__, cls.__name__) json_processing.clean_up() def testGenerateAndLoadJSONValidKeys(self): print "Processing file {}".format(self.original_name) actual_data = json_processing.load_data_from_json_file(self.original_name) for exp_key in self.expected_data.keys(): self.assertTrue(actual_data.has_key(exp_key), "Expected key '{}' has not been found in loaded json".format(exp_key)) for act_key in actual_data.keys(): self.assertTrue(self.expected_data.has_key(act_key), "Loaded key '{}' has not been found in dumped json".format(act_key)) # General version of skip @skip("old functionality") def testGenerateAndLoadJSONValidKeysHasOnlyLetters1(self): print "Processing file {}".format(self.original_name) actual_data = json_processing.load_data_from_json_file(self.original_name) for act_key in actual_data.keys(): self.assertTrue(re.match("[^a-zA-Z]", act_key) is None, "Key should contains only alpha symbols: {}".format(act_key)) # Version of skip that check version of our json_file_generator @skipIf(json_file_generator_version > 1, "This functionality is not supported in this version on the json file generator") def testGenerateAndLoadJSONValidKeysHasOnlyLetters2(self): print "Processing file {}".format(self.original_name) actual_data = json_processing.load_data_from_json_file(self.original_name) for act_key in actual_data.keys(): self.assertIsNone(re.match("[^a-zA-Z]", act_key), "Key should contains only alpha symbols: {}".format(act_key)) def testGenerateAndLoadJSONValidValues(self): print "Processing file {}".format(self.original_name) actual_data = json_processing.load_data_from_json_file(self.original_name) for exp_key, exp_value in self.expected_data.items(): self.assertEquals(exp_value, actual_data.get(exp_key), "Dictionaries have different values '{}' for first and '{}' for second for the same key".format(exp_value, actual_data.get(exp_key))) for act_key, act_value in actual_data.items(): self.assertEquals(act_value, self.expected_data.get(act_key), "Dictionaries have different values '{}' for first and '{}' for second for the same key".format(act_value, self.expected_data.get(act_key))) def testGenerateAndLoadJSONForInvalidFile(self): """ This test checks that valid exception will be raised if required file will not be found """ invalid_name = "invalid_" + self.original_name print "Processing file {}".format(invalid_name) with self.assertRaises(IOError) as io_exception: # attempt to read file that doesn't exist json_processing.load_data_from_json_file(invalid_name) self.assertEqual(io_exception.exception.errno, 2) self.assertEqual(io_exception.exception.strerror, 'No such file or directory') if __name__ == "__main__": unittest.main(verbosity=2)
apache-2.0
-1,147,400,482,822,408,300
50.275
214
0.683248
false
3.890892
true
false
false
AutorestCI/azure-sdk-for-python
azure-mgmt-network/azure/mgmt/network/v2017_09_01/models/express_route_circuits_routes_table_list_result.py
1
1252
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ExpressRouteCircuitsRoutesTableListResult(Model): """Response for ListRoutesTable associated with the Express Route Circuits API. :param value: The list of routes table. :type value: list[~azure.mgmt.network.v2017_09_01.models.ExpressRouteCircuitRoutesTable] :param next_link: The URL to get the next set of results. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[ExpressRouteCircuitRoutesTable]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__(self, value=None, next_link=None): super(ExpressRouteCircuitsRoutesTableListResult, self).__init__() self.value = value self.next_link = next_link
mit
-8,715,857,573,506,023,000
35.823529
80
0.610224
false
4.173333
false
false
false
appleseedhq/cortex
python/IECoreScene/RemovePrimitiveVariables.py
5
2937
########################################################################## # # Copyright (c) 2007-2010, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## from fnmatch import fnmatchcase import IECore import IECoreScene class RemovePrimitiveVariables( IECoreScene.PrimitiveOp ) : def __init__( self ) : IECoreScene.PrimitiveOp.__init__( self, "Removes variables from primitives" ) self.parameters().addParameters( [ IECore.StringParameter( name = "mode", description = """This chooses whether or not the names parameter specifies the names of variables to keep or the names of variables to remove.""", defaultValue = "remove", presets = ( ( "keep", "keep" ), ( "remove", "remove" ) ), presetsOnly = True ), IECore.StringVectorParameter( name = "names", description = "The names of variables. These can include * or ? characters to match many names.", defaultValue = IECore.StringVectorData() ) ] ) def modifyPrimitive( self, primitive, args ) : keep = args["mode"].value == "keep" for key in primitive.keys() : for n in args["names"] : m = fnmatchcase( key, n ) if (m and not keep) or (not m and keep) : del primitive[key] IECore.registerRunTimeTyped( RemovePrimitiveVariables )
bsd-3-clause
5,771,326,003,735,331,000
36.177215
102
0.677562
false
4.338257
false
false
false
eJRF/ejrf
questionnaire/migrations/0002_copy_question_text_to_export_label.py
1
25463
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): "Write your forwards methods here." for question in orm.question.objects.filter(export_label=''): question.export_label = question.text question.save() def backwards(self, orm): "Write your backwards methods here." models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'questionnaire.answer': { 'Meta': {'object_name': 'Answer'}, 'code': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['questionnaire.Country']", 'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'answers'", 'null': 'True', 'to': "orm['questionnaire.Question']"}), 'questionnaire': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'answers'", 'null': 'True', 'to': "orm['questionnaire.Questionnaire']"}), 'status': ('django.db.models.fields.CharField', [], {'default': "'Draft'", 'max_length': '15'}), 'version': ('django.db.models.fields.IntegerField', [], {'default': '1', 'null': 'True'}) }, 'questionnaire.answergroup': { 'Meta': {'object_name': 'AnswerGroup'}, 'answer': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'answergroup'", 'null': 'True', 'to': "orm['questionnaire.Answer']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'grouped_question': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'answer_groups'", 'null': 'True', 'to': "orm['questionnaire.QuestionGroup']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'row': ('django.db.models.fields.CharField', [], {'max_length': '6'}) }, 'questionnaire.comment': { 'Meta': {'object_name': 'Comment'}, 'answer_group': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'comments'", 'symmetrical': 'False', 'to': "orm['questionnaire.AnswerGroup']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'text': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}) }, 'questionnaire.country': { 'Meta': {'object_name': 'Country'}, 'code': ('django.db.models.fields.CharField', [], {'max_length': '5', 'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}), 'regions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'countries'", 'null': 'True', 'to': "orm['questionnaire.Region']"}) }, 'questionnaire.countryquestionnairesubmission': { 'Meta': {'object_name': 'CountryQuestionnaireSubmission'}, 'country': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'submissions'", 'to': "orm['questionnaire.Country']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'questionnaire': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'submissions'", 'to': "orm['questionnaire.Questionnaire']"}), 'version': ('django.db.models.fields.IntegerField', [], {'default': '1'}) }, 'questionnaire.dateanswer': { 'Meta': {'object_name': 'DateAnswer', '_ormbases': ['questionnaire.Answer']}, u'answer_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['questionnaire.Answer']", 'unique': 'True', 'primary_key': 'True'}), 'response': ('django.db.models.fields.CharField', [], {'max_length': '10', 'null': 'True'}) }, 'questionnaire.multichoiceanswer': { 'Meta': {'object_name': 'MultiChoiceAnswer', '_ormbases': ['questionnaire.Answer']}, u'answer_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['questionnaire.Answer']", 'unique': 'True', 'primary_key': 'True'}), 'response': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'answer'", 'null': 'True', 'to': "orm['questionnaire.QuestionOption']"}) }, 'questionnaire.multipleresponseanswer': { 'Meta': {'object_name': 'MultipleResponseAnswer', '_ormbases': ['questionnaire.Answer']}, u'answer_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['questionnaire.Answer']", 'unique': 'True', 'primary_key': 'True'}), 'response': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'answers'", 'null': 'True', 'to': "orm['questionnaire.QuestionOption']"}) }, 'questionnaire.numericalanswer': { 'Meta': {'object_name': 'NumericalAnswer', '_ormbases': ['questionnaire.Answer']}, u'answer_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['questionnaire.Answer']", 'unique': 'True', 'primary_key': 'True'}), 'response': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True'}) }, 'questionnaire.organization': { 'Meta': {'object_name': 'Organization'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}) }, 'questionnaire.question': { 'Meta': {'object_name': 'Question'}, 'UID': ('django.db.models.fields.CharField', [], {'max_length': '6'}), 'answer_sub_type': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True', 'blank': 'True'}), 'answer_type': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'export_label': ('django.db.models.fields.TextField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'instructions': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'is_primary': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_required': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'child'", 'null': 'True', 'to': "orm['questionnaire.Question']"}), 'region': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'questions'", 'null': 'True', 'to': "orm['questionnaire.Region']"}), 'text': ('django.db.models.fields.TextField', [], {}), 'theme': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'questions'", 'null': 'True', 'to': "orm['questionnaire.Theme']"}) }, 'questionnaire.questiongroup': { 'Meta': {'ordering': "('order',)", 'object_name': 'QuestionGroup'}, 'allow_multiples': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_all': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'grid': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'hybrid': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'instructions': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'is_core': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sub_group'", 'null': 'True', 'to': "orm['questionnaire.QuestionGroup']"}), 'question': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'question_group'", 'symmetrical': 'False', 'to': "orm['questionnaire.Question']"}), 'subsection': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'question_group'", 'to': "orm['questionnaire.SubSection']"}) }, 'questionnaire.questiongrouporder': { 'Meta': {'ordering': "('order',)", 'unique_together': "(('order', 'question_group', 'question'),)", 'object_name': 'QuestionGroupOrder'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'orders'", 'to': "orm['questionnaire.Question']"}), 'question_group': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'orders'", 'null': 'True', 'to': "orm['questionnaire.QuestionGroup']"}) }, 'questionnaire.questionnaire': { 'Meta': {'object_name': 'Questionnaire'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'to': "orm['questionnaire.Questionnaire']"}), 'region': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'questionnaire'", 'null': 'True', 'to': "orm['questionnaire.Region']"}), 'status': ('model_utils.fields.StatusField', [], {'default': "'draft'", 'max_length': '100', u'no_check_for_status': 'True'}), 'year': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}) }, 'questionnaire.questionoption': { 'Meta': {'ordering': "('modified',)", 'object_name': 'QuestionOption'}, 'UID': ('django.db.models.fields.CharField', [], {'max_length': '6', 'unique': 'True', 'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'instructions': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'order': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'options'", 'to': "orm['questionnaire.Question']"}), 'text': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'questionnaire.region': { 'Meta': {'object_name': 'Region'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '300', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}), 'organization': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'regions'", 'null': 'True', 'to': "orm['questionnaire.Organization']"}) }, 'questionnaire.section': { 'Meta': {'ordering': "('order',)", 'object_name': 'Section'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_core': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}), 'order': ('django.db.models.fields.IntegerField', [], {}), 'questionnaire': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sections'", 'to': "orm['questionnaire.Questionnaire']"}), 'region': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sections'", 'null': 'True', 'to': "orm['questionnaire.Region']"}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '256'}) }, 'questionnaire.skipquestion': { 'Meta': {'object_name': 'SkipQuestion', '_ormbases': ['questionnaire.SkipRule']}, 'skip_question': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'skip_rules'", 'to': "orm['questionnaire.Question']"}), u'skiprule_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['questionnaire.SkipRule']", 'unique': 'True', 'primary_key': 'True'}) }, 'questionnaire.skiprule': { 'Meta': {'object_name': 'SkipRule'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'region': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'skip_rules'", 'null': 'True', 'to': "orm['questionnaire.Region']"}), 'response': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'skip_rules'", 'to': "orm['questionnaire.QuestionOption']"}), 'root_question': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'root_skip_rules'", 'to': "orm['questionnaire.Question']"}), 'subsection': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'skip_rules'", 'to': "orm['questionnaire.SubSection']"}) }, 'questionnaire.skipsubsection': { 'Meta': {'object_name': 'SkipSubsection', '_ormbases': ['questionnaire.SkipRule']}, 'skip_subsection': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['questionnaire.SubSection']"}), u'skiprule_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['questionnaire.SkipRule']", 'unique': 'True', 'primary_key': 'True'}) }, 'questionnaire.subsection': { 'Meta': {'ordering': "('order',)", 'object_name': 'SubSection'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_core': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'order': ('django.db.models.fields.IntegerField', [], {}), 'region': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sub_sections'", 'null': 'True', 'to': "orm['questionnaire.Region']"}), 'section': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sub_sections'", 'to': "orm['questionnaire.Section']"}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '256', 'null': 'True', 'blank': 'True'}) }, 'questionnaire.supportdocument': { 'Meta': {'object_name': 'SupportDocument'}, 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['questionnaire.Country']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'path': ('django.db.models.fields.files.FileField', [], {'max_length': '100'}), 'questionnaire': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'support_documents'", 'to': "orm['questionnaire.Questionnaire']"}) }, 'questionnaire.textanswer': { 'Meta': {'object_name': 'TextAnswer', '_ormbases': ['questionnaire.Answer']}, u'answer_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['questionnaire.Answer']", 'unique': 'True', 'primary_key': 'True'}), 'response': ('django.db.models.fields.TextField', [], {'null': 'True'}) }, 'questionnaire.theme': { 'Meta': {'object_name': 'Theme'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'region': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'themes'", 'null': 'True', 'to': "orm['questionnaire.Region']"}) }, 'questionnaire.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['questionnaire.Country']", 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'organization': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['questionnaire.Organization']", 'null': 'True', 'blank': 'True'}), 'region': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['questionnaire.Region']", 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'user_profile'", 'unique': 'True', 'to': u"orm['auth.User']"}) } } complete_apps = ['questionnaire'] symmetrical = True
bsd-3-clause
-352,401,073,382,339,500
88.031469
195
0.571535
false
3.747866
false
false
false
SaschaMester/delicium
tools/telemetry/telemetry/core/platform/profiler/java_heap_profiler.py
1
3432
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import os import subprocess import threading from telemetry.core.platform import profiler from telemetry.core import util from telemetry.internal.backends.chrome import android_browser_finder util.AddDirToPythonPath(util.GetChromiumSrcDir(), 'build', 'android') try: from pylib import constants # pylint: disable=F0401 from pylib.device import device_errors # pylint: disable=F0401 except ImportError: constants = None device_errors = None class JavaHeapProfiler(profiler.Profiler): """Android-specific, trigger and fetch java heap dumps.""" _DEFAULT_DEVICE_DIR = '/data/local/tmp/javaheap' # TODO(bulach): expose this as a command line option somehow. _DEFAULT_INTERVAL = 20 def __init__(self, browser_backend, platform_backend, output_path, state): super(JavaHeapProfiler, self).__init__( browser_backend, platform_backend, output_path, state) self._run_count = 1 self._DumpJavaHeap(False) self._timer = threading.Timer(self._DEFAULT_INTERVAL, self._OnTimer) self._timer.start() @classmethod def name(cls): return 'java-heap' @classmethod def is_supported(cls, browser_type): if browser_type == 'any': return android_browser_finder.CanFindAvailableBrowsers() return browser_type.startswith('android') def CollectProfile(self): self._timer.cancel() self._DumpJavaHeap(True) try: self._browser_backend.adb.device().PullFile( self._DEFAULT_DEVICE_DIR, self._output_path) except: logging.exception('New exception caused by DeviceUtils conversion') raise self._browser_backend.adb.RunShellCommand( 'rm ' + os.path.join(self._DEFAULT_DEVICE_DIR, '*')) output_files = [] for f in os.listdir(self._output_path): if os.path.splitext(f)[1] == '.aprof': input_file = os.path.join(self._output_path, f) output_file = input_file.replace('.aprof', '.hprof') hprof_conv = os.path.join(constants.ANDROID_SDK_ROOT, 'tools', 'hprof-conv') subprocess.call([hprof_conv, input_file, output_file]) output_files.append(output_file) return output_files def _OnTimer(self): self._DumpJavaHeap(False) def _DumpJavaHeap(self, wait_for_completion): if not self._browser_backend.adb.device().FileExists( self._DEFAULT_DEVICE_DIR): self._browser_backend.adb.RunShellCommand( 'mkdir -p ' + self._DEFAULT_DEVICE_DIR) self._browser_backend.adb.RunShellCommand( 'chmod 777 ' + self._DEFAULT_DEVICE_DIR) device_dump_file = None for pid in self._GetProcessOutputFileMap().iterkeys(): device_dump_file = '%s/%s.%s.aprof' % (self._DEFAULT_DEVICE_DIR, pid, self._run_count) self._browser_backend.adb.RunShellCommand('am dumpheap %s %s' % (pid, device_dump_file)) if device_dump_file and wait_for_completion: util.WaitFor(lambda: self._FileSize(device_dump_file) > 0, timeout=2) self._run_count += 1 def _FileSize(self, file_name): try: return self._browser_backend.adb.device().Stat(file_name).st_size except device_errors.CommandFailedError: return 0
bsd-3-clause
5,593,076,294,993,118,000
34.75
76
0.666084
false
3.734494
false
false
false
HaydenFaulkner/phd
tensorflow_code/word2vec_basic.py
1
11354
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import math import os import random import zipfile import numpy as np # from six.moves import urllib # from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf # Step 1: Download the data. # url = 'http://mattmahoney.net/dc/' # def maybe_download(filename, expected_bytes): # """Download a file if not present, and make sure it's the right size.""" # if not os.path.exists(filename): # filename, _ = urllib.request.urlretrieve(url + filename, filename) # statinfo = os.stat(filename) # if statinfo.st_size == expected_bytes: # print('Found and verified', filename) # else: # print(statinfo.st_size) # raise Exception( # 'Failed to verify ' + filename + '. Can you get to it with a browser?') # return filename # filename = maybe_download('text8.zip', 31344016) # filename = '/home/hayden/Downloads/text8.zip' # # Read the data into a list of strings. # def read_data(filename): # """Extract the first file enclosed in a zip file as a list of words""" # with zipfile.ZipFile(filename) as f: # data = tf.compat.as_str(f.read(f.namelist()[0])).split() # return data # # words = read_data(filename) def word2_vec_basic(sentence_paths, extra_path=None, plot_path=None): def get_tennis_words(): words = [] for sentence_path in sentence_paths: with open(sentence_path) as f: lines = f.readlines() for line in lines: for word in ('<BOS> '+line.split('\t')[1].rstrip()+' <EOS>').split(): words.append(word) if extra_path is not None: with open(extra_path) as f: lines = f.readlines() for line in lines: for word in ('<BOS> ' + line.split('\t')[1].rstrip() + ' <EOS>').split(): words.append(word) return words words = get_tennis_words() print('Data size', len(words)) # Step 2: Build the dictionary and replace rare words with UNK token. vocabulary_size = min(len(collections.Counter(words)), 50000) def build_dataset(words): count = [['<UNK>', -1]] count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count += 1 data.append(index) count[0][1] = unk_count reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reverse_dictionary data, count, dictionary, reverse_dictionary = build_dataset(words) del words # Hint to reduce memory. print('Most common words (+<UNK>)', count[:5]) print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]]) global data_index data_index = 0 # Step 3: Function to generate a training batch for the skip-gram model. def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return batch, labels batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) for i in range(8): print(batch[i], reverse_dictionary[batch[i]], '->', labels[i, 0], reverse_dictionary[labels[i, 0]]) # Step 4: Build and train a skip-gram model. batch_size = 128 embedding_size = 64 # Dimension of the embedding vector. skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. # We pick a random validation set to sample nearest neighbors. Here we limit the # validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.random.choice(valid_window, valid_size, replace=False) num_sampled = 64 # Number of negative examples to sample. graph = tf.Graph() with graph.as_default(): # Input data. train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation with tf.device('/cpu:0'): # Look up embeddings for inputs. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. loss = tf.reduce_mean( tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) # Construct the SGD optimizer using a learning rate of 1.0. optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) # Compute the cosine similarity between minibatch examples and all embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) similarity = tf.matmul( valid_embeddings, normalized_embeddings, transpose_b=True) # Add variable initializer. init = tf.global_variables_initializer() # Step 5: Begin training. num_steps = 50001 with tf.Session(graph=graph) as session: # We must initialize all variables before we use them. init.run() print("Initialized") average_loss = 0 for step in range(num_steps): batch_inputs, batch_labels = generate_batch( batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += loss_val if step % 1000 == 0: if step > 0: average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 batches. print("Average loss at step ", step, ": ", average_loss) average_loss = 0 # Note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in range(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k + 1] log_str = "Nearest to %s:" % valid_word for k in range(top_k): close_word = reverse_dictionary[nearest[k]] log_str = "%s %s," % (log_str, close_word) print(log_str) final_embeddings = normalized_embeddings.eval() embeds = {} for i in range(len(reverse_dictionary)): embeds[reverse_dictionary[i]] = final_embeddings[i] # Step 6: Visualize the embeddings. def plot_with_labels(low_dim_embs, labels, filename=plot_path+'tsne.png'): assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings" plt.figure(figsize=(18, 18)) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.scatter(x, y) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.savefig(filename) if plot_path is not None: try: from sklearn.manifold import TSNE import matplotlib.pyplot as plt tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) plot_only = min(vocabulary_size, 500) low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :]) labels = [reverse_dictionary[i] for i in range(plot_only)] plot_with_labels(low_dim_embs, labels) except ImportError: print("Please install sklearn, matplotlib, and scipy to visualize embeddings.") return len(embeds), embeds, None
mit
5,478,328,674,893,871,000
39.123675
91
0.59239
false
3.999296
false
false
false
jacob-meacham/chain-cli
chain/cli.py
1
4526
"""CLI for chain. This module is not intended to be used programmatically - if this is something you want, use chain.client instead. """ import click from termcolor import colored from chain.chain import ChainClient, Frequency, NoChainExistsException, ChainExistsException # No docstrings for this file, as the functions are not meant to be called directly. # pylint: disable=missing-docstring DEFAULT_DATA_PATH = '~/.chain/chains.json' DONT_BREAK_TEXT = colored("Don't break the chain!", 'red', attrs=['underline']) # This is idiomatic for click # pylint: disable=C0103 pass_chain_context = click.make_pass_decorator(ChainClient) def _format_chain_name(name): return colored('"{}"'.format(name), 'green', attrs=['bold']) @click.group() @click.option('--file', metavar='FILE', help='Data file path, default is ~/.chain/chains.json', type=click.Path(), default=DEFAULT_DATA_PATH) @click.version_option('0.3.2') @click.pass_context def cli(ctx, file): ctx.obj = ChainClient(file) @cli.command(name='new', help='add a new chain') @click.argument('name') @click.option('--title', '-t', help='Title of this chain. If not specified, the title will be the name') @click.option('--daily', is_flag=True, help='Add daily links (Default)') @click.option('--weekly', is_flag=True, help='Add weekly links') @click.option('--monthly', is_flag=True, help='Add monthly links') @click.option('--required', help='Number of links required for the chain to be considered unbroken', default=1) @click.option('--description', '-d', help='Description of this chain', default='') @pass_chain_context def new_chain(client, name, title, daily, weekly, monthly, required, description): if [daily, weekly, monthly].count(True) > 1: raise click.BadArgumentUsage('One and only one of --daily, --weekly, --monthly must be set.') # Pylint has bugs with enums # pylint: disable=redefined-variable-type if weekly: frequency = Frequency.weekly elif monthly: frequency = Frequency.monthly else: frequency = Frequency.daily try: client.new_chain(name, title=title, frequency=frequency, description=description, num_required=required) except ChainExistsException as e: raise click.BadArgumentUsage(e.message) click.echo("New chain {} created. {}".format(_format_chain_name(name), DONT_BREAK_TEXT)) @cli.command(name='add', help='add a link to the chain') @click.argument('name') @click.option('--num', '-n', help='Number of links to add', default=1) @click.option('--message', '-m', help='Message attached to the added link', default='') @pass_chain_context def add_link(client, name, num, message): try: client.add_link_to_chain(name, num, message=message) except NoChainExistsException as e: raise click.BadArgumentUsage(e.message) num_links_text = colored('{}'.format(num), "blue", attrs=['bold']) link_pluralization = 'link' if num == 1 else 'links' click.echo('Added {} {} to chain {}. {}'.format(num_links_text, link_pluralization, _format_chain_name(name), DONT_BREAK_TEXT)) @cli.command(name='ls', help='List chains') @click.option('-q', help='List name only', is_flag=True) @click.option('--prefix', help='List only those chains whose name matches this prefix') @pass_chain_context def list_chains(client, q, prefix): try: chains = [c for c in client.list_chains() if prefix is None or c['id'].startswith(prefix)] if q: for c in chains: click.echo(c['id']) else: for c in chains: # TODO: List them using termtable click.echo(c) except NoChainExistsException as e: raise click.BadArgumentUsage(e.message) @cli.command(name='archive', help='Archive a chain') @click.argument('name') @pass_chain_context def archive_chain(client, name): try: client.archive_chain(name) except NoChainExistsException as e: raise click.BadArgumentUsage(e.message) click.echo('Archived chain {}'.format(_format_chain_name(name))) @cli.command(name='rm', help='Remove a chain') @click.argument('name') @pass_chain_context def remove_chain(client, name): try: client.remove_chain(name) except NoChainExistsException as e: raise click.BadArgumentUsage(e.message) click.echo('Removed chain {}'.format(_format_chain_name(name))) if __name__ == '__main__': # pylint: disable=E1120 cli()
mit
-6,670,421,807,501,067,000
35.208
114
0.67057
false
3.606375
false
false
false
DiCarloLab-Delft/PycQED_py3
pycqed/analysis_v2/randomized_benchmarking_analysis.py
1
94884
import lmfit from uncertainties import ufloat import pandas as pd from copy import deepcopy from pycqed.analysis import analysis_toolbox as a_tools from collections import OrderedDict from pycqed.analysis import measurement_analysis as ma_old import pycqed.analysis_v2.base_analysis as ba import numpy as np import logging from scipy.stats import sem from pycqed.analysis.tools.data_manipulation import populations_using_rate_equations from pycqed.analysis.tools.plotting import set_xlabel, set_ylabel, plot_fit from pycqed.utilities.general import format_value_string import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap, PowerNorm from sklearn import linear_model from matplotlib import colors as c from pycqed.analysis_v2.tools import geometry_utils as geo log = logging.getLogger(__name__) class RandomizedBenchmarking_SingleQubit_Analysis(ba.BaseDataAnalysis): def __init__( self, t_start: str = None, t_stop: str = None, label="", options_dict: dict = None, auto=True, close_figs=True, classification_method="rates", rates_I_quad_ch_idx: int = 0, rates_Q_quad_ch_idx: int = None, rates_ch_idx=None, # Deprecated cal_pnts_in_dset: list = np.repeat(["0", "1", "2"], 2), ignore_f_cal_pts: bool = False, do_fitting: bool = True, **kwargs ): """ Analysis for single qubit randomized benchmarking. For basic options see docstring of BaseDataAnalysis Args: classification_method ["rates", ] sets method to determine populations of g,e and f states. Currently only supports "rates" rates: uses calibration points and rate equation from Asaad et al. to determine populations rates_I_quad_ch_idx (int) : sets the I quadrature channel from which to use the data for the rate equations, `rates_I_quad_ch_idx + 1` is assumed to be the Q quadrature, both quadratures are used in the rate equation, this analysis expects the RO mode to be "optimal IQ" ignore_f_cal_pts (bool) : if True, ignores the f-state calibration points and instead makes the approximation that the f-state looks the same as the e-state in readout. This is useful when the ef-pulse is not calibrated. """ if options_dict is None: options_dict = dict() super().__init__( t_start=t_start, t_stop=t_stop, label=label, options_dict=options_dict, close_figs=close_figs, do_fitting=do_fitting, **kwargs ) # used to determine how to determine 2nd excited state population self.classification_method = classification_method # [2020-07-09 Victor] RB has been used with the "optimal IQ" RO mode # for a while in the lab, both quadratures are necessary for plotting # and correct calculation using the rates equation if rates_ch_idx is not None: log.warning( "`rates_ch_idx` is deprecated `rates_I_quad_ch_idx` " + "and `rates_I_quad_ch_idx + 1` are used for population " + "rates calculation! Please apply changes to `pycqed`." ) self.rates_I_quad_ch_idx = rates_I_quad_ch_idx self.rates_Q_quad_ch_idx = rates_Q_quad_ch_idx if self.rates_Q_quad_ch_idx is None: self.rates_Q_quad_ch_idx = rates_I_quad_ch_idx + 1 self.d1 = 2 self.cal_pnts_in_dset = np.array(cal_pnts_in_dset) self.ignore_f_cal_pts = ignore_f_cal_pts # Allows to run this analysis for different qubits in same dataset self.overwrite_qois = False if auto: self.run_analysis() # NB all the fit_res, plot_dicts, qois are appended the `value_name` # corresponding to `rates_I_quad_ch_idx` so that this analysis can be # run several times targeting a different measured qubit def extract_data(self): """ Custom data extraction for this specific experiment. """ self.raw_data_dict = OrderedDict() self.timestamps = a_tools.get_timestamps_in_range( self.t_start, self.t_stop, label=self.labels ) a = ma_old.MeasurementAnalysis( timestamp=self.timestamps[0], auto=False, close_file=False ) a.get_naming_and_values() if "bins" in a.data_file["Experimental Data"]["Experimental Metadata"].keys(): bins = a.data_file["Experimental Data"]["Experimental Metadata"]["bins"][()] num_cal_pnts = len(self.cal_pnts_in_dset) self.raw_data_dict["ncl"] = bins[:-num_cal_pnts:2] self.raw_data_dict["bins"] = bins self.raw_data_dict["value_names"] = a.value_names self.raw_data_dict["value_units"] = a.value_units self.raw_data_dict["measurementstring"] = a.measurementstring self.raw_data_dict["timestamp_string"] = a.timestamp_string self.raw_data_dict["binned_vals"] = OrderedDict() self.raw_data_dict["cal_pts_zero"] = OrderedDict() self.raw_data_dict["cal_pts_one"] = OrderedDict() self.raw_data_dict["cal_pts_two"] = OrderedDict() self.raw_data_dict["measured_values_I"] = OrderedDict() self.raw_data_dict["measured_values_X"] = OrderedDict() # [2020-07-08 Victor] don't know why is this here, seems like # a nasty hack... will keep it to avoid braking some more stuff... selection = a.measured_values[0] == 0 for i in range(1, len(a.measured_values)): selection &= a.measured_values[i] == 0 invalid_idxs = np.where(selection)[0] if len(invalid_idxs): log.warning( "Found zero values at {} indices!".format(len(invalid_idxs)) ) log.warning(invalid_idxs[:10]) a.measured_values[:, invalid_idxs] = np.array( [[np.nan] * len(invalid_idxs)] * len(a.value_names) ) zero_idxs = np.where(self.cal_pnts_in_dset == "0")[0] - num_cal_pnts one_idxs = np.where(self.cal_pnts_in_dset == "1")[0] - num_cal_pnts two_idxs = np.where(self.cal_pnts_in_dset == "2")[0] - num_cal_pnts for i, val_name in enumerate(a.value_names): binned_yvals = np.reshape( a.measured_values[i], (len(bins), -1), order="F" ) self.raw_data_dict["binned_vals"][val_name] = binned_yvals vlns = a.value_names if val_name in ( vlns[self.rates_I_quad_ch_idx], vlns[self.rates_Q_quad_ch_idx], ): self.raw_data_dict["cal_pts_zero"][val_name] = binned_yvals[ zero_idxs, : ].flatten() self.raw_data_dict["cal_pts_one"][val_name] = binned_yvals[ one_idxs, : ].flatten() if self.ignore_f_cal_pts: self.raw_data_dict["cal_pts_two"][ val_name ] = self.raw_data_dict["cal_pts_one"][val_name] else: self.raw_data_dict["cal_pts_two"][val_name] = binned_yvals[ two_idxs, : ].flatten() self.raw_data_dict["measured_values_I"][val_name] = binned_yvals[ :-num_cal_pnts:2, : ] self.raw_data_dict["measured_values_X"][val_name] = binned_yvals[ 1:-num_cal_pnts:2, : ] else: bins = None self.raw_data_dict["folder"] = a.folder self.raw_data_dict["timestamps"] = self.timestamps a.finish() # closes data file def process_data(self): rdd = self.raw_data_dict self.proc_data_dict = deepcopy(rdd) pdd = self.proc_data_dict for key in [ "V0", "V1", "V2", "SI", "SI_corr", "SX", "SX_corr", "P0", "P1", "P2", "M_inv", "M0", "X1", ]: # Nesting dictionaries allows to generate all this quantities # for different qubits by just running the analysis several times # with different rates_I_quad_ch_idx and cal points pdd[key] = OrderedDict() val_name_I = rdd["value_names"][self.rates_I_quad_ch_idx] val_name_Q = rdd["value_names"][self.rates_Q_quad_ch_idx] V0_I = np.nanmean(rdd["cal_pts_zero"][val_name_I]) V1_I = np.nanmean(rdd["cal_pts_one"][val_name_I]) V2_I = np.nanmean(rdd["cal_pts_two"][val_name_I]) V0_Q = np.nanmean(rdd["cal_pts_zero"][val_name_Q]) V1_Q = np.nanmean(rdd["cal_pts_one"][val_name_Q]) V2_Q = np.nanmean(rdd["cal_pts_two"][val_name_Q]) pdd["V0"][val_name_I] = V0_I pdd["V1"][val_name_I] = V1_I pdd["V2"][val_name_I] = V2_I pdd["V0"][val_name_Q] = V0_Q pdd["V1"][val_name_Q] = V1_Q pdd["V2"][val_name_Q] = V2_Q SI_I = np.nanmean(rdd["measured_values_I"][val_name_I], axis=1) SX_I = np.nanmean(rdd["measured_values_X"][val_name_I], axis=1) SI_Q = np.nanmean(rdd["measured_values_I"][val_name_Q], axis=1) SX_Q = np.nanmean(rdd["measured_values_X"][val_name_Q], axis=1) pdd["SI"][val_name_I] = SI_I pdd["SX"][val_name_I] = SX_I pdd["SI"][val_name_Q] = SI_Q pdd["SX"][val_name_Q] = SX_Q cal_triangle = np.array([[V0_I, V0_Q], [V1_I, V1_Q], [V2_I, V2_Q]]) pdd["cal_triangle"] = cal_triangle # [2020-07-11 Victor] # Here we correct for the cases when the measured points fall outside # the triangle of the calibration points, such a case breaks the # assumptions that S = V0 * P0 + V1 * P1 + V2 * P2 SI_I_corr, SI_Q_corr = geo.constrain_to_triangle(cal_triangle, SI_I, SI_Q) SX_I_corr, SX_Q_corr = geo.constrain_to_triangle(cal_triangle, SX_I, SX_Q) pdd["SI_corr"][val_name_I] = SI_I_corr pdd["SX_corr"][val_name_I] = SX_I_corr pdd["SI_corr"][val_name_Q] = SI_Q_corr pdd["SX_corr"][val_name_Q] = SX_Q_corr P0, P1, P2, M_inv = populations_using_rate_equations( SI_I_corr + 1j * SI_Q_corr, SX_I_corr + 1j * SX_Q_corr, V0_I + 1j * V0_Q, V1_I + 1j * V1_Q, V2_I + 1j * V2_Q, ) # There might be other qubits being measured at some point so we keep # the results with the I quadrature label pdd["P0"][val_name_I] = P0 pdd["P1"][val_name_I] = P1 pdd["P2"][val_name_I] = P2 pdd["M_inv"][val_name_I] = M_inv # [2020-07-09 Victor] This is not being used for anything... # classifier = logisticreg_classifier_machinelearning( # pdd["cal_pts_zero"], # pdd["cal_pts_one"], # pdd["cal_pts_two"], # ) # pdd["classifier"] = classifier if self.classification_method == "rates": pdd["M0"][val_name_I] = P0 pdd["X1"][val_name_I] = 1 - P2 else: raise NotImplementedError() def run_fitting(self, fit_input_tag: str = None): """ Args: fit_input_tag (str): allows to fit specific M0 and X1 intended for use in 2Q RBs """ super().run_fitting() rdd = self.raw_data_dict pdd = self.proc_data_dict if fit_input_tag is None: # Default value for single qubit RB analysis fit_input_tag = rdd["value_names"][self.rates_I_quad_ch_idx] leak_mod = lmfit.Model(leak_decay, independent_vars="m") leak_mod.set_param_hint("A", value=0.95, min=0, vary=True) leak_mod.set_param_hint("B", value=0.1, min=0, vary=True) leak_mod.set_param_hint("lambda_1", value=0.99, vary=True) leak_mod.set_param_hint("L1", expr="(1-A)*(1-lambda_1)") leak_mod.set_param_hint("L2", expr="A*(1-lambda_1)") leak_mod.set_param_hint("L1_cz", expr="1-(1-(1-A)*(1-lambda_1))**(1/1.5)") leak_mod.set_param_hint("L2_cz", expr="1-(1-(A*(1-lambda_1)))**(1/1.5)") params = leak_mod.make_params() try: fit_res_leak = leak_mod.fit( data=pdd["X1"][fit_input_tag], m=pdd["ncl"], params=params, ) self.fit_res["leakage_decay_" + fit_input_tag] = fit_res_leak lambda_1 = fit_res_leak.best_values["lambda_1"] L1 = fit_res_leak.params["L1"].value except Exception as e: log.warning("Fitting {} failed!".format("leakage_decay")) log.warning(e) lambda_1 = 1 L1 = 0 self.fit_res["leakage_decay_" + fit_input_tag] = {} fit_res_rb = self.fit_rb_decay( fit_input_tag, lambda_1=lambda_1, L1=L1, simple=False ) self.fit_res["rb_decay_" + fit_input_tag] = fit_res_rb fit_res_rb_simple = self.fit_rb_decay( fit_input_tag, lambda_1=1, L1=0, simple=True ) self.fit_res["rb_decay_simple_" + fit_input_tag] = fit_res_rb_simple def safe_get_par_from_fit_result(fit_res, par_name): """ Ensures an `lmfit.Parameter` is always returned even when the fit failed and an empty dict is provided """ if fit_res: # Check for empty dict params = fit_res.params par = params[par_name] else: par = lmfit.Parameter(par_name) par.value = np.NaN par.stderr = np.NaN return par fr_rb_dict = self.fit_res["rb_decay_" + fit_input_tag] eps = safe_get_par_from_fit_result(fr_rb_dict, "eps") fr_rb_simple_dict = self.fit_res["rb_decay_simple_" + fit_input_tag] eps_simple = safe_get_par_from_fit_result(fr_rb_simple_dict, "eps") fr_dec = self.fit_res["leakage_decay_" + fit_input_tag] L1 = safe_get_par_from_fit_result(fr_dec, "L1") L2 = safe_get_par_from_fit_result(fr_dec, "L2") text_msg = "Summary: \n" text_msg += format_value_string( r"$\epsilon_{{\mathrm{{simple}}}}$", eps_simple, "\n" ) text_msg += format_value_string(r"$\epsilon_{{\chi_1}}$", eps, "\n") text_msg += format_value_string(r"$L_1$", L1, "\n") text_msg += format_value_string(r"$L_2$", L2, "\n") pdd["rb_msg_" + fit_input_tag] = text_msg pdd["quantities_of_interest"] = {} qoi = pdd["quantities_of_interest"] qoi["eps_simple_" + fit_input_tag] = ufloat( eps_simple.value, eps_simple.stderr or np.NaN ) qoi["eps_X1_" + fit_input_tag] = ufloat(eps.value, eps.stderr or np.NaN) qoi["L1_" + fit_input_tag] = ufloat(L1.value, L1.stderr or np.NaN) qoi["L2_" + fit_input_tag] = ufloat(L2.value, L2.stderr or np.NaN) def fit_rb_decay( self, val_name: str, lambda_1: float, L1: float, simple: bool = False ): """ Fits the data """ pdd = self.proc_data_dict fit_mod_rb = lmfit.Model(full_rb_decay, independent_vars="m") fit_mod_rb.set_param_hint("A", value=0.5, min=0, vary=True) if simple: fit_mod_rb.set_param_hint("B", value=0, vary=False) else: fit_mod_rb.set_param_hint("B", value=0.1, min=0, vary=True) fit_mod_rb.set_param_hint("C", value=0.4, min=0, max=1, vary=True) fit_mod_rb.set_param_hint("lambda_1", value=lambda_1, vary=False) fit_mod_rb.set_param_hint("lambda_2", value=0.95, vary=True) # d1 = dimensionality of computational subspace fit_mod_rb.set_param_hint("d1", value=self.d1, vary=False) fit_mod_rb.set_param_hint("L1", value=L1, vary=False) # Note that all derived quantities are expressed directly in fit_mod_rb.set_param_hint("F", expr="1/d1*((d1-1)*lambda_2+1-L1)", vary=True) fit_mod_rb.set_param_hint("eps", expr="1-(1/d1*((d1-1)*lambda_2+1-L1))") # Only valid for single qubit RB assumption equal error rates fit_mod_rb.set_param_hint( "F_g", expr="(1/d1*((d1-1)*lambda_2+1-L1))**(1/1.875)" ) fit_mod_rb.set_param_hint( "eps_g", expr="1-(1/d1*((d1-1)*lambda_2+1-L1))**(1/1.875)" ) # Only valid for two qubit RB assumption all error in CZ fit_mod_rb.set_param_hint("F_cz", expr="(1/d1*((d1-1)*lambda_2+1-L1))**(1/1.5)") fit_mod_rb.set_param_hint( "eps_cz", expr="1-(1/d1*((d1-1)*lambda_2+1-L1))**(1/1.5)" ) params = fit_mod_rb.make_params() try: fit_res_rb = fit_mod_rb.fit( data=pdd["M0"][val_name], m=pdd["ncl"], params=params ) except Exception as e: log.warning("Fitting failed!") log.warning(e) fit_res_rb = {} return fit_res_rb def prepare_plots(self, fit_input_tag: str = None): """ Args: fit_input_tag (str): allows to fit specific M0 and X1 intended for use in 2Q RBs """ rdd = self.raw_data_dict pdd = self.proc_data_dict if fit_input_tag is None: val_name_I = rdd["value_names"][self.rates_I_quad_ch_idx] fit_input_tag = val_name_I val_names = rdd["value_names"] for i, val_name in enumerate(val_names): self.plot_dicts["binned_data_{}".format(val_name)] = { "plotfn": self.plot_line, "xvals": rdd["bins"], "yvals": np.nanmean(rdd["binned_vals"][val_name], axis=1), "yerr": sem(rdd["binned_vals"][val_name], axis=1), "xlabel": "Number of Cliffords", "xunit": "#", "ylabel": val_name, "yunit": rdd["value_units"][i], "title": rdd["timestamp_string"] + "\n" + rdd["measurementstring"], } fs = plt.rcParams["figure.figsize"] fig_id_hex = "cal_points_hexbin_{}".format(val_name_I) self.plot_dicts[fig_id_hex] = { "plotfn": plot_cal_points_hexbin, "shots_0": ( rdd["cal_pts_zero"][val_names[self.rates_I_quad_ch_idx]], rdd["cal_pts_zero"][val_names[self.rates_Q_quad_ch_idx]], ), "shots_1": ( rdd["cal_pts_one"][val_names[self.rates_I_quad_ch_idx]], rdd["cal_pts_one"][val_names[self.rates_Q_quad_ch_idx]], ), "shots_2": ( rdd["cal_pts_two"][val_names[self.rates_I_quad_ch_idx]], rdd["cal_pts_two"][val_names[self.rates_Q_quad_ch_idx]], ), "xlabel": val_names[self.rates_I_quad_ch_idx], "xunit": rdd["value_units"][0], "ylabel": val_names[self.rates_Q_quad_ch_idx], "yunit": rdd["value_units"][1], "title": rdd["timestamp_string"] + "\n" + rdd["measurementstring"] + " hexbin plot", "plotsize": (fs[0] * 1.5, fs[1]), } num_cal_pnts = len(pdd["cal_triangle"]) fig_id_RB_on_IQ = "rb_on_iq_{}".format(val_name_I) for ax_id in [fig_id_hex, fig_id_RB_on_IQ]: self.plot_dicts[ax_id + "_cal_pnts"] = { "plotfn": self.plot_line, "ax_id": ax_id, "xvals": pdd["cal_triangle"].T[0].reshape(num_cal_pnts, 1), "yvals": pdd["cal_triangle"].T[1].reshape(num_cal_pnts, 1), "setlabel": [ r"V$_{\left |" + str(i) + r"\right >}$" for i in range(num_cal_pnts) ], "marker": "d", "line_kws": {"markersize": 14, "markeredgecolor": "white"}, "do_legend": True, # "legend_title": "Calibration points", "legend_ncol": 3, "linestyle": "", } # define figure and axes here to have custom layout self.figs[fig_id_RB_on_IQ], axs = plt.subplots( ncols=2, figsize=(fs[0] * 2.0, fs[1]) ) self.figs[fig_id_RB_on_IQ].patch.set_alpha(0) self.axs[fig_id_RB_on_IQ] = axs[0] fig_id_RB_on_IQ_det = fig_id_RB_on_IQ + "_detailed" self.axs[fig_id_RB_on_IQ_det] = axs[1] axs[1].yaxis.set_label_position("right") axs[1].yaxis.tick_right() close_triangle = list(range(num_cal_pnts)) + [0] self.plot_dicts[fig_id_RB_on_IQ] = { "ax_id": fig_id_RB_on_IQ, "plotfn": self.plot_line, "xvals": pdd["cal_triangle"].T[0][close_triangle], "yvals": pdd["cal_triangle"].T[1][close_triangle], "xlabel": val_names[self.rates_I_quad_ch_idx], "xunit": rdd["value_units"][0], "ylabel": val_names[self.rates_Q_quad_ch_idx], "yunit": rdd["value_units"][1], "title": rdd["timestamp_string"] + "\n" + rdd["measurementstring"] + " hexbin plot", "marker": "", "color": "black", "line_kws": {"linewidth": 1}, "setlabel": "NONE", } self.plot_dicts[fig_id_RB_on_IQ_det] = { "ax_id": fig_id_RB_on_IQ_det, "plotfn": self.plot_line, "xvals": pdd["cal_triangle"].T[0][:2], "yvals": pdd["cal_triangle"].T[1][:2], "xlabel": val_names[self.rates_I_quad_ch_idx], "xunit": rdd["value_units"][0], "ylabel": val_names[self.rates_Q_quad_ch_idx], "yunit": rdd["value_units"][1], "title": r"Detailed view", "marker": "", "color": "black", "line_kws": {"linewidth": 1}, "setlabel": "NONE", } val_name_Q = rdd["value_names"][self.rates_Q_quad_ch_idx] rb_SI = (pdd["SI"][val_name_I], pdd["SI"][val_name_Q]) rb_SX = (pdd["SX"][val_name_I], pdd["SX"][val_name_Q]) rb_SI_corr = (pdd["SI_corr"][val_name_I], pdd["SI_corr"][val_name_Q]) rb_SX_corr = (pdd["SX_corr"][val_name_I], pdd["SX_corr"][val_name_Q]) sigs = (rb_SI, rb_SI_corr, rb_SX, rb_SX_corr) ids = ("SI", "SI_corr", "SX", "SX_corr") labels = ("SI", "SI corrected", "SX", "SX corrected") cols = ["royalblue", "dodgerblue", "red", "salmon"] mks = [8, 4, 8, 4] for ax_id, do_legend in zip( [fig_id_RB_on_IQ, fig_id_RB_on_IQ_det], [True, False] ): for S, col, mk_size, ID, label in zip(sigs, cols, mks, ids, labels): self.plot_dicts[ax_id + "_{}".format(ID)] = { "plotfn": self.plot_line, "ax_id": ax_id, "xvals": S[0], "yvals": S[1], "setlabel": label, "marker": "o", "line_kws": {"markersize": mk_size}, "color": col, "do_legend": do_legend, "legend_ncol": 3, "linestyle": "", } for idx in [self.rates_I_quad_ch_idx, self.rates_Q_quad_ch_idx]: val_name = rdd["value_names"][idx] self.plot_dicts["raw_RB_curve_data_{}".format(val_name)] = { "plotfn": plot_raw_RB_curve, "ncl": pdd["ncl"], "SI": pdd["SI"][val_name], "SX": pdd["SX"][val_name], "V0": pdd["V0"][val_name], "V1": pdd["V1"][val_name], "V2": pdd["V2"][val_name], "xlabel": "Number of Cliffords", "xunit": "#", "ylabel": val_name, "yunit": pdd["value_units"][idx], "title": pdd["timestamp_string"] + "\n" + pdd["measurementstring"], } self.plot_dicts["rb_rate_eq_pops_{}".format(val_name_I)] = { "plotfn": plot_populations_RB_curve, "ncl": pdd["ncl"], "P0": pdd["P0"][val_name_I], "P1": pdd["P1"][val_name_I], "P2": pdd["P2"][val_name_I], "title": pdd["timestamp_string"] + "\n" + "Population using rate equations ch{}".format(val_name_I), } # [2020-07-09 Victor] This is not being used for anything... # self.plot_dicts["logres_decision_bound"] = { # "plotfn": plot_classifier_decission_boundary, # "classifier": pdd["classifier"], # "shots_0": ( # pdd["cal_pts_zero"][val_names[ch_idx_0]], # pdd["cal_pts_zero"][val_names[ch_idx_1]], # ), # "shots_1": ( # pdd["cal_pts_one"][val_names[ch_idx_0]], # pdd["cal_pts_one"][val_names[ch_idx_1]], # ), # "shots_2": ( # pdd["cal_pts_two"][val_names[ch_idx_0]], # pdd["cal_pts_two"][val_names[ch_idx_1]], # ), # "xlabel": val_names[ch_idx_0], # "xunit": pdd["value_units"][0], # "ylabel": val_names[ch_idx_1], # "yunit": pdd["value_units"][1], # "title": pdd["timestamp_string"] # + "\n" # + pdd["measurementstring"] # + " Decision boundary", # "plotsize": (fs[0] * 1.5, fs[1]), # } # ##################################################################### # End of plots for single qubit only # ##################################################################### if self.do_fitting: # define figure and axes here to have custom layout rb_fig_id = "main_rb_decay_{}".format(fit_input_tag) leak_fig_id = "leak_decay_{}".format(fit_input_tag) self.figs[rb_fig_id], axs = plt.subplots( nrows=2, sharex=True, gridspec_kw={"height_ratios": (2, 1)} ) self.figs[rb_fig_id].patch.set_alpha(0) self.axs[rb_fig_id] = axs[0] self.axs[leak_fig_id] = axs[1] self.plot_dicts[rb_fig_id] = { "plotfn": plot_rb_decay_woods_gambetta, "ncl": pdd["ncl"], "M0": pdd["M0"][fit_input_tag], "X1": pdd["X1"][fit_input_tag], "ax1": axs[1], "title": pdd["timestamp_string"] + "\n" + pdd["measurementstring"], } self.plot_dicts["fit_leak"] = { "plotfn": self.plot_fit, "ax_id": leak_fig_id, "fit_res": self.fit_res["leakage_decay_" + fit_input_tag], "setlabel": "Leakage fit", "do_legend": True, "color": "C2", } self.plot_dicts["fit_rb_simple"] = { "plotfn": self.plot_fit, "ax_id": rb_fig_id, "fit_res": self.fit_res["rb_decay_simple_" + fit_input_tag], "setlabel": "Simple RB fit", "do_legend": True, } self.plot_dicts["fit_rb"] = { "plotfn": self.plot_fit, "ax_id": rb_fig_id, "fit_res": self.fit_res["rb_decay_" + fit_input_tag], "setlabel": "Full RB fit", "do_legend": True, "color": "C2", } self.plot_dicts["rb_text"] = { "plotfn": self.plot_text, "text_string": pdd["rb_msg_" + fit_input_tag], "xpos": 1.05, "ypos": 0.6, "ax_id": rb_fig_id, "horizontalalignment": "left", } class RandomizedBenchmarking_TwoQubit_Analysis( RandomizedBenchmarking_SingleQubit_Analysis ): def __init__( self, t_start: str = None, t_stop: str = None, label="", options_dict: dict = None, auto=True, close_figs=True, classification_method="rates", rates_I_quad_ch_idxs: list = [0, 2], ignore_f_cal_pts: bool = False, extract_only: bool = False, ): if options_dict is None: options_dict = dict() super(RandomizedBenchmarking_SingleQubit_Analysis, self).__init__( t_start=t_start, t_stop=t_stop, label=label, options_dict=options_dict, close_figs=close_figs, do_fitting=True, extract_only=extract_only, ) self.d1 = 4 self.rates_I_quad_ch_idxs = rates_I_quad_ch_idxs # used to determine how to determine 2nd excited state population self.classification_method = classification_method # The interleaved analysis does a bit of nasty things and this becomes # necessary self.overwrite_qois = True if auto: self.run_analysis() def extract_data(self): """ Custom data extraction for this specific experiment. """ self.raw_data_dict = OrderedDict() # We run the single qubit analysis twice for each qubit # It will generate all the quantities we want for each qubit cal_2Q = ["00", "01", "10", "11", "02", "20", "22"] rates_I_quad_ch_idx = self.rates_I_quad_ch_idxs[0] cal_1Q = [state[rates_I_quad_ch_idx // 2] for state in cal_2Q] a_q0 = RandomizedBenchmarking_SingleQubit_Analysis( t_start=self.t_start, rates_I_quad_ch_idx=rates_I_quad_ch_idx, cal_pnts_in_dset=cal_1Q, do_fitting=False, extract_only=self.extract_only, ) rates_I_quad_ch_idx = self.rates_I_quad_ch_idxs[1] cal_1Q = [state[rates_I_quad_ch_idx // 2] for state in cal_2Q] a_q1 = RandomizedBenchmarking_SingleQubit_Analysis( t_start=self.t_start, rates_I_quad_ch_idx=rates_I_quad_ch_idx, cal_pnts_in_dset=cal_1Q, do_fitting=False, extract_only=self.extract_only, ) # Upwards and downwards hierarchical compatibilities rdd = self.raw_data_dict self.timestamps = a_q0.timestamps rdd["analyses"] = {"q0": a_q0, "q1": a_q1} rdd["folder"] = a_q0.raw_data_dict["folder"] rdd["timestamps"] = a_q0.raw_data_dict["timestamps"] rdd["timestamp_string"] = a_q0.raw_data_dict["timestamp_string"] rdd["measurementstring"] = a_q1.raw_data_dict["measurementstring"] def process_data(self): self.proc_data_dict = OrderedDict() pdd = self.proc_data_dict for key in ["M0", "X1"]: # Keeping it compatible with 1Q on purpose pdd[key] = OrderedDict() rdd = self.raw_data_dict pdd["folder"] = rdd["folder"] pdd["timestamps"] = rdd["timestamps"] pdd["timestamp_string"] = rdd["timestamp_string"] pdd["measurementstring"] = rdd["measurementstring"] val_names = rdd["analyses"]["q0"].raw_data_dict["value_names"] if self.classification_method == "rates": val_name_q0 = val_names[self.rates_I_quad_ch_idxs[0]] val_name_q1 = val_names[self.rates_I_quad_ch_idxs[1]] fit_input_tag = "2Q" self.proc_data_dict["M0"][fit_input_tag] = ( rdd["analyses"]["q0"].proc_data_dict["P0"][val_name_q0] * rdd["analyses"]["q1"].proc_data_dict["P0"][val_name_q1] ) self.proc_data_dict["X1"][fit_input_tag] = ( 1 - rdd["analyses"]["q0"].proc_data_dict["P2"][val_name_q0] - rdd["analyses"]["q1"].proc_data_dict["P2"][val_name_q1] ) else: raise NotImplementedError() # Required for the plotting in super() pdd["ncl"] = rdd["analyses"]["q0"].raw_data_dict["ncl"] def run_fitting(self): # Call the prepare plots of the class above fit_input_tag = "2Q" super().run_fitting(fit_input_tag=fit_input_tag) def prepare_plots(self): # Call the prepare plots of the class above fit_input_tag = "2Q" super().prepare_plots(fit_input_tag=fit_input_tag) class UnitarityBenchmarking_TwoQubit_Analysis( RandomizedBenchmarking_SingleQubit_Analysis ): def __init__( self, t_start: str = None, t_stop: str = None, label="", options_dict: dict = None, auto=True, close_figs=True, classification_method="rates", rates_ch_idxs: list = [0, 2], ignore_f_cal_pts: bool = False, nseeds: int = None, **kwargs ): """Analysis for unitarity benchmarking. This analysis is based on """ log.error( "[2020-07-12 Victor] This analysis requires to be " "upgraded to the new version of the 1Q-RB analysis." ) if nseeds is None: raise TypeError("You must specify number of seeds!") self.nseeds = nseeds if options_dict is None: options_dict = dict() super(RandomizedBenchmarking_SingleQubit_Analysis, self).__init__( t_start=t_start, t_stop=t_stop, label=label, options_dict=options_dict, close_figs=close_figs, do_fitting=True, **kwargs ) self.d1 = 4 # used to determine how to determine 2nd excited state population self.classification_method = classification_method self.rates_ch_idxs = rates_ch_idxs self.ignore_f_cal_pts = ignore_f_cal_pts if auto: self.run_analysis() def extract_data(self): """Custom data extraction for Unitarity benchmarking. To determine the unitarity data is acquired in different bases. This method extracts that data and puts it in specific bins. """ self.raw_data_dict = OrderedDict() self.timestamps = a_tools.get_timestamps_in_range( self.t_start, self.t_stop, label=self.labels ) a = ma_old.MeasurementAnalysis( timestamp=self.timestamps[0], auto=False, close_file=False ) a.get_naming_and_values() if "bins" in a.data_file["Experimental Data"]["Experimental Metadata"].keys(): bins = a.data_file["Experimental Data"]["Experimental Metadata"]["bins"][()] self.raw_data_dict["ncl"] = bins[:-7:10] # 7 calibration points self.raw_data_dict["bins"] = bins self.raw_data_dict["value_names"] = a.value_names self.raw_data_dict["value_units"] = a.value_units self.raw_data_dict["measurementstring"] = a.measurementstring self.raw_data_dict["timestamp_string"] = a.timestamp_string self.raw_data_dict["binned_vals"] = OrderedDict() self.raw_data_dict["cal_pts_x0"] = OrderedDict() self.raw_data_dict["cal_pts_x1"] = OrderedDict() self.raw_data_dict["cal_pts_x2"] = OrderedDict() self.raw_data_dict["cal_pts_0x"] = OrderedDict() self.raw_data_dict["cal_pts_1x"] = OrderedDict() self.raw_data_dict["cal_pts_2x"] = OrderedDict() self.raw_data_dict["measured_values_ZZ"] = OrderedDict() self.raw_data_dict["measured_values_XZ"] = OrderedDict() self.raw_data_dict["measured_values_YZ"] = OrderedDict() self.raw_data_dict["measured_values_ZX"] = OrderedDict() self.raw_data_dict["measured_values_XX"] = OrderedDict() self.raw_data_dict["measured_values_YX"] = OrderedDict() self.raw_data_dict["measured_values_ZY"] = OrderedDict() self.raw_data_dict["measured_values_XY"] = OrderedDict() self.raw_data_dict["measured_values_YY"] = OrderedDict() self.raw_data_dict["measured_values_mZmZ"] = OrderedDict() for i, val_name in enumerate(a.value_names): invalid_idxs = np.where( (a.measured_values[0] == 0) & (a.measured_values[1] == 0) & (a.measured_values[2] == 0) & (a.measured_values[3] == 0) )[0] a.measured_values[:, invalid_idxs] = np.array( [[np.nan] * len(invalid_idxs)] * 4 ) binned_yvals = np.reshape( a.measured_values[i], (len(bins), -1), order="F" ) self.raw_data_dict["binned_vals"][val_name] = binned_yvals # 7 cal points: [00, 01, 10, 11, 02, 20, 22] # col_idx: [-7, -6, -5, -4, -3, -2, -1] self.raw_data_dict["cal_pts_x0"][val_name] = binned_yvals[ (-7, -5), : ].flatten() self.raw_data_dict["cal_pts_x1"][val_name] = binned_yvals[ (-6, -4), : ].flatten() self.raw_data_dict["cal_pts_x2"][val_name] = binned_yvals[ (-3, -1), : ].flatten() self.raw_data_dict["cal_pts_0x"][val_name] = binned_yvals[ (-7, -6), : ].flatten() self.raw_data_dict["cal_pts_1x"][val_name] = binned_yvals[ (-5, -4), : ].flatten() self.raw_data_dict["cal_pts_2x"][val_name] = binned_yvals[ (-2, -1), : ].flatten() self.raw_data_dict["measured_values_ZZ"][val_name] = binned_yvals[ 0:-7:10, : ] self.raw_data_dict["measured_values_XZ"][val_name] = binned_yvals[ 1:-7:10, : ] self.raw_data_dict["measured_values_YZ"][val_name] = binned_yvals[ 2:-7:10, : ] self.raw_data_dict["measured_values_ZX"][val_name] = binned_yvals[ 3:-7:10, : ] self.raw_data_dict["measured_values_XX"][val_name] = binned_yvals[ 4:-7:10, : ] self.raw_data_dict["measured_values_YX"][val_name] = binned_yvals[ 5:-7:10, : ] self.raw_data_dict["measured_values_ZY"][val_name] = binned_yvals[ 6:-7:10, : ] self.raw_data_dict["measured_values_XY"][val_name] = binned_yvals[ 7:-7:10, : ] self.raw_data_dict["measured_values_YY"][val_name] = binned_yvals[ 8:-7:10, : ] self.raw_data_dict["measured_values_mZmZ"][val_name] = binned_yvals[ 9:-7:10, : ] else: bins = None self.raw_data_dict["folder"] = a.folder self.raw_data_dict["timestamps"] = self.timestamps a.finish() # closes data file def process_data(self): """Averages shot data and calculates unitarity from raw_data_dict. Note: this doe not correct the outcomes for leakage. """ self.proc_data_dict = deepcopy(self.raw_data_dict) keys = [ "Vx0", "V0x", "Vx1", "V1x", "Vx2", "V2x", "SI", "SX", "Px0", "P0x", "Px1", "P1x", "Px2", "P2x", "M_inv_q0", "M_inv_q1", ] keys += [ "XX", "XY", "XZ", "YX", "YY", "YZ", "ZX", "ZY", "ZZ", "XX_sq", "XY_sq", "XZ_sq", "YX_sq", "YY_sq", "YZ_sq", "ZX_sq", "ZY_sq", "ZZ_sq", "unitarity_shots", "unitarity", ] keys += [ "XX_q0", "XY_q0", "XZ_q0", "YX_q0", "YY_q0", "YZ_q0", "ZX_q0", "ZY_q0", "ZZ_q0", ] keys += [ "XX_q1", "XY_q1", "XZ_q1", "YX_q1", "YY_q1", "YZ_q1", "ZX_q1", "ZY_q1", "ZZ_q1", ] for key in keys: self.proc_data_dict[key] = OrderedDict() for val_name in self.raw_data_dict["value_names"]: for idx in ["x0", "x1", "x2", "0x", "1x", "2x"]: self.proc_data_dict["V{}".format(idx)][val_name] = np.nanmean( self.raw_data_dict["cal_pts_{}".format(idx)][val_name] ) SI = np.nanmean(self.raw_data_dict["measured_values_ZZ"][val_name], axis=1) SX = np.nanmean( self.raw_data_dict["measured_values_mZmZ"][val_name], axis=1 ) self.proc_data_dict["SI"][val_name] = SI self.proc_data_dict["SX"][val_name] = SX Px0, Px1, Px2, M_inv_q0 = populations_using_rate_equations( SI, SX, self.proc_data_dict["Vx0"][val_name], self.proc_data_dict["Vx1"][val_name], self.proc_data_dict["Vx2"][val_name], ) P0x, P1x, P2x, M_inv_q1 = populations_using_rate_equations( SI, SX, self.proc_data_dict["V0x"][val_name], self.proc_data_dict["V1x"][val_name], self.proc_data_dict["V2x"][val_name], ) for key, val in [ ("Px0", Px0), ("Px1", Px1), ("Px2", Px2), ("P0x", P0x), ("P1x", P1x), ("P2x", P2x), ("M_inv_q0", M_inv_q0), ("M_inv_q1", M_inv_q1), ]: self.proc_data_dict[key][val_name] = val for key in ["XX", "XY", "XZ", "YX", "YY", "YZ", "ZX", "ZY", "ZZ"]: Vmeas = self.raw_data_dict["measured_values_" + key][val_name] Px2 = self.proc_data_dict["Px2"][val_name] V0 = self.proc_data_dict["Vx0"][val_name] V1 = self.proc_data_dict["Vx1"][val_name] V2 = self.proc_data_dict["Vx2"][val_name] val = Vmeas + 0 # - (Px2*V2 - (1-Px2)*V1)[:,None] val -= V1 val /= V0 - V1 val = np.mean(np.reshape(val, (val.shape[0], self.nseeds, -1)), axis=2) self.proc_data_dict[key + "_q0"][val_name] = val * 2 - 1 P2x = self.proc_data_dict["P2x"][val_name] V0 = self.proc_data_dict["V0x"][val_name] V1 = self.proc_data_dict["V1x"][val_name] # Leakage is ignored in this analysis. # V2 = self.proc_data_dict['V2x'][val_name] val = Vmeas + 0 # - (P2x*V2 - (1-P2x)*V1)[:,None] val -= V1 val /= V0 - V1 val = np.mean(np.reshape(val, (val.shape[0], self.nseeds, -1)), axis=2) self.proc_data_dict[key + "_q1"][val_name] = val * 2 - 1 if self.classification_method == "rates": val_name_q0 = self.raw_data_dict["value_names"][self.rates_ch_idxs[0]] val_name_q1 = self.raw_data_dict["value_names"][self.rates_ch_idxs[1]] self.proc_data_dict["M0"] = ( self.proc_data_dict["Px0"][val_name_q0] * self.proc_data_dict["P0x"][val_name_q1] ) self.proc_data_dict["X1"] = ( 1 - self.proc_data_dict["Px2"][val_name_q0] - self.proc_data_dict["P2x"][val_name_q1] ) # The unitarity is calculated here. self.proc_data_dict["unitarity_shots"] = ( self.proc_data_dict["ZZ_q0"][val_name_q0] * 0 ) # Unitarity according to Eq. (10) Wallman et al. New J. Phys. 2015 # Pj = d/(d-1)*|n(rho_j)|^2 # Note that the dimensionality prefix is ignored here as it # should drop out in the fits. for key in ["XX", "XY", "XZ", "YX", "YY", "YZ", "ZX", "ZY", "ZZ"]: self.proc_data_dict[key] = ( self.proc_data_dict[key + "_q0"][val_name_q0] * self.proc_data_dict[key + "_q1"][val_name_q1] ) self.proc_data_dict[key + "_sq"] = self.proc_data_dict[key] ** 2 self.proc_data_dict["unitarity_shots"] += self.proc_data_dict[ key + "_sq" ] self.proc_data_dict["unitarity"] = np.mean( self.proc_data_dict["unitarity_shots"], axis=1 ) else: raise NotImplementedError() def run_fitting(self): super().run_fitting() self.fit_res["unitarity_decay"] = self.fit_unitarity_decay() unitarity_dec = self.fit_res["unitarity_decay"].params text_msg = "Summary: \n" text_msg += format_value_string( "Unitarity\n" + r"$u$", unitarity_dec["u"], "\n" ) text_msg += format_value_string( "Error due to\nincoherent mechanisms\n" + r"$\epsilon$", unitarity_dec["eps"], ) self.proc_data_dict["unitarity_msg"] = text_msg def fit_unitarity_decay(self): """Fits the data using the unitarity model.""" fit_mod_unitarity = lmfit.Model(unitarity_decay, independent_vars="m") fit_mod_unitarity.set_param_hint("A", value=0.1, min=0, max=1, vary=True) fit_mod_unitarity.set_param_hint("B", value=0.8, min=0, max=1, vary=True) fit_mod_unitarity.set_param_hint("u", value=0.9, min=0, max=1, vary=True) fit_mod_unitarity.set_param_hint("d1", value=self.d1, vary=False) # Error due to incoherent sources # Feng Phys. Rev. Lett. 117, 260501 (2016) eq. (4) fit_mod_unitarity.set_param_hint("eps", expr="((d1-1)/d1)*(1-u**0.5)") params = fit_mod_unitarity.make_params() fit_mod_unitarity = fit_mod_unitarity.fit( data=self.proc_data_dict["unitarity"], m=self.proc_data_dict["ncl"], params=params, ) return fit_mod_unitarity def prepare_plots(self): val_names = self.proc_data_dict["value_names"] for i, val_name in enumerate(val_names): self.plot_dicts["binned_data_{}".format(val_name)] = { "plotfn": self.plot_line, "xvals": self.proc_data_dict["bins"], "yvals": np.nanmean( self.proc_data_dict["binned_vals"][val_name], axis=1 ), "yerr": sem(self.proc_data_dict["binned_vals"][val_name], axis=1), "xlabel": "Number of Cliffords", "xunit": "#", "ylabel": val_name, "yunit": self.proc_data_dict["value_units"][i], "title": self.proc_data_dict["timestamp_string"] + "\n" + self.proc_data_dict["measurementstring"], } fs = plt.rcParams["figure.figsize"] # define figure and axes here to have custom layout self.figs["rb_populations_decay"], axs = plt.subplots( ncols=2, sharex=True, sharey=True, figsize=(fs[0] * 1.5, fs[1]) ) self.figs["rb_populations_decay"].suptitle( self.proc_data_dict["timestamp_string"] + "\n" + "Population using rate equations", y=1.05, ) self.figs["rb_populations_decay"].patch.set_alpha(0) self.axs["rb_pops_q0"] = axs[0] self.axs["rb_pops_q1"] = axs[1] val_name_q0 = val_names[self.rates_ch_idxs[0]] val_name_q1 = val_names[self.rates_ch_idxs[1]] self.plot_dicts["rb_rate_eq_pops_{}".format(val_name_q0)] = { "plotfn": plot_populations_RB_curve, "ncl": self.proc_data_dict["ncl"], "P0": self.proc_data_dict["Px0"][val_name_q0], "P1": self.proc_data_dict["Px1"][val_name_q0], "P2": self.proc_data_dict["Px2"][val_name_q0], "title": " {}".format(val_name_q0), "ax_id": "rb_pops_q0", } self.plot_dicts["rb_rate_eq_pops_{}".format(val_name_q1)] = { "plotfn": plot_populations_RB_curve, "ncl": self.proc_data_dict["ncl"], "P0": self.proc_data_dict["P0x"][val_name_q1], "P1": self.proc_data_dict["P1x"][val_name_q1], "P2": self.proc_data_dict["P2x"][val_name_q1], "title": " {}".format(val_name_q1), "ax_id": "rb_pops_q1", } self.plot_dicts["cal_points_hexbin_q0"] = { "plotfn": plot_cal_points_hexbin, "shots_0": ( self.proc_data_dict["cal_pts_x0"][val_names[0]], self.proc_data_dict["cal_pts_x0"][val_names[1]], ), "shots_1": ( self.proc_data_dict["cal_pts_x1"][val_names[0]], self.proc_data_dict["cal_pts_x1"][val_names[1]], ), "shots_2": ( self.proc_data_dict["cal_pts_x2"][val_names[0]], self.proc_data_dict["cal_pts_x2"][val_names[1]], ), "xlabel": val_names[0], "xunit": self.proc_data_dict["value_units"][0], "ylabel": val_names[1], "yunit": self.proc_data_dict["value_units"][1], "common_clims": False, "title": self.proc_data_dict["timestamp_string"] + "\n" + self.proc_data_dict["measurementstring"] + " hexbin plot q0", "plotsize": (fs[0] * 1.5, fs[1]), } self.plot_dicts["cal_points_hexbin_q1"] = { "plotfn": plot_cal_points_hexbin, "shots_0": ( self.proc_data_dict["cal_pts_0x"][val_names[2]], self.proc_data_dict["cal_pts_0x"][val_names[3]], ), "shots_1": ( self.proc_data_dict["cal_pts_1x"][val_names[2]], self.proc_data_dict["cal_pts_1x"][val_names[3]], ), "shots_2": ( self.proc_data_dict["cal_pts_2x"][val_names[2]], self.proc_data_dict["cal_pts_2x"][val_names[3]], ), "xlabel": val_names[2], "xunit": self.proc_data_dict["value_units"][2], "ylabel": val_names[3], "yunit": self.proc_data_dict["value_units"][3], "common_clims": False, "title": self.proc_data_dict["timestamp_string"] + "\n" + self.proc_data_dict["measurementstring"] + " hexbin plot q1", "plotsize": (fs[0] * 1.5, fs[1]), } # define figure and axes here to have custom layout self.figs["main_rb_decay"], axs = plt.subplots( nrows=2, sharex=True, gridspec_kw={"height_ratios": (2, 1)} ) self.figs["main_rb_decay"].patch.set_alpha(0) self.axs["main_rb_decay"] = axs[0] self.axs["leak_decay"] = axs[1] self.plot_dicts["main_rb_decay"] = { "plotfn": plot_rb_decay_woods_gambetta, "ncl": self.proc_data_dict["ncl"], "M0": self.proc_data_dict["M0"], "X1": self.proc_data_dict["X1"], "ax1": axs[1], "title": self.proc_data_dict["timestamp_string"] + "\n" + self.proc_data_dict["measurementstring"], } self.plot_dicts["fit_leak"] = { "plotfn": self.plot_fit, "ax_id": "leak_decay", "fit_res": self.fit_res["leakage_decay"], "setlabel": "Leakage fit", "do_legend": True, "color": "C2", } self.plot_dicts["fit_rb_simple"] = { "plotfn": self.plot_fit, "ax_id": "main_rb_decay", "fit_res": self.fit_res["rb_decay_simple"], "setlabel": "Simple RB fit", "do_legend": True, } self.plot_dicts["fit_rb"] = { "plotfn": self.plot_fit, "ax_id": "main_rb_decay", "fit_res": self.fit_res["rb_decay"], "setlabel": "Full RB fit", "do_legend": True, "color": "C2", } self.plot_dicts["rb_text"] = { "plotfn": self.plot_text, "text_string": self.proc_data_dict["rb_msg"], "xpos": 1.05, "ypos": 0.6, "ax_id": "main_rb_decay", "horizontalalignment": "left", } self.plot_dicts["correlated_readouts"] = { "plotfn": plot_unitarity_shots, "ncl": self.proc_data_dict["ncl"], "unitarity_shots": self.proc_data_dict["unitarity_shots"], "xlabel": "Number of Cliffords", "xunit": "#", "ylabel": "Unitarity", "yunit": "", "title": self.proc_data_dict["timestamp_string"] + "\n" + self.proc_data_dict["measurementstring"], } self.figs["unitarity"] = plt.subplots(nrows=1) self.plot_dicts["unitarity"] = { "plotfn": plot_unitarity, "ax_id": "unitarity", "ncl": self.proc_data_dict["ncl"], "P": self.proc_data_dict["unitarity"], "xlabel": "Number of Cliffords", "xunit": "#", "ylabel": "Unitarity", "yunit": "frac", "title": self.proc_data_dict["timestamp_string"] + "\n" + self.proc_data_dict["measurementstring"], } self.plot_dicts["fit_unitarity"] = { "plotfn": self.plot_fit, "ax_id": "unitarity", "fit_res": self.fit_res["unitarity_decay"], "setlabel": "Simple unitarity fit", "do_legend": True, } self.plot_dicts["unitarity_text"] = { "plotfn": self.plot_text, "text_string": self.proc_data_dict["unitarity_msg"], "xpos": 0.6, "ypos": 0.8, "ax_id": "unitarity", "horizontalalignment": "left", } class InterleavedRandomizedBenchmarkingAnalysis(ba.BaseDataAnalysis): """ Analysis for two qubit interleaved randomized benchmarking of a CZ gate. [2020-07-12 Victor] upgraded to allow for analysis of iRB for the parked qubit during CZ on the other qubits This is a meta-analysis. It runs "RandomizedBenchmarking_TwoQubit_Analysis" for each of the individual datasets in the "extract_data" method and uses the quantities of interest to create the combined figure. The figure as well as the quantities of interest are stored in the interleaved data file. """ def __init__( self, ts_base: str = None, ts_int: str = None, ts_int_idle: str = None, label_base: str = "", label_int: str = "", label_int_idle: str = "", options_dict: dict = {}, auto=True, close_figs=True, rates_I_quad_ch_idxs: list = [0, 2], ignore_f_cal_pts: bool = False, plot_label="", extract_only=False, ): super().__init__( do_fitting=True, close_figs=close_figs, options_dict=options_dict, extract_only=extract_only, ) self.ts_base = ts_base self.ts_int = ts_int self.ts_int_idle = ts_int_idle self.label_base = label_base self.label_int = label_int self.label_int_idle = label_int_idle self.include_idle = self.ts_int_idle or self.label_int_idle assert ts_base or label_base assert ts_int or label_int self.rates_I_quad_ch_idxs = rates_I_quad_ch_idxs self.options_dict = options_dict self.close_figs = close_figs self.ignore_f_cal_pts = ignore_f_cal_pts self.plot_label = plot_label # For other classes derived from this one this will change self.fit_tag = "2Q" self.int_name = "CZ" if auto: self.run_analysis() def extract_data(self): self.raw_data_dict = OrderedDict() a_base = RandomizedBenchmarking_TwoQubit_Analysis( t_start=self.ts_base, label=self.label_base, options_dict=self.options_dict, auto=True, close_figs=self.close_figs, rates_I_quad_ch_idxs=self.rates_I_quad_ch_idxs, extract_only=True, ignore_f_cal_pts=self.ignore_f_cal_pts, ) a_int = RandomizedBenchmarking_TwoQubit_Analysis( t_start=self.ts_int, label=self.label_int, options_dict=self.options_dict, auto=True, close_figs=self.close_figs, rates_I_quad_ch_idxs=self.rates_I_quad_ch_idxs, extract_only=True, ignore_f_cal_pts=self.ignore_f_cal_pts, ) if self.include_idle: a_int_idle = RandomizedBenchmarking_TwoQubit_Analysis( t_start=self.ts_int_idle, label=self.label_int_idle, options_dict=self.options_dict, auto=True, close_figs=self.close_figs, rates_I_quad_ch_idxs=self.rates_I_quad_ch_idxs, extract_only=True, ignore_f_cal_pts=self.ignore_f_cal_pts, ) # order is such that any information (figures, quantities of interest) # are saved in the interleaved file. self.timestamps = [a_int.timestamps[0], a_base.timestamps[0]] self.raw_data_dict["timestamps"] = self.timestamps self.raw_data_dict["timestamp_string"] = a_int.proc_data_dict[ "timestamp_string" ] self.raw_data_dict["folder"] = a_int.proc_data_dict["folder"] a_dict = {"base": a_base, "int": a_int} if self.include_idle: a_dict["int_idle"] = a_int_idle self.raw_data_dict["analyses"] = a_dict if not self.plot_label: self.plot_label = a_int.proc_data_dict["measurementstring"] def process_data(self): self.proc_data_dict = OrderedDict() self.proc_data_dict["quantities_of_interest"] = {} qoi = self.proc_data_dict["quantities_of_interest"] qoi_base = self.raw_data_dict["analyses"]["base"].proc_data_dict[ "quantities_of_interest" ] qoi_int = self.raw_data_dict["analyses"]["int"].proc_data_dict[ "quantities_of_interest" ] self.overwrite_qois = True qoi.update({k + "_ref": v for k, v in qoi_base.items()}) qoi.update({k + "_int": v for k, v in qoi_int.items()}) # The functionality of this analysis was extended to make it usable for # interleaved parking idle flux pulse fit_tag = self.fit_tag int_name = self.int_name qoi["eps_%s_X1" % int_name] = interleaved_error( eps_int=qoi_int["eps_X1_%s" % fit_tag], eps_base=qoi_base["eps_X1_%s" % fit_tag], ) qoi["eps_%s_simple" % int_name] = interleaved_error( eps_int=qoi_int["eps_simple_%s" % fit_tag], eps_base=qoi_base["eps_simple_%s" % fit_tag], ) qoi["L1_%s" % int_name] = interleaved_error( eps_int=qoi_int["L1_%s" % fit_tag], eps_base=qoi_base["L1_%s" % fit_tag] ) if self.include_idle: qoi_int_idle = self.raw_data_dict["analyses"]["int_idle"].proc_data_dict[ "quantities_of_interest" ] qoi.update({k + "_int_idle": v for k, v in qoi_int_idle.items()}) qoi["eps_idle_X1"] = interleaved_error( eps_int=qoi_int_idle["eps_X1_%s" % fit_tag], eps_base=qoi_base["eps_X1_%s" % fit_tag], ) qoi["eps_idle_simple"] = interleaved_error( eps_int=qoi_int_idle["eps_simple_%s" % fit_tag], eps_base=qoi_base["eps_simple_%s" % fit_tag], ) qoi["L1_idle"] = interleaved_error( eps_int=qoi_int_idle["L1_%s" % fit_tag], eps_base=qoi_base["L1_%s" % fit_tag], ) if int_name == "CZ": # This is the naive estimate, when all observed error is assigned # to the CZ gate try: qoi["L1_%s_naive" % int_name] = 1 - ( 1 - qoi_base["L1_%s" % fit_tag] ) ** (1 / 1.5) qoi["eps_%s_simple_naive" % int_name] = 1 - ( 1 - qoi_base["eps_simple_%s" % fit_tag] ) ** (1 / 1.5) qoi["eps_%s_X1_naive" % int_name] = 1 - ( 1 - qoi_base["eps_X1_%s" % fit_tag] ) ** (1 / 1.5) except ValueError: # prevents the analysis from crashing if the fits are bad. qoi["L1_%s_naive" % int_name] = ufloat(np.NaN, np.NaN) qoi["eps_%s_simple_naive" % int_name] = ufloat(np.NaN, np.NaN) qoi["eps_%s_X1_naive" % int_name] = ufloat(np.NaN, np.NaN) def prepare_plots(self): # Might seem that are not used but there is an `eval` below dd_ref = self.raw_data_dict["analyses"]["base"].proc_data_dict dd_int = self.raw_data_dict["analyses"]["int"].proc_data_dict fr_ref = self.raw_data_dict["analyses"]["base"].fit_res fr_int = self.raw_data_dict["analyses"]["int"].fit_res dds = { "int": dd_int, "ref": dd_ref, } frs = { "int": fr_int, "ref": fr_ref, } if self.include_idle: fr_int_idle = self.raw_data_dict["analyses"]["int_idle"].fit_res dd_int_idle = self.raw_data_dict["analyses"]["int_idle"].proc_data_dict dds["int_idle"] = dd_int_idle frs["int_idle"] = fr_int_idle fs = plt.rcParams["figure.figsize"] self.figs["main_irb_decay"], axs = plt.subplots( nrows=2, sharex=True, gridspec_kw={"height_ratios": (2, 1)}, figsize=(fs[0] * 1.3, fs[1] * 1.3), ) self.figs["main_irb_decay"].patch.set_alpha(0) self.axs["main_irb_decay"] = axs[0] self.axs["leak_decay"] = axs[1] self.plot_dicts["main_irb_decay"] = { "plotfn": plot_irb_decay_woods_gambetta, "ncl": dd_ref["ncl"], "include_idle": self.include_idle, "fit_tag": self.fit_tag, "int_name": self.int_name, "qoi": self.proc_data_dict["quantities_of_interest"], "ax1": axs[1], "title": "{} - {}\n{}".format( self.timestamps[0], self.timestamps[1], self.plot_label ), } def add_to_plot_dict( plot_dict: dict, tag: str, dd_quantities: list, fit_quantities: list, dds: dict, frs: dict, ): for dd_q in dd_quantities: plot_dict[dd_q + "_" + tag] = dds[tag][dd_q][self.fit_tag] for fit_q in fit_quantities: trans = { "rb_decay": "fr_M0", "rb_decay_simple": "fr_M0_simple", "leakage_decay": "fr_X1", } plot_dict[trans[fit_q] + "_" + tag] = frs[tag][ fit_q + "_{}".format(self.fit_tag) ] tags = ["ref", "int"] if self.include_idle: tags.append("int_idle") for tag in tags: add_to_plot_dict( self.plot_dicts["main_irb_decay"], tag=tag, dd_quantities=["M0", "X1"], fit_quantities=["rb_decay", "rb_decay_simple", "leakage_decay"], dds=dds, frs=frs, ) class InterleavedRandomizedBenchmarkingParkingAnalysis( InterleavedRandomizedBenchmarkingAnalysis, ba.BaseDataAnalysis ): """ Analysis for single qubit interleaved randomized benchmarking where the interleaved gate is a parking identity (with the corresponding CZ being applied on the other two qubits) This is a meta-analysis. It runs "RandomizedBenchmarking_SingleQubit_Analysis" for each of the individual datasets in the "extract_data" method and uses the quantities of interest to create the combined figure. The figure as well as the quantities of interest are stored in the interleaved data file. """ def __init__( self, ts_base: str = None, ts_int: str = None, label_base: str = "", label_int: str = "", options_dict: dict = {}, auto=True, close_figs=True, rates_I_quad_ch_idx: int = -2, rates_Q_quad_ch_idx: int = None, ignore_f_cal_pts: bool = False, plot_label="", ): # Here we don't want to run the __init__ of the Interleaved analysis, # only the __init__ of the base class ba.BaseDataAnalysis.__init__( self, do_fitting=True, close_figs=close_figs, options_dict=options_dict ) self.ts_base = ts_base self.ts_int = ts_int self.label_base = label_base self.label_int = label_int assert ts_base or label_base assert ts_int or label_int self.rates_I_quad_ch_idx = rates_I_quad_ch_idx self.rates_Q_quad_ch_idx = rates_Q_quad_ch_idx if self.rates_Q_quad_ch_idx is None: self.rates_Q_quad_ch_idx = rates_I_quad_ch_idx + 1 self.options_dict = options_dict self.close_figs = close_figs self.ignore_f_cal_pts = ignore_f_cal_pts self.plot_label = plot_label # For other classes derived from this one this will change self.fit_tag = None # to be set in the extract data self.int_name = "Idle flux" self.include_idle = False if auto: self.run_analysis() def extract_data(self): self.raw_data_dict = OrderedDict() a_base = RandomizedBenchmarking_SingleQubit_Analysis( t_start=self.ts_base, label=self.label_base, options_dict=self.options_dict, auto=True, close_figs=self.close_figs, rates_I_quad_ch_idx=self.rates_I_quad_ch_idx, extract_only=True, ignore_f_cal_pts=self.ignore_f_cal_pts, ) a_int = RandomizedBenchmarking_SingleQubit_Analysis( t_start=self.ts_int, label=self.label_int, options_dict=self.options_dict, auto=True, close_figs=self.close_figs, rates_I_quad_ch_idx=self.rates_I_quad_ch_idx, extract_only=True, ignore_f_cal_pts=self.ignore_f_cal_pts, ) self.fit_tag = a_base.raw_data_dict["value_names"][self.rates_I_quad_ch_idx] # order is such that any information (figures, quantities of interest) # are saved in the interleaved file. self.timestamps = [a_int.timestamps[0], a_base.timestamps[0]] self.raw_data_dict["timestamps"] = self.timestamps self.raw_data_dict["timestamp_string"] = a_int.proc_data_dict[ "timestamp_string" ] self.raw_data_dict["folder"] = a_int.proc_data_dict["folder"] self.raw_data_dict["analyses"] = {"base": a_base, "int": a_int} if not self.plot_label: self.plot_label = a_int.proc_data_dict["measurementstring"] class CharacterBenchmarking_TwoQubit_Analysis(ba.BaseDataAnalysis): """ Analysis for character benchmarking. """ def __init__( self, t_start: str = None, t_stop: str = None, label="", options_dict: dict = None, auto=True, close_figs=True, ch_idxs: list = [0, 2], ): if options_dict is None: options_dict = dict() super().__init__( t_start=t_start, t_stop=t_stop, label=label, options_dict=options_dict, close_figs=close_figs, do_fitting=True, ) self.d1 = 4 self.ch_idxs = ch_idxs if auto: self.run_analysis() def extract_data(self): self.raw_data_dict = OrderedDict() self.timestamps = a_tools.get_timestamps_in_range( self.t_start, self.t_stop, label=self.labels ) a = ma_old.MeasurementAnalysis( timestamp=self.timestamps[0], auto=False, close_file=False ) a.get_naming_and_values() bins = a.data_file["Experimental Data"]["Experimental Metadata"]["bins"][()] a.finish() self.raw_data_dict["measurementstring"] = a.measurementstring self.raw_data_dict["timestamp_string"] = a.timestamp_string self.raw_data_dict["folder"] = a.folder self.raw_data_dict["timestamps"] = self.timestamps df = pd.DataFrame( columns={"ncl", "pauli", "I_q0", "Q_q0", "I_q1", "Q_q1", "interleaving_cl"} ) df["ncl"] = bins # Assumptions on the structure of the datafile are made here. # For every Clifford, 4 random pauli's are sampled from the different # sub sets: paulis = [ "II", # 'IZ', 'ZI', 'ZZ', # P00 "IX", # 'IY', 'ZX', 'ZY', # P01 "XI", # 'XZ', 'YI', 'YZ', # P10 "XX", ] # 'XY', 'YX', 'YY'] # P11 paulis_df = np.tile(paulis, 34)[: len(bins)] # The calibration points do not correspond to a Pauli paulis_df[-7:] = np.nan df["pauli"] = paulis_df # The four different random Pauli's are performed both with # and without the interleaving CZ gate. df["interleaving_cl"] = np.tile([""] * 4 + ["CZ"] * 4, len(bins) // 8 + 1)[ : len(bins) ] # Data is grouped and single shots are averaged. for i, ch in enumerate(["I_q0", "Q_q0", "I_q1", "Q_q1"]): binned_yvals = np.reshape(a.measured_values[i], (len(bins), -1), order="F") yvals = np.mean(binned_yvals, axis=1) df[ch] = yvals self.raw_data_dict["df"] = df def process_data(self): self.proc_data_dict = OrderedDict() df = self.raw_data_dict["df"] cal_points = [ # calibration point indices are when ignoring the f-state cal pts [[-7, -5], [-6, -4], [-3, -1]], # q0 [[-7, -5], [-6, -4], [-3, -1]], # q0 [[-7, -6], [-5, -4], [-2, -1]], # q1 [[-7, -6], [-5, -4], [-2, -1]], # q1 ] for ch, cal_pt in zip(["I_q0", "Q_q0", "I_q1", "Q_q1"], cal_points): df[ch + "_normed"] = a_tools.normalize_data_v3( df[ch].values, cal_zero_points=cal_pt[0], cal_one_points=cal_pt[1] ) df["P_|00>"] = (1 - df["I_q0_normed"]) * (1 - df["Q_q1_normed"]) P00 = ( df.loc[df["pauli"].isin(["II", "IZ", "ZI", "ZZ"])] .loc[df["interleaving_cl"] == ""] .groupby("ncl") .mean() ) P01 = ( df.loc[df["pauli"].isin(["IX", "IY", "ZX", "ZY"])] .loc[df["interleaving_cl"] == ""] .groupby("ncl") .mean() ) P10 = ( df.loc[df["pauli"].isin(["XI", "XZ", "YI", "YZ"])] .loc[df["interleaving_cl"] == ""] .groupby("ncl") .mean() ) P11 = ( df.loc[df["pauli"].isin(["XX", "XY", "YX", "YY"])] .loc[df["interleaving_cl"] == ""] .groupby("ncl") .mean() ) P00_CZ = ( df.loc[df["pauli"].isin(["II", "IZ", "ZI", "ZZ"])] .loc[df["interleaving_cl"] == "CZ"] .groupby("ncl") .mean() ) P01_CZ = ( df.loc[df["pauli"].isin(["IX", "IY", "ZX", "ZY"])] .loc[df["interleaving_cl"] == "CZ"] .groupby("ncl") .mean() ) P10_CZ = ( df.loc[df["pauli"].isin(["XI", "XZ", "YI", "YZ"])] .loc[df["interleaving_cl"] == "CZ"] .groupby("ncl") .mean() ) P11_CZ = ( df.loc[df["pauli"].isin(["XX", "XY", "YX", "YY"])] .loc[df["interleaving_cl"] == "CZ"] .groupby("ncl") .mean() ) # Calculate the character function # Eq. 7 of Xue et al. ArXiv 1811.04002v1 C1 = P00["P_|00>"] - P01["P_|00>"] + P10["P_|00>"] - P11["P_|00>"] C2 = P00["P_|00>"] + P01["P_|00>"] - P10["P_|00>"] - P11["P_|00>"] C12 = P00["P_|00>"] - P01["P_|00>"] - P10["P_|00>"] + P11["P_|00>"] C1_CZ = ( P00_CZ["P_|00>"] - P01_CZ["P_|00>"] + P10_CZ["P_|00>"] - P11_CZ["P_|00>"] ) C2_CZ = ( P00_CZ["P_|00>"] + P01_CZ["P_|00>"] - P10_CZ["P_|00>"] - P11_CZ["P_|00>"] ) C12_CZ = ( P00_CZ["P_|00>"] - P01_CZ["P_|00>"] - P10_CZ["P_|00>"] + P11_CZ["P_|00>"] ) char_df = pd.DataFrame( { "P00": P00["P_|00>"], "P01": P01["P_|00>"], "P10": P10["P_|00>"], "P11": P11["P_|00>"], "P00_CZ": P00_CZ["P_|00>"], "P01_CZ": P01_CZ["P_|00>"], "P10_CZ": P10_CZ["P_|00>"], "P11_CZ": P11_CZ["P_|00>"], "C1": C1, "C2": C2, "C12": C12, "C1_CZ": C1_CZ, "C2_CZ": C2_CZ, "C12_CZ": C12_CZ, } ) self.proc_data_dict["char_df"] = char_df def run_fitting(self): super().run_fitting() char_df = self.proc_data_dict["char_df"] # Eq. 8 of Xue et al. ArXiv 1811.04002v1 for char_key in ["C1", "C2", "C12", "C1_CZ", "C2_CZ", "C12_CZ"]: char_mod = lmfit.Model(char_decay, independent_vars="m") char_mod.set_param_hint("A", value=1, vary=True) char_mod.set_param_hint("alpha", value=0.95) params = char_mod.make_params() self.fit_res[char_key] = char_mod.fit( data=char_df[char_key].values, m=char_df.index, params=params ) def analyze_fit_results(self): fr = self.fit_res self.proc_data_dict["quantities_of_interest"] = {} qoi = self.proc_data_dict["quantities_of_interest"] qoi["alpha1"] = ufloat( fr["C1"].params["alpha"].value, fr["C1"].params["alpha"].stderr ) qoi["alpha2"] = ufloat( fr["C2"].params["alpha"].value, fr["C2"].params["alpha"].stderr ) qoi["alpha12"] = ufloat( fr["C12"].params["alpha"].value, fr["C12"].params["alpha"].stderr ) # eq. 9 from Xue et al. ArXiv 1811.04002v1 qoi["alpha_char"] = ( 3 / 15 * qoi["alpha1"] + 3 / 15 * qoi["alpha2"] + 9 / 15 * qoi["alpha12"] ) qoi["alpha1_CZ_int"] = ufloat( fr["C1_CZ"].params["alpha"].value, fr["C1_CZ"].params["alpha"].stderr ) qoi["alpha2_CZ_int"] = ufloat( fr["C2_CZ"].params["alpha"].value, fr["C2_CZ"].params["alpha"].stderr ) qoi["alpha12_CZ_int"] = ufloat( fr["C12_CZ"].params["alpha"].value, fr["C12_CZ"].params["alpha"].stderr ) qoi["alpha_char_CZ_int"] = ( 3 / 15 * qoi["alpha1_CZ_int"] + 3 / 15 * qoi["alpha2_CZ_int"] + 9 / 15 * qoi["alpha12_CZ_int"] ) qoi["eps_ref"] = depolarizing_par_to_eps(qoi["alpha_char"], d=4) qoi["eps_int"] = depolarizing_par_to_eps(qoi["alpha_char_CZ_int"], d=4) # Interleaved error calculation Magesan et al. PRL 2012 qoi["eps_CZ"] = 1 - (1 - qoi["eps_int"]) / (1 - qoi["eps_ref"]) def prepare_plots(self): char_df = self.proc_data_dict["char_df"] # self.figs['puali_decays'] self.plot_dicts["pauli_decays"] = { "plotfn": plot_char_RB_pauli_decays, "ncl": char_df.index.values, "P00": char_df["P00"].values, "P01": char_df["P01"].values, "P10": char_df["P10"].values, "P11": char_df["P11"].values, "P00_CZ": char_df["P00_CZ"].values, "P01_CZ": char_df["P01_CZ"].values, "P10_CZ": char_df["P10_CZ"].values, "P11_CZ": char_df["P11_CZ"].values, "title": self.raw_data_dict["measurementstring"] + "\n" + self.raw_data_dict["timestamp_string"] + "\nPauli decays", } self.plot_dicts["char_decay"] = { "plotfn": plot_char_RB_decay, "ncl": char_df.index.values, "C1": char_df["C1"].values, "C2": char_df["C2"].values, "C12": char_df["C12"].values, "C1_CZ": char_df["C1_CZ"].values, "C2_CZ": char_df["C2_CZ"].values, "C12_CZ": char_df["C12_CZ"].values, "fr_C1": self.fit_res["C1"], "fr_C2": self.fit_res["C2"], "fr_C12": self.fit_res["C12"], "fr_C1_CZ": self.fit_res["C1_CZ"], "fr_C2_CZ": self.fit_res["C2_CZ"], "fr_C12_CZ": self.fit_res["C12_CZ"], "title": self.raw_data_dict["measurementstring"] + "\n" + self.raw_data_dict["timestamp_string"] + "\nCharacter decay", } self.plot_dicts["quantities_msg"] = { "plotfn": plot_char_rb_quantities, "ax_id": "char_decay", "qoi": self.proc_data_dict["quantities_of_interest"], } def plot_cal_points_hexbin( shots_0, shots_1, shots_2, xlabel: str, xunit: str, ylabel: str, yunit: str, title: str, ax, common_clims: bool = True, **kw ): # Choose colormap cmaps = [plt.cm.Blues, plt.cm.Reds, plt.cm.Greens] alpha_cmaps = [] for cmap in cmaps: my_cmap = cmap(np.arange(cmap.N)) my_cmap[:, -1] = np.linspace(0, 1, cmap.N) my_cmap = ListedColormap(my_cmap) alpha_cmaps.append(my_cmap) f = plt.gcf() mincnt = 1 hbs = [] shots_list = [shots_0, shots_1, shots_2] for i, shots in enumerate(shots_list): hb = ax.hexbin( x=shots[0], y=shots[1], cmap=alpha_cmaps[i], mincnt=mincnt, norm=PowerNorm(gamma=0.25), ) cb = f.colorbar(hb, ax=ax) cb.set_label(r"Counts $|{}\rangle$".format(i)) hbs.append(hb) if common_clims: clims = [hb.get_clim() for hb in hbs] clim = np.min(clims), np.max(clims) for hb in hbs: hb.set_clim(clim) set_xlabel(ax, xlabel, xunit) set_ylabel(ax, ylabel, yunit) ax.set_title(title) def plot_raw_RB_curve( ncl, SI, SX, V0, V1, V2, title, ax, xlabel, xunit, ylabel, yunit, **kw ): ax.plot(ncl, SI, label="SI", marker="o") ax.plot(ncl, SX, label="SX", marker="o") ax.plot(ncl[-1] + 0.5, V0, label="V0", marker="d", c="C0") ax.plot(ncl[-1] + 1.5, V1, label="V1", marker="d", c="C1") ax.plot(ncl[-1] + 2.5, V2, label="V2", marker="d", c="C2") ax.set_title(title) set_xlabel(ax, xlabel, xunit) set_ylabel(ax, ylabel, yunit) ax.legend() def plot_populations_RB_curve(ncl, P0, P1, P2, title, ax, **kw): ax.axhline(0.5, c="k", lw=0.5, ls="--") ax.plot(ncl, P0, c="C0", label=r"P($|g\rangle$)", marker="v") ax.plot(ncl, P1, c="C3", label=r"P($|e\rangle$)", marker="^") ax.plot(ncl, P2, c="C2", label=r"P($|f\rangle$)", marker="d") ax.set_xlabel("Number of Cliffords (#)") ax.set_ylabel("Population") ax.grid(axis="y") ax.legend() ax.set_ylim(-0.05, 1.05) ax.set_title(title) def plot_unitarity_shots(ncl, unitarity_shots, title, ax=None, **kw): ax.axhline(0.5, c="k", lw=0.5, ls="--") ax.plot(ncl, unitarity_shots, ".") ax.set_xlabel("Number of Cliffords (#)") ax.set_ylabel("unitarity") ax.grid(axis="y") ax.legend() ax.set_ylim(-1.05, 1.05) ax.set_title(title) def plot_unitarity(ncl, P, title, ax=None, **kw): ax.plot(ncl, P, "o") ax.set_xlabel("Number of Cliffords (#)") ax.set_ylabel("unitarity") ax.grid(axis="y") ax.legend() ax.set_ylim(-0.05, 1.05) ax.set_title(title) def plot_char_RB_pauli_decays( ncl, P00, P01, P10, P11, P00_CZ, P01_CZ, P10_CZ, P11_CZ, title, ax, **kw ): """ Plots the raw recovery probabilities for a character RB experiment. """ ax.plot(ncl, P00, c="C0", label=r"$P_{00}$", marker="o", ls="--") ax.plot(ncl, P01, c="C1", label=r"$P_{01}$", marker="o", ls="--") ax.plot(ncl, P10, c="C2", label=r"$P_{10}$", marker="o", ls="--") ax.plot(ncl, P11, c="C3", label=r"$P_{11}$", marker="o", ls="--") ax.plot( ncl, P00_CZ, c="C0", label=r"$P_{00}$-int. CZ", marker="d", alpha=0.5, ls=":" ) ax.plot( ncl, P01_CZ, c="C1", label=r"$P_{01}$-int. CZ", marker="d", alpha=0.5, ls=":" ) ax.plot( ncl, P10_CZ, c="C2", label=r"$P_{10}$-int. CZ", marker="d", alpha=0.5, ls=":" ) ax.plot( ncl, P11_CZ, c="C3", label=r"$P_{11}$-int. CZ", marker="d", alpha=0.5, ls=":" ) ax.set_xlabel("Number of Cliffords (#)") ax.set_ylabel(r"$P |00\rangle$") ax.legend(loc=(1.05, 0)) ax.set_ylim(-0.05, 1.05) ax.set_title(title) def plot_char_RB_decay( ncl, C1, C2, C12, C1_CZ, C2_CZ, C12_CZ, fr_C1, fr_C2, fr_C12, fr_C1_CZ, fr_C2_CZ, fr_C12_CZ, title, ax, **kw ): ncl_fine = np.linspace(np.min(ncl), np.max(ncl), 101) plot_fit(ncl_fine, fr_C1, ax, ls="-", c="C0") ax.plot( ncl, C1, c="C0", label=r"$C_1$: $A_1\cdot {\alpha_{1|2}}^m$", marker="o", ls="" ) plot_fit(ncl_fine, fr_C2, ax, ls="-", c="C1") ax.plot( ncl, C2, c="C1", label=r"$C_2$: $A_1\cdot {\alpha_{2|1}}^m$", marker="o", ls="" ) plot_fit(ncl_fine, fr_C12, ax, ls="-", c="C2") ax.plot( ncl, C12, c="C2", label=r"$C_{12}$: $A_1\cdot {\alpha_{12}}^m$", marker="o", ls="", ) plot_fit(ncl_fine, fr_C1_CZ, ax, ls="--", c="C0", alpha=0.5) ax.plot( ncl, C1_CZ, c="C0", label=r"$C_1^{int.}$: $A_1' \cdot {\alpha_{1|2}'}^m$", marker="d", ls="", alpha=0.5, ) plot_fit(ncl_fine, fr_C2_CZ, ax, ls="--", c="C1", alpha=0.5) ax.plot( ncl, C2_CZ, c="C1", label=r"$C_2^{int.}$: $A_2' \cdot {\alpha_{2|1}'}^m$", marker="d", ls="", alpha=0.5, ) plot_fit(ncl_fine, fr_C12_CZ, ax, ls="--", c="C2", alpha=0.5) ax.plot( ncl, C12_CZ, c="C2", label=r"$C_{12}^{int.}$: $A_{12}' \cdot {\alpha_{12}'}^m$", marker="d", ls="", alpha=0.5, ) ax.set_xlabel("Number of Cliffords (#)") ax.set_ylabel("Population") ax.legend(title="Character decay", ncol=2, loc=(1.05, 0.6)) ax.set_title(title) def plot_char_rb_quantities(ax, qoi, **kw): """ Plots a text message of the main quantities extracted from char rb """ def gen_val_str(alpha, alpha_p): val_str = " {:.3f}$\pm${:.3f} {:.3f}$\pm${:.3f}" return val_str.format( alpha.nominal_value, alpha.std_dev, alpha_p.nominal_value, alpha_p.std_dev ) alpha_msg = " Reference Interleaved" alpha_msg += "\n" r"$\alpha_{1|2}$" + "\t" alpha_msg += gen_val_str(qoi["alpha1"], qoi["alpha1_CZ_int"]) alpha_msg += "\n" r"$\alpha_{2|1}$" + "\t" alpha_msg += gen_val_str(qoi["alpha2"], qoi["alpha2_CZ_int"]) alpha_msg += "\n" r"$\alpha_{12}$" + "\t" alpha_msg += gen_val_str(qoi["alpha12"], qoi["alpha12_CZ_int"]) alpha_msg += "\n" + "_" * 40 + "\n" alpha_msg += "\n" r"$\epsilon_{Ref.}$" + "\t" alpha_msg += "{:.3f}$\pm${:.3f}%".format( qoi["eps_ref"].nominal_value * 100, qoi["eps_ref"].std_dev * 100 ) alpha_msg += "\n" r"$\epsilon_{Int.}$" + "\t" alpha_msg += "{:.3f}$\pm${:.3f}%".format( qoi["eps_int"].nominal_value * 100, qoi["eps_int"].std_dev * 100 ) alpha_msg += "\n" r"$\epsilon_{CZ.}$" + "\t" alpha_msg += "{:.3f}$\pm${:.3f}%".format( qoi["eps_CZ"].nominal_value * 100, qoi["eps_CZ"].std_dev * 100 ) ax.text(1.05, 0.0, alpha_msg, transform=ax.transAxes) def logisticreg_classifier_machinelearning(shots_0, shots_1, shots_2): """ """ # reshaping of the entries in proc_data_dict shots_0 = np.array(list(zip(list(shots_0.values())[0], list(shots_0.values())[1]))) shots_1 = np.array(list(zip(list(shots_1.values())[0], list(shots_1.values())[1]))) shots_2 = np.array(list(zip(list(shots_2.values())[0], list(shots_2.values())[1]))) shots_0 = shots_0[~np.isnan(shots_0[:, 0])] shots_1 = shots_1[~np.isnan(shots_1[:, 0])] shots_2 = shots_2[~np.isnan(shots_2[:, 0])] X = np.concatenate([shots_0, shots_1, shots_2]) Y = np.concatenate( [ 0 * np.ones(shots_0.shape[0]), 1 * np.ones(shots_1.shape[0]), 2 * np.ones(shots_2.shape[0]), ] ) logreg = linear_model.LogisticRegression(C=1e5) logreg.fit(X, Y) return logreg def plot_classifier_decission_boundary( shots_0, shots_1, shots_2, classifier, xlabel: str, xunit: str, ylabel: str, yunit: str, title: str, ax, **kw ): """ Plot decision boundary on top of the hexbin plot of the training dataset. """ grid_points = 200 x_min = np.nanmin([shots_0[0], shots_1[0], shots_2[0]]) x_max = np.nanmax([shots_0[0], shots_1[0], shots_2[0]]) y_min = np.nanmin([shots_0[1], shots_1[1], shots_2[1]]) y_max = np.nanmax([shots_0[1], shots_1[1], shots_2[1]]) xx, yy = np.meshgrid( np.linspace(x_min, x_max, grid_points), np.linspace(y_min, y_max, grid_points) ) Z = classifier.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plot_cal_points_hexbin( shots_0=shots_0, shots_1=shots_1, shots_2=shots_2, xlabel=xlabel, xunit=xunit, ylabel=ylabel, yunit=yunit, title=title, ax=ax, ) ax.pcolormesh(xx, yy, Z, cmap=c.ListedColormap(["C0", "C3", "C2"]), alpha=0.2) def plot_rb_decay_woods_gambetta(ncl, M0, X1, ax, ax1, title="", **kw): ax.plot(ncl, M0, marker="o", linestyle="") ax1.plot(ncl, X1, marker="d", linestyle="") ax.grid(axis="y") ax1.grid(axis="y") ax.set_ylim(-0.05, 1.05) ax1.set_ylim(min(min(0.97 * X1), 0.92), 1.01) ax.set_ylabel(r"$M_0$ probability") ax1.set_ylabel(r"$\chi_1$ population") ax1.set_xlabel("Number of Cliffords") ax.set_title(title) def plot_irb_decay_woods_gambetta( ncl, M0_ref, M0_int, X1_ref, X1_int, fr_M0_ref, fr_M0_int, fr_M0_simple_ref, fr_M0_simple_int, fr_X1_ref, fr_X1_int, qoi, ax, ax1, fit_tag, int_name, title="", include_idle=False, M0_int_idle=None, X1_int_idle=None, fr_M0_int_idle=None, fr_M0_simple_int_idle=None, fr_X1_int_idle=None, **kw ): ncl_fine = np.linspace(ncl[0], ncl[-1], 1001) ax.plot(ncl, M0_ref, marker="o", linestyle="", c="C0", label="Reference") plot_fit(ncl_fine, fr_M0_ref, ax=ax, c="C0") ax.plot( ncl, M0_int, marker="d", linestyle="", c="C1", label="Interleaved {}".format(int_name), ) plot_fit(ncl_fine, fr_M0_int, ax=ax, c="C1") if include_idle: ax.plot( ncl, M0_int_idle, marker="^", linestyle="", c="C2", label="Interleaved Idle" ) plot_fit(ncl_fine, fr_M0_int_idle, ax=ax, c="C2") ax.grid(axis="y") ax.set_ylim(-0.05, 1.05) ax.set_ylabel(r"$M_0$ probability") ax1.plot(ncl, X1_ref, marker="o", linestyle="", c="C0") ax1.plot(ncl, X1_int, marker="d", linestyle="", c="C1") plot_fit(ncl_fine, fr_X1_ref, ax=ax1, c="C0") plot_fit(ncl_fine, fr_X1_int, ax=ax1, c="C1") if include_idle: ax1.plot(ncl, X1_int_idle, marker="^", linestyle="", c="C2") plot_fit(ncl_fine, fr_X1_int_idle, ax=ax1, c="C2") ax1.grid(axis="y") ax1.set_ylim(min(min(0.97 * X1_int), 0.92), 1.01) ax1.set_ylabel(r"$\chi_1$ population") ax1.set_xlabel("Number of Cliffords") ax.set_title(title) ax.legend(loc="best") collabels = [r"$\epsilon_{\chi1}~(\%)$", r"$\epsilon~(\%)$", r"$L_1~(\%)$"] idle_r_labels0 = ["Interl. Idle curve"] if include_idle else [] idle_r_labels1 = ["Idle-interleaved"] if include_idle else [] rowlabels = ( ["Ref. curve"] + idle_r_labels0 + ["Interl. {} curve".format(int_name)] + idle_r_labels1 + ["{}-interleaved".format(int_name)] ) if int_name == "CZ": rowlabels += ["{}-naive".format(int_name)] idle_r_extracted = ( [[qoi["eps_idle_X1"] * 100, qoi["eps_idle_simple"] * 100, qoi["L1_idle"] * 100]] if include_idle else [] ) idle_r_fit = ( [ [ qoi["eps_X1_{}_int_idle".format(fit_tag)] * 100, qoi["eps_simple_{}_int_idle".format(fit_tag)] * 100, qoi["L1_{}_int_idle".format(fit_tag)] * 100, ] ] if include_idle else [] ) table_data = ( [ [ qoi["eps_X1_{}_ref".format(fit_tag)] * 100, qoi["eps_simple_{}_ref".format(fit_tag)] * 100, qoi["L1_{}_ref".format(fit_tag)] * 100, ] ] + idle_r_fit + [ [ qoi["eps_X1_{}_int".format(fit_tag)] * 100, qoi["eps_simple_{}_int".format(fit_tag)] * 100, qoi["L1_{}_int".format(fit_tag)] * 100, ] ] + idle_r_extracted + [ [ qoi["eps_{}_X1".format(int_name)] * 100, qoi["eps_{}_simple".format(int_name)] * 100, qoi["L1_{}".format(int_name)] * 100, ] ] ) if int_name == "CZ": table_data += [ [ qoi["eps_{}_X1_naive".format(int_name)] * 100, qoi["eps_{}_simple_naive".format(int_name)] * 100, qoi["L1_{}_naive".format(int_name)] * 100, ] ] # Avoid too many digits when the uncertainty is np.nan for i, row in enumerate(table_data): for j, u_val in enumerate(row): if np.isnan(u_val.n) and np.isnan(u_val.s): table_data[i][j] = "nan+/-nan" elif np.isnan(u_val.s): # Keep 3 significant digits only table_data[i][j] = "{:.3g}+/-nan".format(u_val.n) ax1.table( cellText=table_data, colLabels=collabels, rowLabels=rowlabels, transform=ax1.transAxes, cellLoc="center", rowLoc="center", bbox=(0.1, -2.5, 1, 2), ) def interleaved_error(eps_int, eps_base): # Interleaved error calculation Magesan et al. PRL 2012 eps = 1 - (1 - eps_int) / (1 - eps_base) return eps def leak_decay(A, B, lambda_1, m): """ Eq. (9) of Wood Gambetta 2018. A ~= L2/ (L1+L2) B ~= L1/ (L1+L2) + eps_m lambda_1 = 1 - L1 - L2 """ return A + B * lambda_1 ** m def full_rb_decay(A, B, C, lambda_1, lambda_2, m): """Eq. (15) of Wood Gambetta 2018.""" return A + B * lambda_1 ** m + C * lambda_2 ** m def unitarity_decay(A, B, u, m): """Eq. (8) of Wallman et al. New J. Phys. 2015.""" return A + B * u ** m def char_decay(A, alpha, m): """ From Helsen et al. A new class of efficient RB protocols. Theory in Helsen et al. arXiv:1806.02048 Eq. 8 of Xue et al. ArXiv 1811.04002v1 (experimental implementation) Parameters ---------- A (float): Scaling factor of the decay alpha (float): depolarizing parameter to be estimated m (array) number of cliffords returns: A * α**m """ return A * alpha ** m def depolarizing_par_to_eps(alpha, d): """ Convert depolarizing parameter to infidelity. Dugas et al. arXiv:1610.05296v2 contains a nice overview table of common RB paramater conversions. Parameters ---------- alpha (float): depolarizing parameter, also commonly referred to as lambda or p. d (int): dimension of the system, 2 for a single qubit, 4 for two-qubits. Returns ------- eps = (1-alpha)*(d-1)/d """ return (1 - alpha) * (d - 1) / d
mit
681,477,638,738,316,000
35.15968
88
0.494314
false
3.157294
false
false
false
mathstuf/ranger
ranger/gui/widgets/taskview.py
1
2838
# Copyright (C) 2009-2013 Roman Zimbelmann <hut@hut.pm> # This software is distributed under the terms of the GNU GPL version 3. """The TaskView allows you to modify what the loader is doing.""" from . import Widget from ranger.ext.accumulator import Accumulator class TaskView(Widget, Accumulator): old_lst = None def __init__(self, win): Widget.__init__(self, win) Accumulator.__init__(self) self.scroll_begin = 0 def draw(self): base_clr = [] base_clr.append('in_taskview') lst = self.get_list() if self.old_lst != lst: self.old_lst = lst self.need_redraw = True if self.need_redraw: self.win.erase() if not self.pointer_is_synced(): self.sync_index() if self.hei <= 0: return self.addstr(0, 0, "Task View") self.color_at(0, 0, self.wid, tuple(base_clr), 'title') if lst: for i in range(self.hei - 1): i += self.scroll_begin try: obj = lst[i] except IndexError: break y = i + 1 clr = list(base_clr) if self.pointer == i: clr.append('selected') descr = obj.get_description() if obj.progressbar_supported and obj.percent >= 0 \ and obj.percent <= 100: self.addstr(y, 0, "%3.2f%% - %s" % \ (obj.percent, descr), self.wid) wid = int(self.wid / 100.0 * obj.percent) self.color_at(y, 0, self.wid, tuple(clr)) self.color_at(y, 0, wid, tuple(clr), 'loaded') else: self.addstr(y, 0, descr, self.wid) self.color_at(y, 0, self.wid, tuple(clr)) else: if self.hei > 1: self.addstr(1, 0, "No task in the queue.") self.color_at(1, 0, self.wid, tuple(base_clr), 'error') self.color_reset() def finalize(self): y = self.y + 1 + self.pointer - self.scroll_begin self.fm.ui.win.move(y, self.x) def task_remove(self, i=None): if i is None: i = self.pointer if self.fm.loader.queue: self.fm.loader.remove(index=i) def task_move(self, to, i=None): if i is None: i = self.pointer self.fm.loader.move(_from=i, to=to) def press(self, key): self.fm.ui.keymaps.use_keymap('taskview') self.fm.ui.press(key) def get_list(self): return self.fm.loader.queue
gpl-3.0
602,735,406,371,060,500
29.516129
75
0.471811
false
3.789052
false
false
false
altsen/diandiyun-platform
common/lib/xmodule/xmodule/html_module.py
1
11807
import copy from fs.errors import ResourceNotFoundError import logging import os import sys from lxml import etree from path import path from pkg_resources import resource_string from xblock.fields import Scope, String, Boolean, List from xmodule.editing_module import EditingDescriptor from xmodule.html_checker import check_html from xmodule.stringify import stringify_children from xmodule.x_module import XModule from xmodule.xml_module import XmlDescriptor, name_to_pathname import textwrap from xmodule.contentstore.content import StaticContent from xblock.core import XBlock log = logging.getLogger("edx.courseware") class HtmlFields(object): display_name = String( display_name="Display Name", help="This name appears in the horizontal navigation at the top of the page.", scope=Scope.settings, # it'd be nice to have a useful default but it screws up other things; so, # use display_name_with_default for those default="Text" ) data = String(help="Html contents to display for this module", default=u"", scope=Scope.content) source_code = String(help="Source code for LaTeX documents. This feature is not well-supported.", scope=Scope.settings) use_latex_compiler = Boolean( help="Enable LaTeX templates?", default=False, scope=Scope.settings ) class HtmlModule(HtmlFields, XModule): js = { 'coffee': [ resource_string(__name__, 'js/src/javascript_loader.coffee'), resource_string(__name__, 'js/src/collapsible.coffee'), resource_string(__name__, 'js/src/html/display.coffee') ], 'js': [ resource_string(__name__, 'js/src/html/imageModal.js'), resource_string(__name__, 'js/common_static/js/vendor/draggabilly.pkgd.js') ] } js_module_name = "HTMLModule" css = {'scss': [resource_string(__name__, 'css/html/display.scss')]} def get_html(self): if self.system.anonymous_student_id: return self.data.replace("%%USER_ID%%", self.system.anonymous_student_id) return self.data class HtmlDescriptor(HtmlFields, XmlDescriptor, EditingDescriptor): """ Module for putting raw html in a course """ mako_template = "widgets/html-edit.html" module_class = HtmlModule filename_extension = "xml" template_dir_name = "html" js = {'coffee': [resource_string(__name__, 'js/src/html/edit.coffee')]} js_module_name = "HTMLEditingDescriptor" css = {'scss': [resource_string(__name__, 'css/editor/edit.scss'), resource_string(__name__, 'css/html/edit.scss')]} # VS[compat] TODO (cpennington): Delete this method once all fall 2012 course # are being edited in the cms @classmethod def backcompat_paths(cls, path): if path.endswith('.html.xml'): path = path[:-9] + '.html' # backcompat--look for html instead of xml if path.endswith('.html.html'): path = path[:-5] # some people like to include .html in filenames.. candidates = [] while os.sep in path: candidates.append(path) _, _, path = path.partition(os.sep) # also look for .html versions instead of .xml nc = [] for candidate in candidates: if candidate.endswith('.xml'): nc.append(candidate[:-4] + '.html') return candidates + nc @classmethod def filter_templates(cls, template, course): """ Filter template that contains 'latex' from templates. Show them only if use_latex_compiler is set to True in course settings. """ return (not 'latex' in template['template_id'] or course.use_latex_compiler) def get_context(self): """ an override to add in specific rendering context, in this case we need to add in a base path to our c4x content addressing scheme """ _context = EditingDescriptor.get_context(self) # Add some specific HTML rendering context when editing HTML modules where we pass # the root /c4x/ url for assets. This allows client-side substitutions to occur. _context.update({ 'base_asset_url': StaticContent.get_base_url_path_for_course_assets(self.location) + '/', 'enable_latex_compiler': self.use_latex_compiler, }) return _context # NOTE: html descriptors are special. We do not want to parse and # export them ourselves, because that can break things (e.g. lxml # adds body tags when it exports, but they should just be html # snippets that will be included in the middle of pages. @classmethod def load_definition(cls, xml_object, system, location): '''Load a descriptor from the specified xml_object: If there is a filename attribute, load it as a string, and log a warning if it is not parseable by etree.HTMLParser. If there is not a filename attribute, the definition is the body of the xml_object, without the root tag (do not want <html> in the middle of a page) ''' filename = xml_object.get('filename') if filename is None: definition_xml = copy.deepcopy(xml_object) cls.clean_metadata_from_xml(definition_xml) return {'data': stringify_children(definition_xml)}, [] else: # html is special. cls.filename_extension is 'xml', but # if 'filename' is in the definition, that means to load # from .html # 'filename' in html pointers is a relative path # (not same as 'html/blah.html' when the pointer is in a directory itself) pointer_path = "{category}/{url_path}".format( category='html', url_path=name_to_pathname(location.name) ) base = path(pointer_path).dirname() # log.debug("base = {0}, base.dirname={1}, filename={2}".format(base, base.dirname(), filename)) filepath = "{base}/{name}.html".format(base=base, name=filename) # log.debug("looking for html file for {0} at {1}".format(location, filepath)) # VS[compat] # TODO (cpennington): If the file doesn't exist at the right path, # give the class a chance to fix it up. The file will be written out # again in the correct format. This should go away once the CMS is # online and has imported all current (fall 2012) courses from xml if not system.resources_fs.exists(filepath): candidates = cls.backcompat_paths(filepath) # log.debug("candidates = {0}".format(candidates)) for candidate in candidates: if system.resources_fs.exists(candidate): filepath = candidate break try: with system.resources_fs.open(filepath) as file: html = file.read().decode('utf-8') # Log a warning if we can't parse the file, but don't error if not check_html(html) and len(html) > 0: msg = "Couldn't parse html in {0}, content = {1}".format(filepath, html) log.warning(msg) system.error_tracker("Warning: " + msg) definition = {'data': html} # TODO (ichuang): remove this after migration # for Fall 2012 LMS migration: keep filename (and unmangled filename) definition['filename'] = [filepath, filename] return definition, [] except (ResourceNotFoundError) as err: msg = 'Unable to load file contents at path {0}: {1} '.format( filepath, err) # add more info and re-raise raise Exception(msg), None, sys.exc_info()[2] # TODO (vshnayder): make export put things in the right places. def definition_to_xml(self, resource_fs): ''' Write <html filename="" [meta-attrs="..."]> to filename.xml, and the html string to filename.html. ''' # Write html to file, return an empty tag pathname = name_to_pathname(self.url_name) filepath = u'{category}/{pathname}.html'.format( category=self.category, pathname=pathname ) resource_fs.makedir(os.path.dirname(filepath), recursive=True, allow_recreate=True) with resource_fs.open(filepath, 'w') as filestream: html_data = self.data.encode('utf-8') filestream.write(html_data) # write out the relative name relname = path(pathname).basename() elt = etree.Element('html') elt.set("filename", relname) return elt @property def non_editable_metadata_fields(self): non_editable_fields = super(HtmlDescriptor, self).non_editable_metadata_fields non_editable_fields.append(HtmlDescriptor.use_latex_compiler) return non_editable_fields class AboutFields(object): display_name = String( help="Display name for this module", scope=Scope.settings, default="overview", ) data = String( help="Html contents to display for this module", default="", scope=Scope.content ) @XBlock.tag("detached") class AboutModule(AboutFields, HtmlModule): """ Overriding defaults but otherwise treated as HtmlModule. """ pass @XBlock.tag("detached") class AboutDescriptor(AboutFields, HtmlDescriptor): """ These pieces of course content are treated as HtmlModules but we need to overload where the templates are located in order to be able to create new ones """ template_dir_name = "about" module_class = AboutModule class StaticTabFields(object): """ The overrides for Static Tabs """ display_name = String( display_name="Display Name", help="This name appears in the horizontal navigation at the top of the page.", scope=Scope.settings, default="Empty", ) data = String( default=textwrap.dedent("""\ <p>This is where you can add additional pages to your courseware. Click the 'edit' button to begin editing.</p> """), scope=Scope.content, help="HTML for the additional pages" ) @XBlock.tag("detached") class StaticTabModule(StaticTabFields, HtmlModule): """ Supports the field overrides """ pass @XBlock.tag("detached") class StaticTabDescriptor(StaticTabFields, HtmlDescriptor): """ These pieces of course content are treated as HtmlModules but we need to overload where the templates are located in order to be able to create new ones """ template_dir_name = None module_class = StaticTabModule class CourseInfoFields(object): """ Field overrides """ items = List( help="List of course update items", default=[], scope=Scope.content ) data = String( help="Html contents to display for this module", default="<ol></ol>", scope=Scope.content ) @XBlock.tag("detached") class CourseInfoModule(CourseInfoFields, HtmlModule): """ Just to support xblock field overrides """ # statuses STATUS_VISIBLE = 'visible' STATUS_DELETED = 'deleted' @XBlock.tag("detached") class CourseInfoDescriptor(CourseInfoFields, HtmlDescriptor): """ These pieces of course content are treated as HtmlModules but we need to overload where the templates are located in order to be able to create new ones """ template_dir_name = None module_class = CourseInfoModule
agpl-3.0
-4,910,680,462,322,662,000
35.329231
123
0.621665
false
4.247122
false
false
false
euphi/homie-esp8266
scripts/ota_updater/ota_updater.py
1
6619
#!/usr/bin/env python from __future__ import division, print_function import paho.mqtt.client as mqtt import base64, sys, math from hashlib import md5 # The callback for when the client receives a CONNACK response from the server. def on_connect(client, userdata, flags, rc): if rc != 0: print("Connection Failed with result code {}".format(rc)) client.disconnect() else: print("Connected with result code {}".format(rc)) # calcluate firmware md5 firmware_md5 = md5(userdata['firmware']).hexdigest() userdata.update({'md5': firmware_md5}) # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. client.subscribe("{base_topic}{device_id}/$implementation/ota/status".format(**userdata)) client.subscribe("{base_topic}{device_id}/$implementation/ota/enabled".format(**userdata)) client.subscribe("{base_topic}{device_id}/$fw/#".format(**userdata)) # Wait for device info to come in and invoke the on_message callback where update will continue print("Waiting for device info...") # The callback for when a PUBLISH message is received from the server. def on_message(client, userdata, msg): # decode string for python2/3 compatiblity msg.payload = msg.payload.decode() if msg.topic.endswith('$implementation/ota/status'): status = int(msg.payload.split()[0]) if userdata.get("published"): if status == 206: # in progress # state in progress, print progress bar progress, total = [int(x) for x in msg.payload.split()[1].split('/')] bar_width = 30 bar = int(bar_width*(progress/total)) print("\r[", '+'*bar, ' '*(bar_width-bar), "] ", msg.payload.split()[1], end='', sep='') if (progress == total): print() sys.stdout.flush() elif status == 304: # not modified print("Device firmware already up to date with md5 checksum: {}".format(userdata.get('md5'))) client.disconnect() elif status == 403: # forbidden print("Device ota disabled, aborting...") client.disconnect() elif msg.topic.endswith('$fw/checksum'): checksum = msg.payload if userdata.get("published"): if checksum == userdata.get('md5'): print("Device back online. Update Successful!") else: print("Expecting checksum {}, got {}, update failed!".format(userdata.get('md5'), checksum)) client.disconnect() else: if checksum != userdata.get('md5'): # save old md5 for comparison with new firmware userdata.update({'old_md5': checksum}) else: print("Device firmware already up to date with md5 checksum: {}".format(checksum)) client.disconnect() elif msg.topic.endswith('ota/enabled'): if msg.payload == 'true': userdata.update({'ota_enabled': True}) else: print("Device ota disabled, aborting...") client.disconnect() if ( not userdata.get("published") ) and ( userdata.get('ota_enabled') ) and \ ( 'old_md5' in userdata.keys() ) and ( userdata.get('md5') != userdata.get('old_md5') ): # push the firmware binary userdata.update({"published": True}) topic = "{base_topic}{device_id}/$implementation/ota/firmware/{md5}".format(**userdata) print("Publishing new firmware with checksum {}".format(userdata.get('md5'))) client.publish(topic, userdata['firmware']) def main(broker_host, broker_port, broker_username, broker_password, base_topic, device_id, firmware): # initialise mqtt client and register callbacks client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message # set username and password if given if broker_username and broker_password: client.username_pw_set(broker_username, broker_password) # save data to be used in the callbacks client.user_data_set({ "base_topic": base_topic, "device_id": device_id, "firmware": firmware }) # start connection print("Connecting to mqtt broker {} on port {}".format(broker_host, broker_port)) client.connect(broker_host, broker_port, 60) # Blocking call that processes network traffic, dispatches callbacks and handles reconnecting. client.loop_forever() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser( description='ota firmware update scirpt for ESP8226 implemenation of the Homie mqtt IoT convention.') # ensure base topic always ends with a '/' def base_topic_arg(s): s = str(s) if not s.endswith('/'): s = s + '/' return s # specify arguments parser.add_argument('-l', '--broker-host', type=str, required=False, help='host name or ip address of the mqtt broker', default="127.0.0.1") parser.add_argument('-p', '--broker-port', type=int, required=False, help='port of the mqtt broker', default=1883) parser.add_argument('-u', '--broker-username', type=str, required=False, help='username used to authenticate with the mqtt broker') parser.add_argument('-d', '--broker-password', type=str, required=False, help='password used to authenticate with the mqtt broker') parser.add_argument('-t', '--base-topic', type=base_topic_arg, required=False, help='base topic of the homie devices on the broker', default="homie/") parser.add_argument('-i', '--device-id', type=str, required=True, help='homie device id') parser.add_argument('firmware', type=argparse.FileType('rb'), help='path to the firmware to be sent to the device') # workaround for http://bugs.python.org/issue9694 parser._optionals.title = "arguments" # get and validate arguments args = parser.parse_args() # read the contents of firmware into buffer fw_buffer = args.firmware.read() args.firmware.close() firmware = bytearray() firmware.extend(fw_buffer) # Invoke the business logic main(args.broker_host, args.broker_port, args.broker_username, args.broker_password, args.base_topic, args.device_id, firmware)
mit
6,659,864,722,361,300,000
41.703226
109
0.610666
false
4.162893
false
false
false
Saluev/cocos2d-gui
cocosgui/css/__init__.py
1
2523
__all__ = [ 'styles', 'Style', 'CSSNode', 'evaluate' ] # importing basic names to publish them from .style import styles, Style from .node import CSSNode # importing extensions import border, borderimage, background, font import rendering def evaluate(window, element = None): if element is None: element = window element.evaluate_style() children = element.get_nodes() for child in children: assert(child.parent is element) evaluate(window, child) _evaluate_node(element) def _evaluate_node(node): parent, style = node.parent, node.evaluated_style left, bottom = style['left'], style['top'] left = 0 if left == 'auto' else left bottom = 0 if bottom == 'auto' else bottom position = style['position'] if position == 'absolute': raise NotImplementedError # TODO fixed? margin_offset = [left, bottom] border_offset = [margin_offset[0] + style['margin-left'], margin_offset[1] + style['margin-bottom' ]] padding_offset = [border_offset[0] + style['border-left-width'], border_offset[1] + style['border-bottom-width' ]] content_offset = [padding_offset[0] + style['padding-left'], padding_offset[1] + style['padding-bottom' ]] content_box = content_offset + list(node.get_content_size()) padding_box = padding_offset + [sum(( content_box[2], style['padding-left' ], style['padding-right' ], )), sum(( content_box[3], style['padding-top' ], style['padding-bottom'], ))] border_box = border_offset + [sum(( padding_box[2], style['border-left-width' ], style['border-right-width' ], )), sum(( padding_box[3], style['border-top-width' ], style['border-bottom-width'], ))] margin_box = margin_offset + [sum(( border_box[2], style['margin-left' ], style['margin-right' ], )), sum(( border_box[3], style['margin-top' ], style['margin-bottom'], ))] #width, height = style['width'], style['height'] # TODO percentages? #width = margin_box[2] if width == 'auto' else width #height = margin_box[3] if height == 'auto' else height #dw, dh = width - margin_box[2], height - margin_box[3] #if dw != 0 or dh != 0: #for box in [margin_box, border_box, padding_box, content_box]: #box[2] += dw #box[3] += dh info = { 'node': node, 'margin_box' : margin_box, 'border_box' : border_box, 'padding_box': padding_box, 'content_box': content_box, } node.apply_style(**info)
mit
-5,700,135,919,683,113,000
29.768293
70
0.613555
false
3.337302
false
false
false
pclubuiet/website
home/views.py
1
3396
from django import views from django.shortcuts import render, get_object_or_404 from django.views.generic import TemplateView from django.views.generic.edit import CreateView from .models import * from .forms import * import requests import http from django.urls import reverse_lazy from django.views.decorators.csrf import csrf_exempt from django.http import JsonResponse class Template404(TemplateView): template_name = "404.html" class Home(TemplateView): template_name = 'home/home.html' class Topics(views.View): def get(self, request, *args, **kwargs): return render(request, "home/resources/topics.html", {'topics': Topic.objects.all()}) class Resources(views.View): def get(self, request, pk, *args, **kwargs): topic = get_object_or_404(Topic, pk=pk) return render(request, "home/resources/resources.html", {'resources': topic.resource_set.all(), 'topic' : topic}) class BlogPostList(views.View): def get(self, request, *args, **kwargs): posts = BlogPost.objects.all() return render(request, "home/blog/index.html", {'posts': posts}) class BlogPostView(views.View): def get(self, request, pk, *args, **kwargs): post = get_object_or_404(BlogPost, pk=pk) return render(request, "home/blog/blog_post.html", {'post': post}) class Leaderboard(views.View): def get(self, request, *args, **kwargs): users = Users.objects.all() for user in users: connected = False while not connected: try: user_name = user.github_handle response = requests.get('https://api.github.com/search/issues?sort=created&q=author:{}&type:pr&per_page=100'.format(user_name), verify = False).json() pr_count = 0 print(response) for obj in response['items']: if('pull_request' in obj): if('2018-09-30T00:00:00Z'<obj['created_at']<'2018-10-31T23:59:59Z'): pr_count += 1 user.pr_count = pr_count user.save() connected = True except: pass return render(request, 'home/leaderboard.html', {'users': users}) class RegisterUser(CreateView): form_class = RegisterUserForm template_name = "home/registeruser.html" success_url = reverse_lazy('home:home') @csrf_exempt def GithubEmailCheck(request): github_handle = request.POST.get('github_handle') email = request.POST.get('email') print("Received ", github_handle) users = Users.objects.all() for user in users: if user.github_handle == github_handle: return JsonResponse({'message' : 'Duplicate Github Handle'}) if user.email == email: return JsonResponse({'message' : 'Duplicate Email'}) return JsonResponse({'message' : 'New'}) @csrf_exempt def GithubCheck(request): github_handle = request.POST.get('github_handle') response = requests.get("https://api.github.com/users/{}".format(github_handle), verify = False).json() print("https://api.github.com/users/{}".format(github_handle)) if ('login' in response): print("Found") return JsonResponse({'message' : 'Found'}) else: return JsonResponse({'message' : 'Not Found'})
gpl-3.0
-1,718,221,211,592,258,300
38.045977
170
0.620436
false
3.876712
false
false
false
brain-research/acai
lib/eval.py
1
4490
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluation functions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from lib import data import numpy as np import scipy.spatial def closest_line(query_lines, metric='cosine'): """Compute the distance to, and parameters for, the closest line to each line in query_lines. Args: - query_lines: Array of lines to compute closest matches for, shape (n_lines, width, height, 1) - metric: String to pass to scipy.spatial.distance.cdist to choose which distance metric to use Returns: - min_dist, starts, ends: Arrays of shape (n_lines,) denoting the distance to the nearest ``true'' line and the start and end points. """ h, w = query_lines.shape[1:-1] # Construct 10000 lines with these dimensions angles = np.linspace(0, 2*np.pi - 2*np.pi/10000, 10000) all_lines = np.array( [(data.draw_line(angle, h, w)) for angle in angles]) # Produce vectorized versions of both for use with scipy.spatial flat_query = query_lines.reshape(query_lines.shape[0], -1) flat_all = all_lines.reshape(all_lines.shape[0], -1) # Compute pairwise distance matrix of query lines with all valid lines distances = scipy.spatial.distance.cdist(flat_query, flat_all, metric) min_dist_idx = np.argmin(distances, axis=-1) min_dist = distances[np.arange(distances.shape[0]), min_dist_idx] angles = np.array([angles[n] for n in min_dist_idx]) return min_dist, angles def smoothness_score(angles): """Computes the smoothness score of a line interpolation according to the angles of each line. Args: - angles: Array of shape (n_interpolations, n_lines_per_interpolation) giving the angle of each line in each interpolation. Returns: - smoothness_scores: Array of shape (n_interpolations,) giving the average smoothness score for all of the provided interpolations. """ angles = np.atleast_2d(angles) # Remove discontinuities larger than np.pi angles = np.unwrap(angles) diffs = np.abs(np.diff(angles, axis=-1)) # Compute the angle difference from the first and last point total_diff = np.abs(angles[:, :1] - angles[:, -1:]) # When total_diff is zero, there's no way to compute this score zero_diff = (total_diff < 1e-4).flatten() normalized_diffs = diffs/total_diff deviation = np.max(normalized_diffs, axis=-1) - 1./(angles.shape[1] - 1) # Set score to NaN when we aren't able to compute it deviation[zero_diff] = np.nan return deviation def line_eval(interpolated_lines): """Given a group of line interpolations, compute mean nearest line distance and mean smoothness score for all of the interpolations. This version of this metric is meant for vertical lines only. Args: - interpolated_lines: Collection of line interpolation images, shape (n_interpolations, n_lines_per_interpolation, height, width, 1) Returns: - mean_distance: Average distance to closest ``real'' line. - mean_smoothness: Average interpolation smoothness """ original_shape = interpolated_lines.shape min_dist, angles = closest_line( interpolated_lines.reshape((-1,) + original_shape[2:])) mean_distance = np.mean(min_dist) smoothness_scores = smoothness_score( angles.reshape(original_shape[0], original_shape[1])) nan_scores = np.isnan(smoothness_scores) # If all scores were NaN, set the mean score to NaN if np.all(nan_scores): mean_smoothness = np.nan # Otherwise only compute mean for non-NaN scores else: sum_smoothness = np.sum(smoothness_scores[np.logical_not(nan_scores)]) mean_smoothness = sum_smoothness/float(len(nan_scores)) return np.float32(mean_distance), np.float32(mean_smoothness)
apache-2.0
3,405,448,565,287,546,400
39.089286
79
0.688641
false
3.824532
false
false
false
bklakew/OpenAgClassifier
src/model/server.py
1
6199
""" # Copyright 2017 Foundation Center. All Rights Reserved. # # Licensed under the Foundation Center Public License, Version 1.0 (the “License”); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://gis.foundationcenter.org/licenses/LICENSE-1.0.html # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an “AS IS” BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ from base.prediction import Predictor from base.model import TextClassifier from nltk.data import load from base.database import MySqlDataBase from base.graph import run, bfs from base import config as c import json import os import time import warnings import itertools from concurrent.futures import ThreadPoolExecutor, as_completed from flask import Flask, request, Response from flask_cors import cross_origin app = Flask(__name__) warnings.simplefilter("ignore", UserWarning) def _load_to_memory(name, level): clf = TextClassifier() clf.load(path='model/clf_data/', name=name, in_db=False) del clf.doc_ids return Predictor(classifier=clf, high_t=c.high_threshold[level], low_t=c.low_threshold[level]) def _get_lookup(): db = MySqlDataBase(c.db) query = """ SELECT Code, ifnull(ifnull(ifnull(ifnull(ifnull(L7, L6), L5), L4), L3), L2) AS `description` FROM ( SELECT Code, nullif(L7, '') AS L7, nullif(L6, '') AS L6, nullif(L5, '') AS L5 , nullif(L4, '') AS L4, nullif(L3, '') AS L3, nullif(L2, '') AS L2 , nullif(L1, '') AS L1 FROM agrovoc_autocode.agrovoc_terms WHERE `Use?` = 'Y' ) as a """ db.execute(query) d = {} for row in db.cursor: code = row["Code"].strip() description = row["description"].strip() d[code] = description db.teardown() return d def _validate(js, k): return isinstance(js, dict) and k in js print("[INFO] Loading AGROVOC classifiers") p1 = _load_to_memory(name='hierarchy_1_76021167-b4ce-463d-bab0-bc7fb044b74b', level=1) p2 = _load_to_memory(name='hierarchy_2_2fd8b6a0-6786-42ef-9eea-66ea02a1dfdd', level=2) p3 = _load_to_memory(name='hierarchy_3_2b946288-5eeb-4d35-a1fe-6987c118c3b5', level=3) p4 = _load_to_memory(name='hierarchy_4_3e787d47-5183-4df2-ba4b-509926f029d3', level=4) lookup = _get_lookup() graph = run(MySqlDataBase(c.db)) sentence_detector = load("tokenizers/punkt/english.pickle") def taxonomy_rollup(results): """ Does the taxonomy rollup using a graph breadth-first-search algorithm :param results: (list of dictionaries) :return: (list of dictionaries) """ all_codes = set([r["code"] for r in results]) to_keep = set() node_check = all_codes - to_keep for n in node_check: to_keep.add(n) k = bfs(graph=graph, start=n, to_check=node_check, keep=to_keep) to_keep.add(k) return [r for r in results if r["code"] in to_keep if r["code"] is not None] @app.route('/predict', methods=['POST', 'GET']) @cross_origin(origin='*', headers=['Content-Type', 'Authorization']) def predict(): """ Single text predictions :return: (JSON) """ j = request.get_json() if j is None: j = request.args if not j: j = request.form if _validate(j, 'text'): st = time.time() text = j['text'] threshold = 0 chunk = False if 'chunk' in j and j['chunk'].lower() == 'true': text = [sub for sent in sentence_detector.tokenize(text) for sub in sent.split(';')] chunk = True if 'threshold' in j and j['threshold'] == 'high': threshold = 1 # get all predictions, for every hierarchy asynchronously results = [] with ThreadPoolExecutor(max_workers=4) as executor: future_results = {executor.submit(func, (text, lookup, threshold)): idx + 1 for idx, func in enumerate([p1.predict, p2.predict, p3.predict, p4.predict ])} for future in as_completed(future_results): results.extend(future.result()) # resolve duplication that arises due to chunking (accept the result with the maximum confidence per class) if chunk: results_sort = sorted(results, key=lambda x: (x["code"], x["confidence"])) grouped = itertools.groupby(results_sort, lambda s: s["code"]) results = [max(v, key=lambda x: x["confidence"]) for k, v in grouped] # add logic to toggle the agrovoc graph roll up on and off if 'roll_up' in j and j['roll_up'].lower() == 'false': agg = [r for r in results if r["code"] is not None] else: agg = taxonomy_rollup(results) if not agg: agg = [{"code": None, "description": None, "confidence": 0.0}] agg = sorted(agg, key=lambda s: s["confidence"], reverse=True) return Response(response=json.dumps({"success": True, "duration": time.time() - st, "data": agg}, indent=4), status=200, mimetype='application/json') return Response(response=json.dumps({"success": False, "status": "Incorrect parameters"}, indent=4), status=404, mimetype='application/json') if __name__ == '__main__': debug = os.environ.get('DEBUG', False) port = os.environ.get('PORT', 9091) testing = os.environ.get('TESTING', False) app.run(host='0.0.0.0', port=port, debug=debug)
mpl-2.0
8,984,252,178,927,677,000
33.786127
116
0.581812
false
3.591067
false
false
false
snipsco/snipsskills
snipsmanager/commands/setup/systemd/snipsmanager.py
1
1887
# -*-: coding utf-8 -*- import os import time from ...base import Base from ....utils.os_helpers import is_raspi_os, which from ....utils.systemd import Systemd from .... import DEFAULT_SNIPSFILE_PATH from snipsmanagercore import pretty_printer as pp class SystemdSnipsManagerException(Exception): pass class SystemdSnipsManager(Base): SNIPSMANAGER_SERVICE_NAME = "snipsmanager" SNIPSMANAGER_COMMAND = "snipsmanager" def run(self): snipsfile_path = self.options['--snipsfile_path'] or os.getcwd() try: SystemdSnipsManager.setup(snipsfile_path=snipsfile_path) except Exception as e: pp.perror(str(e)) @staticmethod def setup(snipsfile_path=None): pp.pcommand("Setting up Snips Manager as a Systemd service") snipsfile_path = snipsfile_path or DEFAULT_SNIPSFILE_PATH working_directory = os.path.dirname(snipsfile_path) if not is_raspi_os(): raise SystemdSnipsManagerException("Snips Systemd configuration is only available on Raspberry Pi. Skipping Systemd setup") snipsmanager_path = which('snipsmanager') if snipsmanager_path is None: raise SystemdSnipsManagerException("Error: cannot find command 'snipsmanager' on the system. Make sure the Snips Manager CLI is correctly installed. Skipping Systemd setup") contents = Systemd.get_template(SystemdSnipsManager.SNIPSMANAGER_SERVICE_NAME) contents = contents.replace("{{SNIPSMANAGER_COMMAND}}", snipsmanager_path) contents = contents.replace("{{WORKING_DIRECTORY}}", working_directory) Systemd.write_systemd_file(SystemdSnipsManager.SNIPSMANAGER_SERVICE_NAME, None, contents) Systemd.enable_service(None, SystemdSnipsManager.SNIPSMANAGER_SERVICE_NAME) pp.psuccess("Successfully set up Snips Manager as a Systemd service")
mit
9,124,192,898,552,893,000
36
185
0.711182
false
3.614943
false
false
false
haricot/djangocms-bs4forcascade
cmsplugin_bs4forcascade/bootstrap4/utils.py
1
11099
# -*- coding: utf-8 -*- from __future__ import unicode_literals import logging from collections import OrderedDict from django.forms import widgets from cmsplugin_cascade import app_settings from cmsplugin_cascade.plugin_base import CascadePluginBase from cmsplugin_cascade.utils import compute_aspect_ratio, get_image_size, parse_responsive_length __all__ = ['reduce_breakpoints', 'compute_media_queries', 'get_image_tags', 'get_picture_elements', 'get_widget_choices'] logger = logging.getLogger('cascade') BS4_BREAKPOINTS = OrderedDict(app_settings.CMSPLUGIN_CASCADE['bootstrap4']['breakpoints']) BS4_BREAKPOINT_KEYS = list(tp[0] for tp in app_settings.CMSPLUGIN_CASCADE['bootstrap4']['breakpoints']) def get_widget_choices(): breakpoints = list(BS4_BREAKPOINTS) i = 0 widget_choices = [] for br, br_options in BS4_BREAKPOINTS.items(): if i == 0: widget_choices.append((br, '{} (<{}px)'.format(br_options[2], br_options[0]))) elif i == len(breakpoints[:-1]): widget_choices.append((br, '{} (≥{}px)'.format(br_options[2], br_options[0]))) else: widget_choices.append((br, '{} (≥{}px and <{}px)'.format(br_options[2], br_options[0], BS4_BREAKPOINTS[breakpoints[(i + 1)]][0]))) i += 1 return widget_choices def reduce_breakpoints(plugin, field_name, request=None, obj=None): """ Narrow down the number of breakpoints in the widget of the named glossary_field. This is useful in case the container was defined with a subset of these breakpoints: xs, sm, md, lg. """ if not isinstance(plugin, CascadePluginBase): raise ValueError('Plugin is not of type CascadePluginBase') parent_instance = plugin.get_parent_instance(request, obj) if not parent_instance: return complete_glossary = parent_instance.get_complete_glossary() if 'breakpoints' not in complete_glossary: return try: # find the glossary_field named field_name and restrict its breakpoint to the available ones widget = [f for f in plugin.glossary_fields if f.name == field_name][0].widget except IndexError: return if not isinstance(widget, widgets.MultiWidget): raise ValueError('Widget for glossary_field {0} is not a multiple value field') temp = [(l, widget.widgets[k]) for k, l in enumerate(widget.labels) if l in complete_glossary['breakpoints']] widget.labels, widget.widgets = (list(t) for t in zip(*temp)) def compute_media_queries(element): """ For e given Cascade element, compute the current media queries for each breakpoint, even for nested containers, rows and columns. """ parent_glossary = element.get_parent_glossary() # compute the max width and the required media queries for each chosen breakpoint element.glossary['container_max_widths'] = max_widths = {} element.glossary['media_queries'] = media_queries = {} breakpoints = element.glossary.get('breakpoints', parent_glossary.get('breakpoints', [])) last_index = len(breakpoints) - 1 fluid = element.glossary.get('fluid') for index, bp in enumerate(breakpoints): try: key = 'container_fluid_max_widths' if fluid else 'container_max_widths' max_widths[bp] = parent_glossary[key][bp] except KeyError: max_widths[bp] = BS4_BREAKPOINTS[bp][4 if fluid else 3] if last_index > 0: if index == 0: next_bp = breakpoints[1] media_queries[bp] = ['(max-width: {0}px)'.format(BS4_BREAKPOINTS[next_bp][0])] elif index == last_index: media_queries[bp] = ['(min-width: {0}px)'.format(BS4_BREAKPOINTS[bp][0])] else: next_bp = breakpoints[index + 1] media_queries[bp] = ['(min-width: {0}px)'.format(BS4_BREAKPOINTS[bp][0]), '(max-width: {0}px)'.format(BS4_BREAKPOINTS[next_bp][0])] def get_image_tags(context, instance, options): """ Create a context returning the tags to render an <img ...> element: ``sizes``, ``srcset``, a fallback ``src`` and if required inline styles. """ try: aspect_ratio = compute_aspect_ratio(instance.image) except Exception as e: # if accessing the image file fails, abort here return is_responsive = options.get('is_responsive', False) resize_options = options.get('resize_options', {}) crop = 'crop' in resize_options upscale = 'upscale' in resize_options subject_location = instance.image.subject_location if 'subject_location' in resize_options else False resolutions = (False, True) if 'high_resolution' in resize_options else (False,) tags = {'sizes': [], 'srcsets': {}, 'is_responsive': is_responsive, 'extra_styles': {}} if is_responsive: image_width = parse_responsive_length(options.get('image_width_responsive') or '100%') assert(image_width[1]), "The given image has no valid width" if image_width[1] != 1.0: tags['extra_styles'].update({'max-width': '{:.0f}%'.format(100 * image_width[1])}) else: image_width = parse_responsive_length(options['image_width_fixed']) if not image_width[0]: image_width = (instance.image.width, image_width[1]) try: image_height = parse_responsive_length(options['image_height']) except KeyError: image_height = (None, None) set_defaults(options) if is_responsive: max_width = 0 for bp in options['breakpoints']: if bp not in options['container_max_widths']: continue width = int(image_width[1] * options['container_max_widths'][bp]) max_width = max(max_width, width) size = get_image_size(width, image_height, aspect_ratio) if bp in options['media_queries']: tags['sizes'].append('{0} {1}px'.format(' and '.join(options['media_queries'][bp]), width)) for high_res in resolutions: if high_res: size = (size[0] * 2, size[1] * 2) key = '{0}w'.format(size[0]) tags['srcsets'][key] = {'size': size, 'crop': crop, 'upscale': upscale, 'subject_location': subject_location} # use an existing image as fallback for the <img ...> element if not max_width > 0: logger.warning('image tags: image max width is zero') size = (int(round(max_width)), int(round(max_width * aspect_ratio))) else: size = get_image_size(image_width[0], image_height, aspect_ratio) if len(resolutions) > 1: for high_res in resolutions: if high_res: tags['srcsets']['2x'] = {'size': (size[0] * 2, size[1] * 2), 'crop': crop, 'upscale': upscale, 'subject_location': subject_location} else: tags['srcsets']['1x'] = {'size': size, 'crop': crop, 'upscale': upscale, 'subject_location': subject_location} tags['src'] = {'size': size, 'crop': crop, 'upscale': upscale, 'subject_location': subject_location} return tags def set_defaults(options): options.setdefault('breakpoints', ['xs', 'sm', 'md', 'lg', 'xl']) options.setdefault('container_max_widths', {'xs': 576, 'sm': 767, 'md': 991, 'lg': 1199, 'xl': 1980}) options.setdefault('fluid', False) options.setdefault('media_queries', { 'xs': ['(max-width: 576px)'], 'sm': ['(min-width: 576px)', '(max-width: 767px)'], 'md': ['(min-width: 768px)', '(max-width: 991px)'], 'lg': ['(min-width: 992px)','(max-width: 1199px)'], 'xl': ['(min-width: 1200px)'], }) def get_picture_elements(context, instance): """ Create a context, used to render a <picture> together with all its ``<source>`` elements: It returns a list of HTML elements, each containing the information to render a ``<source>`` element. The purpose of this HTML entity is to display images with art directions. For normal images use the ``<img>`` element. """ if not instance.image: return complete_glossary = instance.get_complete_glossary() aspect_ratio = compute_aspect_ratio(instance.image) container_max_heights = complete_glossary.get('container_max_heights', {}) resize_options = instance.glossary.get('resize_options', {}) crop = 'crop' in resize_options upscale = 'upscale' in resize_options subject_location = instance.image.subject_location if 'subject_location' in resize_options else False max_width = 0 max_zoom = 0 elements = [] for bp in complete_glossary['breakpoints']: try: width = float(complete_glossary['container_max_widths'][bp]) except KeyError: width = 0 max_width = max(max_width, round(width)) size = None try: image_height = parse_responsive_length(instance.glossary['responsive_heights'][bp]) except KeyError: image_height = (None, None) if image_height[0]: # height was given in px size = (int(width), image_height[0]) elif image_height[1]: # height was given in % size = (int(width), int(round(width * aspect_ratio * image_height[1]))) elif bp in container_max_heights: container_height = parse_responsive_length(container_max_heights[bp]) if container_height[0]: size = (int(width), container_height[0]) elif container_height[1]: size = (int(width), int(round(width * aspect_ratio * container_height[1]))) try: zoom = int( instance.glossary['responsive_zoom'][bp].strip().rstrip('%') ) except (AttributeError, KeyError, ValueError): zoom = 0 max_zoom = max(max_zoom, zoom) if size is None: # as fallback, adopt height to current width size = (int(width), int(round(width * aspect_ratio))) try: media_queries = complete_glossary['media_queries'][bp][:] except KeyError: media_queries = [] media = ' and '.join(media_queries) elem = {'tag': 'source', 'size': size, 'zoom': zoom, 'crop': crop, 'upscale': upscale, 'subject_location': subject_location, 'media': media} if 'high_resolution' in resize_options: elem['size2'] = (size[0] * 2, size[1] * 2) elements.append(elem) # add a fallback image for old browsers which can't handle the <picture> element if image_height[1]: size = (int(max_width), int(round(max_width * aspect_ratio * image_height[1]))) else: size = (int(max_width), int(round(max_width * aspect_ratio))) elements.append({'tag': 'img', 'size': size, 'zoom': max_zoom, 'crop': crop, 'upscale': upscale, 'subject_location': subject_location}) return elements
mit
-605,115,729,172,687,700
45.422594
142
0.605588
false
3.688497
false
false
false
lcpt/xc
verif/tests/elements/shell/test_shell_mitc4_11.py
1
3573
# -*- coding: utf-8 -*- ''' Taken from example 2-005 of the SAP 2000 verification manual.''' # The obtained error is near 1.8% it can be the aspect ratio # of the element. See comments on page EXAMPLE 2-005 - 7 # in the SAP 2000 manual. __author__= "Luis C. Pérez Tato (LCPT) and Ana Ortega (AOO)" __copyright__= "Copyright 2015, LCPT and AOO" __license__= "GPL" __version__= "3.0" __email__= "l.pereztato@gmail.com" # feProblem.setVerbosityLevel(0) NumDivI= 32 NumDivJ= 32 CooMaxX= 10 CooMaxY= 2 E= 17472000 # Elastic modulus en lb/in2 nu= 0.3 # Poisson's ratio G= 6720000 thickness= 0.0001 # Cross section depth expressed in inches. unifLoad= 0.0001 # Uniform load in lb/in2. ptLoad= 0.0004 # Punctual load in lb. import xc_base import geom import xc from solution import predefined_solutions from model import predefined_spaces from materials import typical_materials # Problem type feProblem= xc.FEProblem() preprocessor= feProblem.getPreprocessor nodes= preprocessor.getNodeHandler modelSpace= predefined_spaces.StructuralMechanics3D(nodes) # Define materials elast= typical_materials.defElasticMaterial(preprocessor, "elast",E) nodes.newSeedNode() # Define materials nmb1= typical_materials.defElasticMembranePlateSection(preprocessor, "memb1",E,nu,0.0,thickness) seedElemHandler= preprocessor.getElementHandler.seedElemHandler seedElemHandler.defaultMaterial= "memb1" seedElemHandler.defaultTag= 1 elem= seedElemHandler.newElement("ShellMITC4",xc.ID([0,0,0,0])) points= preprocessor.getMultiBlockTopology.getPoints pt= points.newPntIDPos3d(1,geom.Pos3d(0.0,0.0,0.0)) pt= points.newPntIDPos3d(2,geom.Pos3d(CooMaxX,0.0,0.0)) pt= points.newPntIDPos3d(3,geom.Pos3d(CooMaxX,CooMaxY,0.0)) pt= points.newPntIDPos3d(4,geom.Pos3d(0.0,CooMaxY,0.0)) surfaces= preprocessor.getMultiBlockTopology.getSurfaces surfaces.defaultTag= 1 s= surfaces.newQuadSurfacePts(1,2,3,4) s.nDivI= NumDivI s.nDivJ= NumDivJ # Constraints f1= preprocessor.getSets.getSet("f1") f1.genMesh(xc.meshDir.I) sides= s.getEdges #Edge iterator for l in sides: for i in l.getEdge.getNodeTags(): modelSpace.fixNode000_000(i) # Loads definition loadHandler= preprocessor.getLoadHandler lPatterns= loadHandler.getLoadPatterns #Load modulation. ts= lPatterns.newTimeSeries("constant_ts","ts") lPatterns.currentTimeSeries= "ts" #Load case definition lp0= lPatterns.newLoadPattern("default","0") #lPatterns.currentLoadPattern= "0" f1= preprocessor.getSets.getSet("f1") nNodes= f1.getNumNodes node= f1.getNodeIJK(1,NumDivI/2+1,NumDivJ/2+1) # print "Central node: ", node.tag # print "Central node coordinates: ", node.getCoo lp0.newNodalLoad(node.tag,xc.Vector([0,0,-ptLoad,0,0,0])) # Concentrated load nElems= f1.getNumElements #We add the load case to domain. lPatterns.addToDomain("0") # Solution procedure analisis= predefined_solutions.simple_static_linear(feProblem) analOk= analisis.analyze(1) f1= preprocessor.getSets.getSet("f1") nodes= preprocessor.getNodeHandler node= f1.getNodeIJK(1,NumDivI/2+1,NumDivJ/2+1) # print "Central node: ", node.tag # print "Central node coordinates: ", node.getCoo # print "Central node displacements: ", node.getDisp UZ= node.getDisp[2] UZTeor= -7.25 ratio1= (abs((UZ-UZTeor)/UZTeor)) ratio2= (abs((nElems-1024)/1024)) ''' print "UZ= ",UZ print "Number of nodes: ",nNodes print "Number of elements: ",nElems print "ratio1: ",ratio1 ''' import os from miscUtils import LogMessages as lmsg fname= os.path.basename(__file__) if (abs(ratio1)<2e-2) & (abs(ratio2)<1e-9): print "test ",fname,": ok." else: lmsg.error(fname+' ERROR.')
gpl-3.0
-1,432,100,207,234,984,400
26.060606
96
0.755879
false
2.710167
false
false
false
pdelsante/thug
thug/Analysis/virustotal/VirusTotal.py
1
3786
#!/usr/bin/env python # # VirusTotal.py # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License version 2 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA import os import json import tempfile import logging import requests import six.moves.configparser as ConfigParser log = logging.getLogger("Thug") class VirusTotal(object): def __init__(self): self.enabled = True self.opts = dict() self.__init_config() def __init_config(self): conf_file = os.path.join(log.configuration_path, 'thug.conf') if not os.path.exists(conf_file): log.warning("[WARNING] VirusTotal disabled (no configuration file found)") self.enabled = False return config = ConfigParser.ConfigParser() config.read(conf_file) for option in config.options('virustotal'): self.opts[option] = config.get('virustotal', option) runtime_apikey = log.ThugOpts.get_vt_runtime_apikey() if runtime_apikey: self.opts['apikey'] = runtime_apikey if not self.opts.get('apikey', None): self.enabled = False def save_report(self, response_dict, basedir, sample): log_dir = os.path.join(basedir, 'analysis', 'virustotal') content = json.dumps(response_dict) log.ThugLogging.log_virustotal(log_dir, sample, content) positives = str(response_dict.get("positives", {})) total = str(response_dict.get("total", {})) log.warning("[VirusTotal] Sample %s analysis ratio: %s/%s", response_dict['md5'], positives, total) def get_report(self, report): params = { "resource": report, "allinfo" : 1, "apikey" : self.opts['apikey']} response = requests.get(self.opts["reporturl"], params = params) return response def query(self, sample, basedir): md5 = sample['md5'] response = self.get_report(md5) response_dict = response.json() response_code = response_dict.get(u"response_code") if response.ok: if response_code == 1: self.save_report(response_dict, basedir, sample) return True log.warning("[VirusTotal] %s", response_dict['verbose_msg']) return False def submit(self, data, sample): md5 = sample['md5'] fd, s = tempfile.mkstemp() with open(s, "wb") as fd: fd.write(data) params = {'apikey': self.opts['apikey']} files = {'file' : (md5, open(s, "rb"))} response = requests.post(self.opts["scanurl"], files = files, params = params) if response.ok: log.warning("[VirusTotal] Sample %s submitted", md5) os.remove(s) def analyze(self, data, sample, basedir): if not self.enabled: return if not self.opts['apikey']: return if sample.get('md5', None) and log.ThugOpts.vt_query and self.query(sample, basedir): return if log.ThugOpts.vt_submit: self.submit(data, sample)
gpl-2.0
2,766,726,902,379,941,000
30.084746
107
0.591125
false
3.935551
true
false
false
vidartf/hyperspyUI
hyperspyui/uiprogressbar.py
1
10235
# -*- coding: utf-8 -*- # Copyright 2014-2016 The HyperSpyUI developers # # This file is part of HyperSpyUI. # # HyperSpyUI is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpyUI is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpyUI. If not, see <http://www.gnu.org/licenses/>. """ Created on Wed Nov 26 19:11:19 2014 @author: Vidar Tonaas Fauske """ from __future__ import division, absolute_import # future division is important to divide integers and get as # a result precise floating numbers (instead of truncated int) # import compatibility functions and utilities import sys from time import time from QtCore import QObject, Signal, SIGNAL import hyperspy.external.progressbar from tqdm import tqdm from hyperspyui.exceptions import ProcessCanceled # Create signal object which will handle all events signaler = QObject() signaler.created = Signal(object) signaler.progress = Signal((object, int), (object, int, str)) signaler.finished = Signal(int) signaler.cancel = Signal(int) # This is necessary as it bugs out if not (it's a daisy chained event) def _on_cancel(pid): signaler.emit(SIGNAL('cancel(int)'), pid) signaler.on_cancel = _on_cancel # Hook function def _wrap(*args, **kwargs): """ Replacement function for hyperspy.external.progressbar.progressbar(). Causes a UIProgressBar() to be made, which the MainWindow can connect to in order to create a progress indicator. It is important that the connection is made with QtCore.Signals, as they are thread aware, and the signal is processed on the GUI main event loop, i.e. the main thread. This is necessary as all UI operations have to happen on the main thread, and the hyperspy processing might be pushed to a worker thread "threaded.py". """ return UIProgressBar(*args, **kwargs) # Override hyperspy prgoressbar implementation orig = hyperspy.external.progressbar.progressbar def takeover_progressbar(): """ Replace hyperspy.external.progressbar.progressbar() with uiprogressbar.wrap(). The main_window will be connected to all the events whenever a progressbar is created. """ hyperspy.external.progressbar.progressbar = _wrap def reset_progressbar(): hyperspy.external.progressbar.progressbar = orig class UIProgressBar(tqdm): """ Connector between hyperspy process with a progressbar, and the UI. See also the doc for wrap() for more details. """ uid = 1 @classmethod def write(cls, s, file=sys.stdout, end="\n"): """ Print a message via tqdm_gui (just an alias for print) """ # TODO: print text on GUI? file.write(s) file.write(end) def __init__(self, *args, **kwargs): self.id = self.uid self.uid += 1 kwargs['gui'] = True self.cancelled = False super().__init__(*args, **kwargs) # Initialize the GUI display if self.disable or not kwargs['gui']: return self.mininterval = max(self.mininterval, 0.5) # assert maxval >= 0 # self.maxval = maxval self.signal_set = False global signaler signaler.connect(signaler, SIGNAL('cancel(int)'), self.cancel) self.currval = 0 self.finished = False self.start_time = None self.seconds_elapsed = 0 signaler.emit(SIGNAL('created(int, int, QString)'), self.id, self.total, "") def cancel(self, pid): """ Slot for the UI to call if it wants to cancel the process. Thread safe. """ if pid == self.id: self.cancelled = True @staticmethod def format_string(n, total, elapsed, rate=None): return "ETA: " + (tqdm.format_interval((total - n) / rate) if rate else '?') def __iter__(self): iterable = self.iterable if self.disable: for obj in iterable: if self.cancelled is True: raise ProcessCanceled("User cancelled operation") yield obj return # ncols = self.ncols mininterval = self.mininterval maxinterval = self.maxinterval miniters = self.miniters dynamic_miniters = self.dynamic_miniters start_t = self.start_t last_print_t = self.last_print_t last_print_n = self.last_print_n n = self.n # dynamic_ncols = self.dynamic_ncols smoothing = self.smoothing avg_time = self.avg_time for obj in iterable: if self.cancelled is True: raise ProcessCanceled("User cancelled operation") yield obj # Update and print the progressbar. # Note: does not call self.update(1) for speed optimisation. n += 1 delta_it = n - last_print_n # check the counter first (avoid calls to time()) if delta_it >= miniters: cur_t = time() delta_t = cur_t - last_print_t if delta_t >= mininterval: elapsed = cur_t - start_t # EMA (not just overall average) if smoothing and delta_t: avg_time = delta_t / delta_it \ if avg_time is None \ else smoothing * delta_t / delta_it + \ (1 - smoothing) * avg_time txt = self.format_string( n, self.total, elapsed, 1 / avg_time if avg_time else None) global signaler signaler.emit(SIGNAL('progress(int, int, QString)'), self.id, n, txt) # If no `miniters` was specified, adjust automatically # to the maximum iteration rate seen so far. if dynamic_miniters: if maxinterval and delta_t > maxinterval: # Set miniters to correspond to maxinterval miniters = delta_it * maxinterval / delta_t elif mininterval and delta_t: # EMA-weight miniters to converge # towards the timeframe of mininterval miniters = smoothing * delta_it * mininterval \ / delta_t + (1 - smoothing) * miniters else: miniters = smoothing * delta_it + \ (1 - smoothing) * miniters # Store old values for next call last_print_n = n last_print_t = cur_t # Closing the progress bar. # Update some internal variables for close(). self.last_print_n = last_print_n self.n = n self.close() def update(self, n=1): """ Updates the progress bar to a new value. Called by the hyperspy side. Not safe to call from UI. """ if self.disable: return if self.cancelled is True: raise ProcessCanceled("User cancelled operation") if n < 0: n = 1 self.n += n delta_it = self.n - self.last_print_n # should be n? if delta_it >= self.miniters: # We check the counter first, to reduce the overhead of time() cur_t = time() delta_t = cur_t - self.last_print_t if delta_t >= self.mininterval: elapsed = cur_t - self.start_t # EMA (not just overall average) if self.smoothing and delta_t: self.avg_time = delta_t / delta_it \ if self.avg_time is None \ else self.smoothing * delta_t / delta_it + \ (1 - self.smoothing) * self.avg_time txt = self.format_string( self.n, self.total, elapsed, 1 / self.avg_time if self.avg_time else None) global signaler signaler.emit(SIGNAL('progress(int, int, QString)'), self.id, self.n, txt) # If no `miniters` was specified, adjust automatically to the # maximum iteration rate seen so far. # e.g.: After running `tqdm.update(5)`, subsequent # calls to `tqdm.update()` will only cause an update after # at least 5 more iterations. if self.dynamic_miniters: if self.maxinterval and delta_t > self.maxinterval: self.miniters = self.miniters * self.maxinterval \ / delta_t elif self.mininterval and delta_t: self.miniters = self.smoothing * delta_it \ * self.mininterval / delta_t + \ (1 - self.smoothing) * self.miniters else: self.miniters = self.smoothing * delta_it + \ (1 - self.smoothing) * self.miniters # Store old values for next call self.last_print_n = self.n self.last_print_t = cur_t def close(self): if self.disable: return self.disable = True self.finish() self._instances.remove(self) def finish(self): """ Used to tell the progress is finished. Called by hyperspy side. """ global signaler signaler.emit(SIGNAL('finished(int)'), self.id)
gpl-3.0
-3,904,834,961,505,757,700
34.538194
82
0.557792
false
4.311289
false
false
false
umax/diabetto2
category/views.py
1
1429
# -*- coding: utf-8 -*- from django.core.urlresolvers import reverse_lazy from django.views.generic import (ListView, DetailView, CreateView, DeleteView, UpdateView) from . import forms from . import models __all__ = ( 'CategoryIndexView', 'CategoryDetailView', 'CategoryCreateView', 'CategoryDeleteView', 'CategoryUpdateView', ) class CategoryIndexView(ListView): context_object_name = 'categories' template_name = 'category/index.html' def get_queryset(self): return models.Category.objects.all().prefetch_related('products') class CategoryDetailView(DetailView): context_object_name = 'category' template_name = 'category/detail.html' def get_queryset(self): return models.Category.objects.all().prefetch_related('products') class CategoryCreateView(CreateView): form_class = forms.CategoryForm template_name = 'category/create.html' success_url = reverse_lazy('index_category') class CategoryUpdateView(UpdateView): model = models.Category form_class = forms.CategoryForm context_object_name = 'category' template_name = 'category/update.html' success_url = reverse_lazy('index_category') class CategoryDeleteView(DeleteView): model = models.Category context_object_name = 'category' template_name = 'category/delete.html' success_url = reverse_lazy('index_category')
gpl-2.0
5,028,435,370,511,008,000
25.962264
73
0.69909
false
3.99162
false
false
false
papedaniel/oioioi
oioioi/contests/handlers.py
1
4452
import json import logging import traceback import pprint import socket import time from smtplib import SMTPException from django.core.mail import mail_admins from django.db import transaction from oioioi.contests.models import Contest, ProblemInstance, Submission, \ SubmissionReport, FailureReport logger = logging.getLogger(__name__) WAIT_FOR_SUBMISSION_RETRIES = 9 WAIT_FOR_SUBMISSION_SLEEP_SECONDS = 1 def wait_for_submission_in_db(env, **kwargs): """Celery may start handling a submission before it is actually saved in the DB. This is a workaround for this. """ for _i in xrange(WAIT_FOR_SUBMISSION_RETRIES): with transaction.atomic(): if bool(Submission.objects.filter(id=env['submission_id'])): break time.sleep(WAIT_FOR_SUBMISSION_SLEEP_SECONDS) return env @transaction.atomic def update_report_statuses(env, **kwargs): submission = Submission.objects.get(id=env['submission_id']) problem_instance = submission.problem_instance reports = SubmissionReport.objects.filter(submission=submission) problem_instance.controller.update_report_statuses(submission, reports) return env @transaction.atomic def update_submission_score(env, **kwargs): submission = Submission.objects.get(id=env['submission_id']) problem_instance = submission.problem_instance problem_instance.controller.update_submission_score(submission) return env def update_user_results(env, **kwargs): with transaction.atomic(): submission = Submission.objects.get(id=env['submission_id']) user = submission.user if not user: return env problem_instance = \ ProblemInstance.objects.get(id=env['problem_instance_id']) round = problem_instance.round contest = None if round is not None: assert round.id == env['round_id'] contest = round.contest assert contest.id == env['contest_id'] else: assert 'round_id' not in env assert 'contest_id' not in env problem_instance.controller.update_user_results(user, problem_instance) return env @transaction.atomic def call_submission_judged(env, **kwargs): submission = Submission.objects.get(id=env['submission_id']) contest = submission.problem_instance.contest if contest is None: assert 'contest_id' not in env return env assert contest.id == env['contest_id'] contest.controller.submission_judged(submission, rejudged=env['is_rejudge']) contest.controller.submission_unqueued(submission, env['job_id']) return env @transaction.atomic def create_error_report(env, exc_info, **kwargs): """Builds a :class:`oioioi.contests.models.SubmissionReport` for an evaulation which have failed. USES * `env['submission_id']` """ logger.error("System Error evaluating submission #%s:\n%s", env.get('submission_id', '???'), pprint.pformat(env, indent=4), exc_info=exc_info) if 'submission_id' not in env: return env try: submission = Submission.objects.get(id=env['submission_id']) except Submission.DoesNotExist: return env submission_report = SubmissionReport(submission=submission) submission_report.kind = 'FAILURE' submission_report.save() failure_report = FailureReport(submission_report=submission_report) failure_report.json_environ = json.dumps(env) failure_report.message = traceback.format_exc(exc_info) failure_report.save() return env def mail_admins_on_error(env, exc_info, **kwargs): """Sends email to all admins defined in settings.ADMINS on each grading error occurrence. USES * `env['submission_id']` """ # We don't want to spam admins when the evaluation of a deleted # submission fails. See also SIO-1254. try: if 'submission_id' in env: Submission.objects.get(id=env['submission_id']) except Submission.DoesNotExist: return env try: mail_admins("System Error evaluating submission #%s" % env.get('submission_id', '???'), traceback.format_exc(exc_info)) except (socket.error, SMTPException), e: logger.error("An error occurred while sending email: %s", e.message) return env
gpl-3.0
4,431,240,814,176,651,300
29.703448
75
0.66442
false
3.964381
true
false
false
joaormatos/anaconda
mmfparser/data/checksum.py
1
2357
# Copyright (c) Mathias Kaerlev 2012. # This file is part of Anaconda. # Anaconda is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # Anaconda is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with Anaconda. If not, see <http://www.gnu.org/licenses/>. from mmfparser.bytereader import ByteReader import struct def wrap(value): return value & 0xFFFFFFFF def wrap_signed_char(value): value = value & 0xFF if value > 127: value -= 256 return value def make_checksum(data): result = 0 bufferOffset = 0 numberOfBytes = len(data) numberOfReads = numberOfBytes >> 2 for _ in xrange(numberOfReads): newInt, = struct.unpack_from('<I', data, bufferOffset) result = newInt + (wrap(result) >> 31) + 2 * result result = wrap(result) bufferOffset += 4 for _ in xrange(numberOfBytes & 3): v7 = (wrap(result) >> 31) + struct.unpack_from('<B', data, bufferOffset)[0] bufferOffset += 1 result = wrap(v7 + 2*result) return wrap(result) GROUP_WORDS = list('mqojhm:qskjhdsmkjsmkdjhq\x63clkcdhdlkjhd') def make_group_checksum(password, group_name): v4 = 57 for c in group_name: v4 += ord(c) ^ 0x7F v5 = 0 for c in password: v4 += wrap_signed_char(ord(GROUP_WORDS[v5]) + (ord(c) ^ 0xC3)) ^ 0xF3 v5 += 1 if v5 > len(GROUP_WORDS): v5 = 0 return v4 def make_pame_checksum(data): checksum = make_checksum(data) lastByte = checksum & 0x000000FF # get last byte xorByte = lastByte ^ 13 checksum = checksum & 0xFFFFFF00 | xorByte return int(checksum) class Checksum(object): data = None def __init__(self, data = None): if data: self.data = data def getChecksum(self): return make_pame_checksum(self.data) if __name__ == '__main__': print hex(make_group_checksum('klonoafan', 'yay'))
gpl-3.0
1,744,356,720,394,358,800
29.230769
83
0.647857
false
3.481536
false
false
false
mdraeger/gmapcatcher
gmapcatcher/widgets/widComboBoxEntry.py
1
4319
# -*- coding: utf-8 -*- ## @package gmapcatcher.widgets.widComboBoxEntry # ComboBoxEntry widget used to collect data to search import gtk import re from gmapcatcher.mapConst import * ## This widget is where we collect data to search class ComboBoxEntry(gtk.ComboBoxEntry): DEFAULT_TEXT = "Enter location here!" def __init__(self, confirm_clicked, conf): super(ComboBoxEntry, self).__init__() self.connect('changed', self.changed_combo, confirm_clicked) self.connect('key-press-event', self.key_press_combo) # Launch clean_entry for all the signals/events below self.child.connect("button-press-event", self.clean_entry) self.child.connect("cut-clipboard", self.clean_entry) self.child.connect("copy-clipboard", self.clean_entry) self.child.connect("paste-clipboard", self.clean_entry) self.child.connect("move-cursor", self.clean_entry) self.child.connect("populate-popup", self.populate_popup, conf) # Launch the default_entry on the focus out self.child.connect("focus-out-event", self.default_entry) # Start search after hit 'ENTER' self.child.connect('activate', confirm_clicked) ## Clean out the entry box if text = default def clean_entry(self, *args): if (self.child.get_text() == self.DEFAULT_TEXT): self.child.set_text("") self.child.grab_focus() ## Reset the default text if entry is empty def default_entry(self, *args): if (self.child.get_text().strip() == ''): self.child.set_text(self.DEFAULT_TEXT) ## Add a new item to the menu of the EntryBox def populate_popup(self, w, menu, conf): def menuitem_response(w, string, conf): conf.match_func = string subMenu = gtk.Menu() for item in ENTRY_SUB_MENU: iMenuItem = gtk.RadioMenuItem(None, item) iMenuItem.set_active(item == conf.match_func) iMenuItem.connect("activate", menuitem_response, item, conf) subMenu.append(iMenuItem) menuItem = gtk.MenuItem() menu.append(menuItem) menuItem = gtk.MenuItem('Auto-Completion Method') menuItem.set_submenu(subMenu) menu.append(menuItem) menu.show_all() ## Show the combo list if is not empty def combo_popup(self): if self.get_model().get_iter_root() is not None: self.popup() ## Handles the pressing of arrow keys def key_press_combo(self, w, event): if event.keyval in [65362, 65364]: self.combo_popup() return True ## Handles the change event of the ComboBox def changed_combo(self, w, confirm_clicked): str = self.child.get_text() if (str.endswith(SEPARATOR)): self.child.set_text(str.strip()) confirm_clicked(None) ## Set the auto-completion for the entry box def set_completion(self, ctx_map, confirm_clicked, conf): completion = gtk.EntryCompletion() completion.connect('match-selected', self.on_completion_match, confirm_clicked) self.child.set_completion(completion) completion.set_model(ctx_map.completion_model()) completion.set_text_column(0) completion.set_minimum_key_length(3) completion.set_match_func(self.match_func, conf) # Populate the dropdownlist self.set_model(ctx_map.completion_model(SEPARATOR)) self.set_text_column(0) ## Automatically display after selecting def on_completion_match(self, completion, model, iter, confirm_clicked): self.child.set_text(model[iter][0]) confirm_clicked(None) ## Match function for the auto-completion def match_func(self, completion, key, iter, conf): model = completion.get_model() key = key.lower() text = model.get_value(iter, 0).lower() if conf.match_func == ENTRY_SUB_MENU[STARTS_WITH]: return text.startswith(key) elif conf.match_func == ENTRY_SUB_MENU[ENDS_WITH]: return text.endswith(key) elif conf.match_func == ENTRY_SUB_MENU[REGULAR_EXPRESSION]: p = re.compile(key, re.IGNORECASE) return (p.search(text) is not None) else: return (text.find(key) != -1)
gpl-2.0
-1,651,217,596,343,355,100
38.623853
87
0.634869
false
3.772052
false
false
false
Som-Energia/somenergia-tomatic
tomatic_sandbox.py
1
2204
#!/usr/bin/env python # -*- coding: utf-8 -*- import click import re from consolemsg import warn, step, error, u from datetime import datetime, timedelta from shutil import copyfile from pathlib import Path from slugify import slugify @click.command() @click.help_option() @click.option('-d', '--description', help="Description tagline to add to the schedule", ) @click.option('--fromdate', default=datetime.today().strftime("%Y-%m-%d"), help="Choose a monday for computing schedules. Format: YYYY-MM-DD", ) @click.option('--linenumber', default=7, help="Choose the numer of lines to attend calls", ) def tomatic_sandbox(fromdate, description, linenumber): try: step("Generating graella sandbox for week {}",fromdate) fromdate = datetime.strptime(fromdate, '%Y-%m-%d') if not fromdate.weekday() == 0: fromdate = fromdate + timedelta(days=-fromdate.weekday(), weeks=1) graellaFolder = fromdate.strftime("%Y-%m-%d") if description: graellaFolder = '{}-{}'.format(graellaFolder, slugify(description)) step("Generating directory {}", graellaFolder) Path(graellaFolder).mkdir() linkCertificate = Path(graellaFolder+'/drive-certificate.json') step("Creating certificate link {}", linkCertificate) linkCertificate.symlink_to('../drive-certificate.json') source = Path('config.yaml') destination = Path(graellaFolder+'/config.yaml') step("Creating file {}", source) copyfile(u(source), u(destination)) if linenumber: step("Adding number of lines {} to file {}", linenumber, source) text = destination.read_text() text2fix = re.compile(r'nTelefons: \d+') text = text.replace(text2fix.findall(text)[0], "nTelefons: "+str(linenumber)) destination.write_text(text) source = Path('holidays.conf') destination = Path(graellaFolder+'/holidays.conf') step("Creating {} file", source) copyfile(u(source), u(destination)) except Exception as e: error(e) raise if __name__ == '__main__': tomatic_sandbox() # vim: et ts=4 sw=4
gpl-3.0
4,193,262,625,800,079,000
31.411765
89
0.635662
false
3.8
false
false
false
kain88-de/mdanalysis
testsuite/MDAnalysisTests/test_failure.py
1
1352
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8 # # MDAnalysis --- http://www.mdanalysis.org # Copyright (c) 2006-2016 The MDAnalysis Development Team and contributors # (see the file AUTHORS for the full list of names) # # Released under the GNU Public Licence, v2 or any higher version # # Please cite your use of MDAnalysis in published work: # # R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, # D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein. # MDAnalysis: A Python package for the rapid analysis of molecular dynamics # simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th # Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy. # # N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. # MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. # J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787 # from __future__ import absolute_import import os def test_failure(): """Fail if the MDA_FAILURE_TEST environment variable is set. """ # Have a file open to trigger an output from the open_files plugin. f = open('./failure.txt', 'w') if u'MDA_FAILURE_TEST' in os.environ: assert False
gpl-2.0
7,582,456,156,020,400,000
39.969697
79
0.701923
false
2.913793
false
false
false
hooram/ownphotos-backend
densecap/webcam/server2.py
1
3086
import argparse, random, os, time, json from PIL import Image from io import BytesIO import base64 from flask import Flask, request from flask.ext.cors import CORS from flask_restful import Resource, Api import ipdb app = Flask(__name__) app.config['DEBUG'] = True ext2conttype2 = { "jpg": "JPEG", "jpeg": "JPEG", "png": "PNG", "gif": "GIF", "image/jpeg": "JPEG", "image/png": "PNG", "image/gif": "GIF" } ext2conttype = { "jpg": "image/jpeg", "jpeg": "image/jpeg", "png": "image/png", "gif": "image/gif" } input_dir = 'webcam/inputs' output_dir = 'webcam/outputs' @app.route('/media/upload',methods=['POST','GET']) def densecap(): if request.method=='POST': ipdb.set_trace() file = request.files['file'] if file and file.filename: img_id = random.randint(1,1000000) img_path = os.path.join(input_dir, '%d.jpg' % img_id) filename = file.filename extension = filename[filename.rfind(".")+1:].lower() content_type = ext2conttype[extension] image = Image.open(file) image.save(img_path) json_name = os.path.join(output_dir, '%d,json' % img_id) while not os.path.isfile(json_name): time.sleep(0.05) with open(json_name, 'r') as f: ann = json.load(f) os.remove(json_name) return ann else: return 'error 2' else: return 'running' class DenseCap(Resource): def get(self): return 'The DenseCap server seems to be running!' def post(self): img_id = random.randint(1, 1000000) img_name = os.path.join(input_dir, '%d.jpg' % img_id) # Get the base64 image data out of the request. # for some reason Flask doesn't parse this out at all for use, so we'll just # do it manually. There is a prefix telling us that this is an image and the # type of the image, then a comma, then the raw base64 data for the image. # We just grab the part after the comma and decode it. idx = request.data.find(',') + 1 img_data = request.data[idx:] im = Image.open(BytesIO(base64.b64decode(img_data))) im.save(img_name) # request.files['image'].save(img_name) json_name = os.path.join(output_dir, '%d.json' % img_id) while not os.path.isfile(json_name): time.sleep(0.05) with open(json_name, 'r') as f: ann = json.load(f) os.remove(json_name) return ann if __name__ == '__main__': app.run(debug=True) # from tornado.wsgi import WSGIContainer # from tornado.httpserver import HTTPServer # from tornado.ioloop import IOLoop # # http_server = HTTPServer(WSGIContainer(app), ssl_options={ # 'certfile': 'webcam/ssl/server.crt', # 'keyfile': 'webcam/ssl/server.key' # }) # # http_server.listen(5000) # # # We have to do a little weirdness to make the server actually die # # when we hit CTRL+C # try: # IOLoop.instance().start() # except KeyboardInterrupt: # IOLoop.instance().stop()
mit
3,539,640,382,857,798,700
25.152542
80
0.602722
false
3.269068
false
false
false
asntech/jaspar
portal/migrations/0002_auto_20170617_1217.py
1
1491
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-06-17 12:17 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('portal', '0001_initial'), ] operations = [ migrations.CreateModel( name='NewsAndUpdate', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=25)), ('body', models.TextField()), ('category', models.CharField(choices=[('realese', 'New release'), ('bug', 'Bug fix'), ('announcement', 'Announcement')], max_length=150)), ('date', models.DateTimeField(auto_now_add=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), # migrations.AlterModelOptions( # name='matrixannotation', # options={'managed': False}, # ), # migrations.AlterModelOptions( # name='matrixprotein', # options={'managed': False}, # ), # migrations.AlterModelOptions( # name='matrixspecies', # options={'managed': False}, # ), ]
bsd-3-clause
3,353,032,720,810,922,000
35.365854
155
0.574782
false
4.26
false
false
false
gwind/YWeb
yweb/yweb/utils/translation/trans_real.py
1
25606
"""Translation helper functions.""" from __future__ import unicode_literals import locale import os import re import sys import gettext as gettext_module from threading import local import warnings from yweb.utils.importlib import import_module from yweb.utils.datastructures import SortedDict from yweb.utils.encoding import force_str, force_text from yweb.utils.functional import memoize from yweb.utils._os import upath from yweb.utils.safestring import mark_safe, SafeData from yweb.utils import six from yweb.utils.six import StringIO from yweb.utils.translation import TranslatorCommentWarning # Translations are cached in a dictionary for every language+app tuple. # The active translations are stored by threadid to make them thread local. _translations = {} _active = local() # The default translation is based on the settings file. _default = None # This is a cache for normalized accept-header languages to prevent multiple # file lookups when checking the same locale on repeated requests. _accepted = {} _checked_languages = {} # magic gettext number to separate context from message CONTEXT_SEPARATOR = "\x04" # Format of Accept-Language header values. From RFC 2616, section 14.4 and 3.9 # and RFC 3066, section 2.1 accept_language_re = re.compile(r''' ([A-Za-z]{1,8}(?:-[A-Za-z0-9]{1,8})*|\*) # "en", "en-au", "x-y-z", "es-419", "*" (?:\s*;\s*q=(0(?:\.\d{,3})?|1(?:.0{,3})?))? # Optional "q=1.00", "q=0.8" (?:\s*,\s*|$) # Multiple accepts per header. ''', re.VERBOSE) language_code_prefix_re = re.compile(r'^/([\w-]+)(/|$)') def to_locale(language, to_lower=False): """ Turns a language name (en-us) into a locale name (en_US). If 'to_lower' is True, the last component is lower-cased (en_us). """ p = language.find('-') if p >= 0: if to_lower: return language[:p].lower()+'_'+language[p+1:].lower() else: # Get correct locale for sr-latn if len(language[p+1:]) > 2: return language[:p].lower()+'_'+language[p+1].upper()+language[p+2:].lower() return language[:p].lower()+'_'+language[p+1:].upper() else: return language.lower() def to_language(locale): """Turns a locale name (en_US) into a language name (en-us).""" p = locale.find('_') if p >= 0: return locale[:p].lower()+'-'+locale[p+1:].lower() else: return locale.lower() class DjangoTranslation(gettext_module.GNUTranslations): """ This class sets up the GNUTranslations context with regard to output charset. """ def __init__(self, *args, **kw): gettext_module.GNUTranslations.__init__(self, *args, **kw) self.set_output_charset('utf-8') self.__language = '??' def merge(self, other): self._catalog.update(other._catalog) def set_language(self, language): self.__language = language self.__to_language = to_language(language) def language(self): return self.__language def to_language(self): return self.__to_language def __repr__(self): return "<DjangoTranslation lang:%s>" % self.__language def translation(language): """ Returns a translation object. This translation object will be constructed out of multiple GNUTranslations objects by merging their catalogs. It will construct a object for the requested language and add a fallback to the default language, if it's different from the requested language. """ global _translations t = _translations.get(language, None) if t is not None: return t from yweb.conf import settings globalpath = os.path.join(os.path.dirname(upath(sys.modules[settings.__module__].__file__)), 'locale') def _fetch(lang, fallback=None): global _translations res = _translations.get(lang, None) if res is not None: return res loc = to_locale(lang) def _translation(path): try: t = gettext_module.translation('yweb', path, [loc], DjangoTranslation) t.set_language(lang) return t except IOError: return None res = _translation(globalpath) # We want to ensure that, for example, "en-gb" and "en-us" don't share # the same translation object (thus, merging en-us with a local update # doesn't affect en-gb), even though they will both use the core "en" # translation. So we have to subvert Python's internal gettext caching. base_lang = lambda x: x.split('-', 1)[0] if base_lang(lang) in [base_lang(trans) for trans in list(_translations)]: res._info = res._info.copy() res._catalog = res._catalog.copy() def _merge(path): t = _translation(path) if t is not None: if res is None: return t else: res.merge(t) return res for appname in reversed(settings.INSTALLED_APPS): app = import_module(appname) apppath = os.path.join(os.path.dirname(upath(app.__file__)), 'locale') if os.path.isdir(apppath): res = _merge(apppath) for localepath in reversed(settings.LOCALE_PATHS): if os.path.isdir(localepath): res = _merge(localepath) if res is None: if fallback is not None: res = fallback else: return gettext_module.NullTranslations() _translations[lang] = res return res default_translation = _fetch(settings.LANGUAGE_CODE) current_translation = _fetch(language, fallback=default_translation) return current_translation def activate(language): """ Fetches the translation object for a given tuple of application name and language and installs it as the current translation object for the current thread. """ _active.value = translation(language) def deactivate(): """ Deinstalls the currently active translation object so that further _ calls will resolve against the default translation object, again. """ if hasattr(_active, "value"): del _active.value def deactivate_all(): """ Makes the active translation object a NullTranslations() instance. This is useful when we want delayed translations to appear as the original string for some reason. """ _active.value = gettext_module.NullTranslations() def get_language(): """Returns the currently selected language.""" t = getattr(_active, "value", None) if t is not None: try: return t.to_language() except AttributeError: pass # If we don't have a real translation object, assume it's the default language. from yweb.conf import settings return settings.LANGUAGE_CODE def get_language_bidi(): """ Returns selected language's BiDi layout. * False = left-to-right layout * True = right-to-left layout """ from yweb.conf import settings base_lang = get_language().split('-')[0] return base_lang in settings.LANGUAGES_BIDI def catalog(): """ Returns the current active catalog for further processing. This can be used if you need to modify the catalog or want to access the whole message catalog instead of just translating one string. """ global _default t = getattr(_active, "value", None) if t is not None: return t if _default is None: from yweb.conf import settings _default = translation(settings.LANGUAGE_CODE) return _default def do_translate(message, translation_function): """ Translates 'message' using the given 'translation_function' name -- which will be either gettext or ugettext. It uses the current thread to find the translation object to use. If no current translation is activated, the message will be run through the default translation object. """ global _default # str() is allowing a bytestring message to remain bytestring on Python 2 eol_message = message.replace(str('\r\n'), str('\n')).replace(str('\r'), str('\n')) t = getattr(_active, "value", None) if t is not None: result = getattr(t, translation_function)(eol_message) else: if _default is None: from yweb.conf import settings _default = translation(settings.LANGUAGE_CODE) result = getattr(_default, translation_function)(eol_message) if isinstance(message, SafeData): return mark_safe(result) return result def gettext(message): """ Returns a string of the translation of the message. Returns a string on Python 3 and an UTF-8-encoded bytestring on Python 2. """ return do_translate(message, 'gettext') if six.PY3: ugettext = gettext else: def ugettext(message): return do_translate(message, 'ugettext') def pgettext(context, message): msg_with_ctxt = "%s%s%s" % (context, CONTEXT_SEPARATOR, message) result = ugettext(msg_with_ctxt) if CONTEXT_SEPARATOR in result: # Translation not found # force unicode, because lazy version expects unicode result = force_text(message) return result def gettext_noop(message): """ Marks strings for translation but doesn't translate them now. This can be used to store strings in global variables that should stay in the base language (because they might be used externally) and will be translated later. """ return message def do_ntranslate(singular, plural, number, translation_function): global _default t = getattr(_active, "value", None) if t is not None: return getattr(t, translation_function)(singular, plural, number) if _default is None: from yweb.conf import settings _default = translation(settings.LANGUAGE_CODE) return getattr(_default, translation_function)(singular, plural, number) def ngettext(singular, plural, number): """ Returns a string of the translation of either the singular or plural, based on the number. Returns a string on Python 3 and an UTF-8-encoded bytestring on Python 2. """ return do_ntranslate(singular, plural, number, 'ngettext') if six.PY3: ungettext = ngettext else: def ungettext(singular, plural, number): """ Returns a unicode strings of the translation of either the singular or plural, based on the number. """ return do_ntranslate(singular, plural, number, 'ungettext') def npgettext(context, singular, plural, number): msgs_with_ctxt = ("%s%s%s" % (context, CONTEXT_SEPARATOR, singular), "%s%s%s" % (context, CONTEXT_SEPARATOR, plural), number) result = ungettext(*msgs_with_ctxt) if CONTEXT_SEPARATOR in result: # Translation not found result = ungettext(singular, plural, number) return result def all_locale_paths(): """ Returns a list of paths to user-provides languages files. """ from yweb.conf import settings globalpath = os.path.join( os.path.dirname(upath(sys.modules[settings.__module__].__file__)), 'locale') return [globalpath] + list(settings.LOCALE_PATHS) def check_for_language(lang_code): """ Checks whether there is a global language file for the given language code. This is used to decide whether a user-provided language is available. This is only used for language codes from either the cookies or session and during format localization. """ for path in all_locale_paths(): if gettext_module.find('django', path, [to_locale(lang_code)]) is not None: return True return False check_for_language = memoize(check_for_language, _checked_languages, 1) def get_supported_language_variant(lang_code, supported=None, strict=False): """ Returns the language-code that's listed in supported languages, possibly selecting a more generic variant. Raises LookupError if nothing found. If `strict` is False (the default), the function will look for an alternative country-specific variant when the currently checked is not found. """ if supported is None: from yweb.conf import settings supported = SortedDict(settings.LANGUAGES) if lang_code: # if fr-CA is not supported, try fr-ca; if that fails, fallback to fr. generic_lang_code = lang_code.split('-')[0] variants = (lang_code, lang_code.lower(), generic_lang_code, generic_lang_code.lower()) for code in variants: if code in supported and check_for_language(code): return code if not strict: # if fr-fr is not supported, try fr-ca. for supported_code in supported: if supported_code.startswith((generic_lang_code + '-', generic_lang_code.lower() + '-')): return supported_code raise LookupError(lang_code) def get_language_from_path(path, supported=None, strict=False): """ Returns the language-code if there is a valid language-code found in the `path`. If `strict` is False (the default), the function will look for an alternative country-specific variant when the currently checked is not found. """ if supported is None: from yweb.conf import settings supported = SortedDict(settings.LANGUAGES) regex_match = language_code_prefix_re.match(path) if not regex_match: return None lang_code = regex_match.group(1) try: return get_supported_language_variant(lang_code, supported, strict=strict) except LookupError: return None def get_language_from_request(request, check_path=False): """ Analyzes the request to find what language the user wants the system to show. Only languages listed in settings.LANGUAGES are taken into account. If the user requests a sublanguage where we have a main language, we send out the main language. If check_path is True, the URL path prefix will be checked for a language code, otherwise this is skipped for backwards compatibility. """ global _accepted from yweb.conf import settings supported = SortedDict(settings.LANGUAGES) if check_path: lang_code = get_language_from_path(request.path_info, supported) if lang_code is not None: return lang_code if hasattr(request, 'session'): lang_code = request.session.get('django_language', None) if lang_code in supported and lang_code is not None and check_for_language(lang_code): return lang_code lang_code = request.COOKIES.get(settings.LANGUAGE_COOKIE_NAME) try: return get_supported_language_variant(lang_code, supported) except LookupError: pass accept = request.META.get('HTTP_ACCEPT_LANGUAGE', '') for accept_lang, unused in parse_accept_lang_header(accept): if accept_lang == '*': break # 'normalized' is the root name of the locale in POSIX format (which is # the format used for the directories holding the MO files). normalized = locale.locale_alias.get(to_locale(accept_lang, True)) if not normalized: continue # Remove the default encoding from locale_alias. normalized = normalized.split('.')[0] if normalized in _accepted: # We've seen this locale before and have an MO file for it, so no # need to check again. return _accepted[normalized] try: accept_lang = get_supported_language_variant(accept_lang, supported) except LookupError: continue else: _accepted[normalized] = accept_lang return accept_lang try: return get_supported_language_variant(settings.LANGUAGE_CODE, supported) except LookupError: return settings.LANGUAGE_CODE dot_re = re.compile(r'\S') def blankout(src, char): """ Changes every non-whitespace character to the given char. Used in the templatize function. """ return dot_re.sub(char, src) context_re = re.compile(r"""^\s+.*context\s+((?:"[^"]*?")|(?:'[^']*?'))\s*""") inline_re = re.compile(r"""^\s*trans\s+((?:"[^"]*?")|(?:'[^']*?'))(\s+.*context\s+((?:"[^"]*?")|(?:'[^']*?')))?\s*""") block_re = re.compile(r"""^\s*blocktrans(\s+.*context\s+((?:"[^"]*?")|(?:'[^']*?')))?(?:\s+|$)""") endblock_re = re.compile(r"""^\s*endblocktrans$""") plural_re = re.compile(r"""^\s*plural$""") constant_re = re.compile(r"""_\(((?:".*?")|(?:'.*?'))\)""") one_percent_re = re.compile(r"""(?<!%)%(?!%)""") def templatize(src, origin=None): """ Turns a Django template into something that is understood by xgettext. It does so by translating the Django translation tags into standard gettext function invocations. """ from yweb.conf import settings from yweb.template import (Lexer, TOKEN_TEXT, TOKEN_VAR, TOKEN_BLOCK, TOKEN_COMMENT, TRANSLATOR_COMMENT_MARK) src = force_text(src, settings.FILE_CHARSET) out = StringIO() message_context = None intrans = False inplural = False singular = [] plural = [] incomment = False comment = [] lineno_comment_map = {} comment_lineno_cache = None for t in Lexer(src, origin).tokenize(): if incomment: if t.token_type == TOKEN_BLOCK and t.contents == 'endcomment': content = ''.join(comment) translators_comment_start = None for lineno, line in enumerate(content.splitlines(True)): if line.lstrip().startswith(TRANSLATOR_COMMENT_MARK): translators_comment_start = lineno for lineno, line in enumerate(content.splitlines(True)): if translators_comment_start is not None and lineno >= translators_comment_start: out.write(' # %s' % line) else: out.write(' #\n') incomment = False comment = [] else: comment.append(t.contents) elif intrans: if t.token_type == TOKEN_BLOCK: endbmatch = endblock_re.match(t.contents) pluralmatch = plural_re.match(t.contents) if endbmatch: if inplural: if message_context: out.write(' npgettext(%r, %r, %r,count) ' % (message_context, ''.join(singular), ''.join(plural))) else: out.write(' ngettext(%r, %r, count) ' % (''.join(singular), ''.join(plural))) for part in singular: out.write(blankout(part, 'S')) for part in plural: out.write(blankout(part, 'P')) else: if message_context: out.write(' pgettext(%r, %r) ' % (message_context, ''.join(singular))) else: out.write(' gettext(%r) ' % ''.join(singular)) for part in singular: out.write(blankout(part, 'S')) message_context = None intrans = False inplural = False singular = [] plural = [] elif pluralmatch: inplural = True else: filemsg = '' if origin: filemsg = 'file %s, ' % origin raise SyntaxError("Translation blocks must not include other block tags: %s (%sline %d)" % (t.contents, filemsg, t.lineno)) elif t.token_type == TOKEN_VAR: if inplural: plural.append('%%(%s)s' % t.contents) else: singular.append('%%(%s)s' % t.contents) elif t.token_type == TOKEN_TEXT: contents = one_percent_re.sub('%%', t.contents) if inplural: plural.append(contents) else: singular.append(contents) else: # Handle comment tokens (`{# ... #}`) plus other constructs on # the same line: if comment_lineno_cache is not None: cur_lineno = t.lineno + t.contents.count('\n') if comment_lineno_cache == cur_lineno: if t.token_type != TOKEN_COMMENT: for c in lineno_comment_map[comment_lineno_cache]: filemsg = '' if origin: filemsg = 'file %s, ' % origin warn_msg = ("The translator-targeted comment '%s' " "(%sline %d) was ignored, because it wasn't the last item " "on the line.") % (c, filemsg, comment_lineno_cache) warnings.warn(warn_msg, TranslatorCommentWarning) lineno_comment_map[comment_lineno_cache] = [] else: out.write('# %s' % ' | '.join(lineno_comment_map[comment_lineno_cache])) comment_lineno_cache = None if t.token_type == TOKEN_BLOCK: imatch = inline_re.match(t.contents) bmatch = block_re.match(t.contents) cmatches = constant_re.findall(t.contents) if imatch: g = imatch.group(1) if g[0] == '"': g = g.strip('"') elif g[0] == "'": g = g.strip("'") g = one_percent_re.sub('%%', g) if imatch.group(2): # A context is provided context_match = context_re.match(imatch.group(2)) message_context = context_match.group(1) if message_context[0] == '"': message_context = message_context.strip('"') elif message_context[0] == "'": message_context = message_context.strip("'") out.write(' pgettext(%r, %r) ' % (message_context, g)) message_context = None else: out.write(' gettext(%r) ' % g) elif bmatch: for fmatch in constant_re.findall(t.contents): out.write(' _(%s) ' % fmatch) if bmatch.group(1): # A context is provided context_match = context_re.match(bmatch.group(1)) message_context = context_match.group(1) if message_context[0] == '"': message_context = message_context.strip('"') elif message_context[0] == "'": message_context = message_context.strip("'") intrans = True inplural = False singular = [] plural = [] elif cmatches: for cmatch in cmatches: out.write(' _(%s) ' % cmatch) elif t.contents == 'comment': incomment = True else: out.write(blankout(t.contents, 'B')) elif t.token_type == TOKEN_VAR: parts = t.contents.split('|') cmatch = constant_re.match(parts[0]) if cmatch: out.write(' _(%s) ' % cmatch.group(1)) for p in parts[1:]: if p.find(':_(') >= 0: out.write(' %s ' % p.split(':',1)[1]) else: out.write(blankout(p, 'F')) elif t.token_type == TOKEN_COMMENT: if t.contents.lstrip().startswith(TRANSLATOR_COMMENT_MARK): lineno_comment_map.setdefault(t.lineno, []).append(t.contents) comment_lineno_cache = t.lineno else: out.write(blankout(t.contents, 'X')) return force_str(out.getvalue()) def parse_accept_lang_header(lang_string): """ Parses the lang_string, which is the body of an HTTP Accept-Language header, and returns a list of (lang, q-value), ordered by 'q' values. Any format errors in lang_string results in an empty list being returned. """ result = [] pieces = accept_language_re.split(lang_string) if pieces[-1]: return [] for i in range(0, len(pieces) - 1, 3): first, lang, priority = pieces[i : i + 3] if first: return [] if priority: priority = float(priority) if not priority: # if priority is 0.0 at this point make it 1.0 priority = 1.0 result.append((lang, priority)) result.sort(key=lambda k: k[1], reverse=True) return result
mit
615,606,380,099,209,600
36.878698
143
0.573772
false
4.257732
false
false
false
john123951/SmartQQBot
MsgHandler.py
1
6793
# -*- coding: utf-8 -*- # Code by Yinzo: https://github.com/Yinzo # Origin repository: https://github.com/Yinzo/SmartQQBot from Group import * from Pm import * from Sess import * import threading logging.basicConfig( filename='smartqq.log', level=logging.DEBUG, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', ) class MsgHandler: def __init__(self, operator): if not isinstance(operator, QQ): raise TypeError("Operator must be a logined QQ instance") self.__operator = operator self.process_threads = {} self.__group_list = {} self.__pm_list = {} self.__sess_list = {} def handle(self, msg_list): assert isinstance(msg_list, list), "msg_list is NOT a LIST" for msg in msg_list: # 仅处理程序管理层面上的操作 Only do the operation of the program management if not isinstance(msg, (Msg, Notify)): logging.error("Handler received a not a Msg or Notify instance.") return elif isinstance(msg, MsgWithContent): logging.info(str(self.__get_account(msg)) + ":" + msg.content) if isinstance(msg, GroupMsg): # 群聊信息的处理 # 判断群对象是否存在,info_seq实际上为群号 if msg.info_seq not in self.__group_list: self.__group_list[msg.info_seq] = Group(self.__operator, msg) # 维护一个线程队列,然后每一个线程处理各自的信息 self.process_threads[msg.info_seq] = MsgHandleQueue(self.__group_list[msg.info_seq]) self.process_threads[msg.info_seq].start() logging.debug("Now group list: " + str(self.__group_list)) tgt_group = self.__group_list[msg.info_seq] if len(tgt_group.msg_list) >= 1 and msg.seq == tgt_group.msg_list[-1].seq: # 若如上一条seq重复则抛弃此条信息不处理 logging.info("消息重复,抛弃") return tgt_group.msg_id = msg.msg_id self.process_threads[msg.info_seq].append(msg) elif isinstance(msg, PmMsg): # 私聊信息处理 tid = self.__get_account(msg) if tid not in self.__pm_list: self.__pm_list[tid] = Pm(self.__operator, msg) # 维护一个线程队列,然后每一个线程处理各自的信息 self.process_threads[tid] = MsgHandleQueue(self.__pm_list[tid]) self.process_threads[tid].start() logging.debug("Now pm thread list: " + str(self.__pm_list)) tgt_pm = self.__pm_list[tid] if len(tgt_pm.msg_list) >= 1 and msg.time == tgt_pm.msg_list[-1].time \ and msg.from_uin == tgt_pm.msg_list[-1].from_uin \ and msg.content == tgt_pm.msg_list[-1].content: # 私聊没有seq可用于判断重复,只能抛弃同一个人在同一时间戳发出的内容相同的消息。 logging.info("消息重复,抛弃") return tgt_pm.msg_id = msg.msg_id self.process_threads[tid].append(msg) elif isinstance(msg, SessMsg): # 临时会话的处理 tid = self.__get_account(msg) if tid not in self.__sess_list: self.__sess_list[tid] = Sess(self.__operator, msg) self.process_threads[tid] = MsgHandleQueue(self.__sess_list[tid]) self.process_threads[tid].start() logging.debug("Now sess thread list: " + str(self.__sess_list)) tgt_sess = self.__sess_list[tid] if len(tgt_sess.msg_list) >= 1 and msg.time == tgt_sess.msg_list[-1].time \ and msg.from_uin == tgt_sess.msg_list[-1].from_uin \ and msg.content == tgt_sess.msg_list[-1].content: # 私聊没有seq可用于判断重复,只能抛弃同一个人在同一时间戳发出的同一内容的消息。 logging.info("消息重复,抛弃") return tgt_sess.msg_id = msg.msg_id self.process_threads[tid].append(msg) elif isinstance(msg, InputNotify): self.__input_notify_handler(msg) elif isinstance(msg, BuddiesStatusChange): self.__buddies_status_change_handler(msg) elif isinstance(msg, KickMessage): self.__kick_message(msg) else: logging.warning("Unsolved Msg type :" + str(msg.poll_type)) return def __get_account(self, msg): assert isinstance(msg, (Msg, Notify)), "function get_account received a not Msg or Notify parameter." if isinstance(msg, (PmMsg, SessMsg, InputNotify)): # 如果消息的发送者的真实QQ号码不在FriendList中,则自动去取得真实的QQ号码并保存到缓存中 tuin = msg.from_uin account = self.__operator.uin_to_account(tuin) return account elif isinstance(msg, GroupMsg): return str(msg.info_seq).join("[]") + str(self.__operator.uin_to_account(msg.send_uin)) def __input_notify_handler(self, inputNotify): logging.info(str(self.__get_account(inputNotify)) + " is typing...") if isinstance(inputNotify, GroupAddMessage): pass return def __buddies_status_change_handler(self, buddiesStatusChange): pass def __kick_message(self, kickMessage): logging.warning(str(kickMessage.to_uin) + " is kicked. Reason: " + str(kickMessage.reason)) logging.warning("[{0}]{1} is kicked. Reason: {2}".format( str(kickMessage.to_uin), self.__operator.username, str(kickMessage.reason), )) raise KeyboardInterrupt("Kicked") # 为了加速程序处理消息,采用了多线程技术 class MsgHandleQueue(threading.Thread): def __init__(self, handler): super(MsgHandleQueue, self).__init__() self.handler = handler self.msg_queue = [] self.setDaemon(True) def run(self): while 1: if len(self.msg_queue): self.handler.handle(self.msg_queue.pop(0)) logging.debug("queue handling.Now queue length:" + str(len(self.msg_queue))) else: time.sleep(1) def append(self, msg): self.msg_queue.append(msg)
gpl-3.0
-3,575,861,079,491,298,300
37.962733
109
0.545194
false
3.211982
false
false
false
zemon1/CrawfoSys
weather.py
1
2138
#!/usr/bin/env python2 #weather.py #Original author: Josh McSavaney (mcsaucy@csh.rit.edu) #Current maintainer: Jeff Haak (zemon1@csh.rit.edu) #A script used to scrape and parse weather information import urllib, re, argparse if __name__ == "__main__": parser = argparse.ArgumentParser(description='Gets weather info from weather.gov') parser.add_argument('--noTroll' , help='Display temp in Kelvin' , default=False , required=False) args = vars(parser.parse_args()) #print args # get the file from the site file = urllib.urlopen('http://www.weather.gov/data/current_obs/KROC.xml') # make the file into a string data = file.read() weather = "N/A" temp = "N/A" windchill = "N/A" # search the file for the weather and store the string try: re2 = re.search(r'<weather>(.*?)</weather>', data) weather = re2.group(1) except (AttributeError): pass # search the file for the temp and store the string try: re3 = re.search(r'<temperature_string>(.*?)</temperature_string>', data) temp = re3.group(1) except (AttributeError): pass # search the file for the windchill and store the string try: re4 = re.search(r'<windchill_string>(.*?)</windchill_string>', data) windchill = re4.group(1) except (AttributeError): pass #use Kelvin if not args['noTroll']: windchill = float(windchill.split()[2][1:]) + 273.15 temp = float(temp.split()[2][1:]) + 273.15 windchill = "Windchill:" + str(windchill) + "K" temp = "Temp:" + str(temp) + "K" res = temp + " " + windchill + " " + weather else: windchill = int(windchill.split()[0].split(".")[0]) temp = int(temp.split()[0].split(".")[0]) windchill = "Windchill:" + str(windchill) + "F" temp = "Temp:" + str(temp) + "F" res = temp + " " + windchill + " " + weather print res
apache-2.0
-8,801,125,068,099,630,000
25.395062
86
0.546305
false
3.522241
false
false
false
EachenKuang/PythonRepository
MedicineSCI/Tools/Dao.py
1
1155
# -*- coding: utf-8 -*- import pymssql class Dao: def __init__(self): self.conn = None self.cur = None def connect(self): # 数据库连接信息 self.conn = pymssql.connect(host="localhost:59318", user="eachen", password="123456", database="mydata", charset="utf8") # host = "localhost:59318", user = "eachen", pwd = "123456", db = "mydata" self.cur = self.conn.cursor() if not self.cur: raise (NameError, "数据库连接失败") else: print("数据库连接成功") def create(self, sql): # print(sql) try: self.cur.execute(sql) self.conn.commit() except: print('create failed') else: print('create succeed') def insert(self, sql): # print(sql) self.cur.execute(sql) self.conn.commit() def select(self, sql): # print(sql) self.cur.execute(sql) # fetchall()是接收全部的返回结果行 return self.cur.fetchall() def close(self): self.conn.close()
apache-2.0
-7,258,135,829,876,773,000
23.795455
112
0.507791
false
3.420063
false
false
false
skycucumber/Messaging-Gateway
src/Command/HeartBeat.py
1
1072
''' Created on 2013-8-12 @author: E525649 ''' from BaseCommand import CBaseCommand from twisted.internet import threads import BaseCommand from DB import SBDB class CHeartBeat(CBaseCommand): ''' classdocs ''' command_id=0x00000002 def __init__(self,data=None,protocol=None): ''' Constructor ''' CBaseCommand.__init__(self, data, protocol) def Run(self): with self.protocol.lockCmd: if self.Authorized(): CBaseCommand.Run(self) self.SendResp() if self.protocol.role==BaseCommand.PV_ROLE_HUMAN: threads.deferToThread(SBDB.UpdateActiveTime,self.protocol.role,self.protocol.client_id,id(self.protocol.transport)) elif self.protocol.role==BaseCommand.PV_ROLE_SUPERBOX: threads.deferToThread(SBDB.UpdateActiveTime,self.protocol.role,self.protocol.superbox_id,id(self.protocol.transport)) else: self.SendUnauthorizedResp()
gpl-2.0
-7,245,791,321,416,922,000
29.529412
137
0.60541
false
4.060606
false
false
false
martinggww/lucasenlights
MachineLearning/sklearn/mrjbq7-ta-lib-c553531/setup.py
1
3712
#!/usr/bin/env python import sys import os import warnings from distutils.dist import Distribution display_option_names = Distribution.display_option_names + ['help', 'help-commands'] query_only = any('--' + opt in sys.argv for opt in display_option_names) or len(sys.argv) < 2 or sys.argv[1] == 'egg_info' # Use setuptools for querying the package, normal builds use distutils if query_only: try: from setuptools import setup except ImportError: from distutils.core import setup else: from distutils.core import setup from distutils.extension import Extension lib_talib_name = 'ta_lib' # the underlying C library's name platform_supported = False for prefix in ['darwin', 'linux', 'bsd', 'sunos']: if prefix in sys.platform: platform_supported = True include_dirs = [ '/usr/include', '/usr/local/include', '/opt/include', '/opt/local/include', ] if 'TA_INCLUDE_PATH' in os.environ: include_dirs.append(os.environ['TA_INCLUDE_PATH']) lib_talib_dirs = [ '/usr/lib', '/usr/local/lib', '/usr/lib64', '/usr/local/lib64', '/opt/lib', '/opt/local/lib', ] if 'TA_LIBRARY_PATH' in os.environ: lib_talib_dirs.append(os.environ['TA_LIBRARY_PATH']) break if sys.platform == "win32": platform_supported = True lib_talib_name = 'ta_libc_cdr' include_dirs = [r"c:\ta-lib\c\include"] lib_talib_dirs = [r"c:\ta-lib\c\lib"] if not platform_supported: raise NotImplementedError(sys.platform) # Do not require numpy or cython for just querying the package if not query_only: import numpy include_dirs.insert(0, numpy.get_include()) try: from Cython.Distutils import build_ext has_cython = True except ImportError: has_cython = False for lib_talib_dir in lib_talib_dirs: try: files = os.listdir(lib_talib_dir) if any(lib_talib_name in f for f in files): break except OSError: pass else: warnings.warn('Cannot find ta-lib library, installation may fail.') cmdclass = {} if has_cython: cmdclass['build_ext'] = build_ext ext_modules = [ Extension( 'talib._ta_lib', ['talib/_ta_lib.pyx' if has_cython else 'talib/_ta_lib.c'], include_dirs=include_dirs, library_dirs=lib_talib_dirs, libraries=[lib_talib_name] ) ] setup( name = 'TA-Lib', version = '0.4.10', description = 'Python wrapper for TA-Lib', author = 'John Benediktsson', author_email = 'mrjbq7@gmail.com', url = 'http://github.com/mrjbq7/ta-lib', download_url = 'https://github.com/mrjbq7/ta-lib/releases', classifiers = [ "License :: OSI Approved :: BSD License", "Development Status :: 4 - Beta", "Operating System :: Unix", "Operating System :: POSIX", "Operating System :: MacOS :: MacOS X", "Operating System :: Microsoft :: Windows", "Programming Language :: Python", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Cython", "Topic :: Office/Business :: Financial", "Topic :: Scientific/Engineering :: Mathematics", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "Intended Audience :: Financial and Insurance Industry", ], packages = ['talib'], ext_modules = ext_modules, cmdclass = cmdclass, requires = ['numpy'], )
cc0-1.0
-1,881,101,097,156,988,400
28.935484
122
0.60695
false
3.632094
false
false
false
endreszabo/pdnsapp
dns.py
1
6190
#!/usr/bin/env python from sys import exit, stdin, stderr, argv, stdout from inspect import stack from config import * import os import csv CONT=0 FINAL=1 default_ttl=60 loglevel=3 class istr(str): def __eq__(self, text): return str.__eq__(self.lower(), text.lower()) class qname(istr): def __new__(cls, value, *args, **kwargs): return istr.__new__(cls, value) def _domain_parts(self,request): return map(lambda x: istr(x), filter(lambda x: x!='', self.split('.'))) def _domain_parts_len(self,request): return len(domain_parts(request)) def _tld(self, count=2): return istr('.'.join(self.domain_parts[-count:])) def __init__(self, value, minlen=None, maxlen=None): self.domain_parts=self._domain_parts(value) self.domain_parts_count=len(self.domain_parts) self.tld=self._tld() def host_part(self, substring): try: if self.lower().index(substring+'.')==0: return True except ValueError: return False return False def is_subdomain(string, substring): try: return (string.lower().rindex('.'+substring)+len(substring)+1 == len(string)) except ValueError: return False return False def logd(level=loglevel, message=None, kwargs={}): if level>=loglevel: print("LOG\t%s(): %s" % (stack()[1][3],'; '.join([message,', '.join(map(lambda (k,v): "%s='%s'" % (k,v), kwargs.iteritems()))]))) def log(level=loglevel, message=None, **kwargs): if level>=loglevel: print( "LOG\t%s(): %s" % ( stack()[1][3], '; '.join( [ message, ', '.join( map(lambda (k,v): "%s='%s'" % (k,v), kwargs.iteritems()) ) ] ) ) ) def MX(priority=0, data=None, ttl=default_ttl): if data: return { 'qtype': 'MX', 'data':"%s\t%s" % (priority, data), 'ttl': ttl } else: return {} def LOG(msg): pass def A(data=None, ttl=default_ttl): if data: return { 'qtype': 'A', 'data': data, 'ttl': ttl } else: return {} def match_domain(name, domain): if name[-len(domain):] == domain or name[-len(domain)-1:] == '.'+domain: return True return False matches=[] def match(host=None, fqdn=None, domain=None, dns_class=None, type=None, remote_ip=None, local_ip=None, cache=True): params=locals() def wrapper(f): matches.append([f, params]) return wrapper def represent(response): return "\t".join([ 'DATA', response['qname'], response['qclass'], response['qtype'], str(response['ttl']), response['id'], response['data'] ]) def route(request): retval=[] if request['qname'] in skip_zones: retval.append("LOG\tqname '%s' is in skipped zones list, skipping" % request['qname']) return retval for f, conditions in matches: if (conditions['fqdn'] is None or conditions['fqdn'] == request['qname']) and \ (conditions['domain'] is None or match_domain(request['qname'], conditions['domain'])) and \ (conditions['type'] is None or conditions['type'] == request['qtype'] or request['qtype'] == 'ANY') and \ (conditions['dns_class'] is None or conditions['dns_class'] == request['qclass']) and \ (conditions['remote_ip'] is None or conditions['remote_ip'] == request['remote-ip']) and \ (conditions['local_ip'] is None or conditions['local_ip'] == request['local-ip']): returned=f(request) if returned: if returned[1]: if type(returned[1]) is list: for item in returned[1]: retval.append( represent( dict(request.items() + item.items()) ) ) else: retval.append( represent( dict(request.items() + returned[1].items()) ) ) if returned[0] == FINAL: break return retval def run(f_in=stdin, f_out=stdout): line = f_in.readline().strip() if not line.startswith('HELO'): print >>f_out, 'FAIL' f_out.flush() f_in.readline() else: print >>f_out, "OK\tapp firing up" f_out.flush() while True: line = f_in.readline().strip() if not line: break #request = line.split('\t') request = dict( zip( ['cmd','qname','qclass','qtype','id','remote-ip','local-ip','edns-subnet-address'], line.split('\t') ) ) request['qname']=qname(request['qname']) #request['id']=1 #logd(3, 'Processing request', request) if request['cmd'] == 'Q': if request['qname'] != '': datas=route(request) if datas: print >>f_out, "\n".join(datas) #print >>f_out, "LOG\t"+"\nLOG\t".join(datas) print >>f_out, "END" f_out.flush() elif request['cmd'] == 'PING': print >>f_out, "LOG\tPONG" f_out.flush() continue elif request['cmd'] == 'HELO': print >>f_out, "OK\trunning" f_out.flush() continue elif request['cmd'] == 'AXFR': print >>f_out, "END" f_out.flush() continue else: print >>f_out, "LOG\tUnprocessed" def acme_b64encode(acme_challenge): return acme_challenge.replace('_','_u').replace('-','_h') def acme_b64decode(acme_challenge): return acme_challenge.replace('_h','-').replace('_u','_')
gpl-2.0
1,141,596,529,849,517,300
30.907216
137
0.485784
false
3.912769
false
false
false
nixingyang/Kaggle-Competitions
Face Verification/Extra/Cross Validation/Cross_Validation.py
1
5595
from joblib import Parallel, delayed from sklearn.cross_validation import KFold import numpy as np import prepare_data import pylab import solution_basic def inspect_final_data_set_without_labels(image_index_list, seed): np.random.seed(seed) image_index_array = np.array(image_index_list) # Cross Validation fold_num = 5 label_kfold = KFold(image_index_array.size, n_folds=fold_num, shuffle=True) true_records_num_list = [] false_records_num_list = [] for _, fold_item in enumerate(label_kfold): # Generate final data set selected_index_array = image_index_array[fold_item[0]] _, Y_train = solution_basic.get_record_map(selected_index_array, None) true_records = Y_train == 1 true_records_num = np.sum(true_records) false_records_num = Y_train.size - true_records_num true_records_num_list.append(true_records_num) false_records_num_list.append(false_records_num) return (true_records_num_list, false_records_num_list) def inspect_final_data_set_with_labels(image_index_list, seed): np.random.seed(seed) # Cross Validation fold_num = 5 unique_label_values = np.unique(image_index_list) selected_label_values = np.random.choice(unique_label_values, \ size=np.ceil(unique_label_values.size * (fold_num - 1) / fold_num), \ replace=False) selected_index_list = [] for single_image_index in image_index_list: if single_image_index in selected_label_values: selected_index_list.append(single_image_index) selected_index_array = np.array(selected_index_list) _, Y_train = solution_basic.get_record_map(selected_index_array, None) true_records = Y_train == 1 true_records_num = np.sum(true_records) false_records_num = Y_train.size - true_records_num return ([true_records_num], [false_records_num]) def inspect_number_of_occurrences(): # Get image paths in the training and testing datasets _, training_image_index_list = prepare_data.get_image_paths_in_training_dataset( ) repeated_num = 20 seed_array = np.random.choice(range(repeated_num), size=repeated_num, replace=False) records_list = (Parallel(n_jobs=-1)(delayed( inspect_final_data_set_without_labels)(training_image_index_list, seed) for seed in seed_array)) # repeated_num = 100 # seed_array = np.random.choice(range(repeated_num), size=repeated_num, replace=False) # records_list = (Parallel(n_jobs=-1)(delayed(inspect_final_data_set_with_labels)(training_image_index_list, seed) for seed in seed_array)) true_records_num_list = [] false_records_num_list = [] for single_true_records_num_list, single_false_records_num_list in records_list: for value in single_true_records_num_list: true_records_num_list.append(value) for value in single_false_records_num_list: false_records_num_list.append(value) for single_list in [true_records_num_list, false_records_num_list]: repeated_times_list = [] min_value_list = [] max_value_list = [] mean_value_list = [] for end_index in range(len(single_list)): current_list = single_list[0:end_index + 1] repeated_times_list.append(len(current_list)) min_value_list.append(np.min(current_list)) max_value_list.append(np.max(current_list)) mean_value_list.append(np.mean(current_list)) pylab.figure() pylab.plot(repeated_times_list, min_value_list, color="yellowgreen", label="Minimum") pylab.plot(repeated_times_list, max_value_list, color="lightskyblue", label="Maximum") pylab.plot(repeated_times_list, mean_value_list, color="darkorange", label="Mean") pylab.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3, mode="expand", borderaxespad=0.) pylab.xlabel("Repeated Times", fontsize="large") pylab.ylabel("Number of Occurrences", fontsize="large") pylab.grid() pylab.show() def inspect_number_of_images(): # Get image paths in the training and testing datasets _, training_image_index_list = prepare_data.get_image_paths_in_training_dataset( ) images_number_list = [] for current_image_index in np.unique(training_image_index_list): images_number_list.append( np.sum(np.array(training_image_index_list) == current_image_index)) # the histogram of the data with histtype="step" bins = np.arange(np.min(images_number_list), np.max(images_number_list) + 2) - 0.5 _, _, patches = pylab.hist(images_number_list, bins=bins) pylab.setp(patches, "facecolor", "yellowgreen", "alpha", 0.75) pylab.xlim([bins[0], bins[-1]]) pylab.xticks( np.arange(np.min(images_number_list), np.max(images_number_list) + 1)) pylab.xlabel("Number of Images from the Same Person", fontsize="large") pylab.ylabel("Number of Occurrences", fontsize="large") pylab.title("Histogram of Number of Images from the Same Person") pylab.show() inspect_number_of_occurrences()
mit
-2,729,778,496,074,134,000
36.3
143
0.611796
false
3.67367
false
false
false
DMSalesman/Nemris
modules/pkgutils.py
1
3330
"""Module with functions for management of installed APK lists.""" import glob import re import subprocess import apkutils # needed for AndroidManifest.xml dump import utils # needed for sudo # Creates a APK/path dictionary to avoid the sluggish "pm path" def create_pkgdict(): """Creates a dict for fast path lookup from /data/system/packages.xml; returns dict.""" (out, err) = utils.sudo("cat /data/system/packages.xml") if err: return False xml_dump = [i for i in out.decode("utf-8").split("\n") if "<package name=" in i] pkgdict = {} for i in xml_dump: pkgname = re.findall("<package name=\"(.*?)\"", i)[0] pkgpath = re.findall("codePath=\"(.*?)\"", i)[0] # Normalizes each entry if not pkgpath.endswith(".apk"): try: pkgpath = glob.glob(pkgpath + "/*.apk")[0] except: continue pkgdict[pkgname] = pkgpath return pkgdict def list_installed_pkgs(args): """Lists the members of a given category of packages; returns list.""" prefix = "pm list packages" if args.user: suffix = "-3" elif args.system: suffix = "-s" elif args.disabled: suffix = "-d" else: suffix = "" pkgs = [i[8:] for i in subprocess.Popen("{0} {1}".format(prefix, suffix), stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True).communicate()[0].decode("utf-8").split("\n") if i] return pkgs def list_installed_pkgs_nougat(args): """Uses Nougat's cmd command to query the package service (faster); returns list.""" prefix = "cmd package list packages" if args.user: suffix = "-3" elif args.system: suffix = "-s" elif args.disabled: suffix = "-d" else: suffix = "" pkgs = [i[8:] for i in utils.sudo("{0} {1}".format(prefix, suffix))[0].decode("utf-8").split("\n") if i] return pkgs def check_substratum(nougat): """Checks if the Substratum engine is installed; returns bool.""" if nougat: user_pkgs = [i[8:] for i in utils.sudo("cmd package list packages -3")[0].decode("utf-8").split("\n") if i] else: user_pkgs = [i[8:] for i in subprocess.Popen("pm list packages -3", stdout = subprocess.PIPE, shell = True).communicate()[0].decode("utf-8").split("\n") if i] substratum_installed = True if "projekt.substratum" in user_pkgs else False return substratum_installed def exclude_overlays(aapt, pkgdict, pkgs): """Excludes Substratum overlays from the packages to extract; returns nothing.""" for i in pkgs: pkgpath = pkgdict.get(i) out = apkutils.get_pkgxml(aapt, pkgpath)[0].decode("utf-8") if "Substratum_Parent" in out: pkgs.remove(i) def exclude_arcus_variants(pkgs): """Excludes Arcus theme variants from the packages to extract; returns nothing.""" for i in pkgs: if "pixkart.arcus.user" in i: pkgs.remove(i) def check_already_extracted(pkgpath, md5sums): """Checks if an APK has already been extracted; returns bool, str.""" pkgsum = utils.compute_md5sum(pkgpath) already_extracted = True if pkgsum in md5sums else False return already_extracted, pkgsum
unlicense
-4,136,320,089,613,756,400
30.714286
194
0.606607
false
3.671444
false
false
false
zhongwcool/Muzei
web/handlers/backroomarthelper.py
1
6229
# Copyright 2014 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import re import sys import webapp2 from google.appengine.api import images from google.appengine.api import urlfetch sys.path.append(os.path.join(os.path.dirname(__file__),'../lib')) from bs4 import BeautifulSoup import cloudstorage as gcs from handlers.common import * from models import FeaturedArtwork THUMB_HEIGHT=600 NO_CROP_TUPLE=(0, 0, 1, 1) def add_art_from_external_details_url(publish_date, url): if FeaturedArtwork.all().filter('publish_date =', publish_date).get() != None: webapp2.abort(409, message='Artwork already exists for this date.') result = urlfetch.fetch(url) if result.status_code < 200 or result.status_code >= 300: webapp2.abort(400, message='Error processing URL: HTTP %d. Content: %s' % (result.status_code, result.content)) soup = BeautifulSoup(result.content, 'html.parser') attribution = None if re.search(r'wikiart.org', url, re.I) or re.search(r'wikipaintings.org', url, re.I): attribution = 'wikiart.org' details_url = re.sub(r'#.+', '', url, re.I | re.S) + '?utm_source=Muzei&utm_campaign=Muzei' title = soup.find('h1').get_text() author = soup.find('a', class_='artist-name').get_text() completion_year = None try: completion_year = unicode(soup .find(text='Date:') .parent .find_next_sibling('span') .text).strip() except: pass byline = author + ((', ' + completion_year) if completion_year else '') image_url = get_wikiart_image_url(soup) elif re.search(r'metmuseum.org', url, re.I): attribution = 'metmuseum.org' details_url = re.sub(r'[#?].+', '', url, re.I | re.S) + '?utm_source=Muzei&utm_campaign=Muzei' title = soup.find('h2').get_text() author = '' try: author = unicode(soup.find(text='Artist:').parent.next_sibling).strip() except: pass author = re.sub(r'\s*\(.*', '', author) completion_year = None try: completion_year = unicode(soup.find(text='Date:').parent.next_sibling).strip() except: pass byline = author + ((', ' + completion_year) if completion_year else '') image_url = soup.find('a', class_='download').attrs['href'] else: webapp2.abort(400, message='Unrecognized URL') if not title or not author or not image_url: webapp2.abort(500, message='Could not parse HTML') image_url, thumb_url = maybe_process_image(image_url, NO_CROP_TUPLE, publish_date.strftime('%Y%m%d') + ' ' + title + ' ' + byline) # create the artwork entry new_artwork = FeaturedArtwork( title=title.strip(), byline=byline.strip(), attribution=attribution, image_url=image_url, thumb_url=thumb_url, details_url=details_url, publish_date=publish_date) new_artwork.save() return new_artwork def get_wikiart_image_url(soup): # TODO: use a cleaner method :( tmp = soup.find(class_='thumbnails_ref')['onclick'] thumb_html_url = re.search(r'(/en.+?)\'', tmp).group(1) thumb_html_url = "http://www.wikiart.org%s" % thumb_html_url result = urlfetch.fetch(thumb_html_url) if result.status_code < 200 or result.status_code >= 300: webapp2.abort(400, message='Error processing URL: HTTP %d. Content: %s' % (result.status_code, result.content)) thumb_html = json.loads(result.content) thumb_soup = BeautifulSoup(thumb_html, 'html.parser') max_thumb_width = 0 max_thumb_url = None for thumb_title_el in thumb_soup.select('.thumbnail_title'): thumb_width = int(re.search(r'(\d+)x\d+', thumb_title_el.get_text()).group(1)) if thumb_width > max_thumb_width: max_thumb_width = thumb_width max_thumb_url = thumb_title_el.parent.find('a')['href'] return max_thumb_url def maybe_process_image(image_url, crop_tuple, base_name): if CLOUD_STORAGE_ROOT_URL in image_url and crop_tuple == NO_CROP_TUPLE: return (image_url, None) image_result = urlfetch.fetch(image_url, deadline=20) if image_result.status_code < 200 or image_result.status_code >= 300: raise IOError('Error downloading image: HTTP %d.' % image_result.status_code) filename = re.sub(r'[^\w]+', '-', base_name.strip().lower()) + '.jpg' # main image image_gcs_path = CLOUD_STORAGE_BASE_PATH + '/fullres/' + filename # resize to max width 4000 or max height 2000 image_contents = image_result.content image = images.Image(image_contents) edited = False if image.height > 2000: image.resize(width=(image.width * 2000 / image.height), height=2000) edited = True elif image.width > 4000: image.resize(width=4000, height=(image.height * 4000 / image.width)) edited = True if crop_tuple != NO_CROP_TUPLE: image.crop(*crop_tuple) edited = True if edited: image_contents = image.execute_transforms(output_encoding=images.JPEG, quality=80) # upload with default ACLs set on the bucket # or use options={'x-goog-acl': 'public-read'}) gcs_file = gcs.open(image_gcs_path, 'w', content_type='image/jpeg') gcs_file.write(image_contents) gcs_file.close() # thumb thumb_gcs_path = CLOUD_STORAGE_BASE_PATH + '/thumbs/' + filename thumb = images.Image(image_result.content) thumb.resize(width=(thumb.width * THUMB_HEIGHT / thumb.height), height=THUMB_HEIGHT) if crop_tuple != NO_CROP_TUPLE: thumb.crop(*crop_tuple) edited = True thumb_contents = thumb.execute_transforms(output_encoding=images.JPEG, quality=40) gcs_file = gcs.open(thumb_gcs_path, 'w', content_type='image/jpeg') gcs_file.write(thumb_contents) gcs_file.close() return (CLOUD_STORAGE_ROOT_URL + image_gcs_path, CLOUD_STORAGE_ROOT_URL + thumb_gcs_path)
apache-2.0
525,997,306,480,910,340
33.798883
98
0.67266
false
3.227461
false
false
false
realgam3/SubtitlesClient
SubtitlesClient.py
1
3702
#!/usr/bin/env python #-*- coding:utf-8 -*- ######################################################## # Name: Subtitles Client # Site: http://RealGame.co.il __author__ = 'RealGame (Tomer Zait)' __license__ = 'GPL v3' __version__ = '1.0' __email__ = 'realgam3@gmail.com' ######################################################## from os import path from sys import argv from docopt import docopt from engines.engine import SubtitleSite, SUBTITLE_SITE_LIST, DEFAULTS __doc__ = \ """ Subtitles Client Usage: {prog} download <releases_path>... [--lang=<language> --engine=<subtitle_site>...] {prog} exist <releases_path>... [--lang=<language> --engine=<subtitle_site>...] {prog} test [<engines>...] {prog} (-l | --list) {prog} (-h | --help) {prog} (-v | --version) Options: -l --list Show subtitles engine list. -h --help Show this screen. -v --version Show version. --lang=<language> Subtitle language (alpha2) [default: {def_language}]. --engine=<subtitle_site> Subtitle site [default: {def_engine}]. """.format(prog=path.basename(argv[0]), def_language=DEFAULTS['subtitle_language'], def_engine=DEFAULTS['subtitle_engine']) def download_subtitles(releases, engines=[DEFAULTS['subtitle_engine']], lang=DEFAULTS['subtitle_language']): if releases: for release in releases: for engine in engines: subtitle_release = SubtitleSite.get_file_properties(release)['release_name'] print "[{engine: ^15}] Trying To Download Subtitles For: '{release}'".format(engine=engine, release=subtitle_release) sub_obj = SubtitleSite.class_factory(engine) subtitle_path = sub_obj.download_subtitle(release, lang) if subtitle_path: print "{0:17} Download Success: ({file_path}).\n".format("", file_path=subtitle_path) else: print "{0:17} Subtitles Not Found.\n".format("") def is_subtitles_exist(releases, engines=[DEFAULTS['subtitle_engine']], lang=DEFAULTS['subtitle_language']): if releases: for release in releases: for engine in engines: subtitle_release = SubtitleSite.get_file_properties(release)['release_name'] sub_obj = SubtitleSite.class_factory(engine) exist_flag = sub_obj.is_subtitle_exist(release, lang) res = "Exist" if not exist_flag: res = "Does Not " + res print "[{engine: ^15}] '{release}' - {res}.".format(engine=engine, release=subtitle_release, res=res) def test_engines(engines): if not engines: engines = SUBTITLE_SITE_LIST.keys() for engine_key in engines: t = SubtitleSite.class_factory(engine_key) t.test_engine() def main(): args = docopt(__doc__, help=True, version='Subtitles Client %s' % __version__) if args['download']: download_subtitles(args['<releases_path>'], args['--engine'], args['--lang']) elif args['exist']: is_subtitles_exist(args['<releases_path>'], args['--engine'], args['--lang']) elif args['test']: test_engines(args['<engines>']) elif args['--list']: for sub_site in SUBTITLE_SITE_LIST.keys(): sub_dict = SUBTITLE_SITE_LIST.get(sub_site) print sub_dict.get('class_name') if __name__ == "__main__": main()
gpl-3.0
1,652,222,305,396,797,700
36.77551
118
0.537007
false
4.081588
false
false
false
eReuse/DeviceHub
ereuse_devicehub/resources/account/settings.py
1
5490
from ereuse_devicehub.resources.account.role import Role from ereuse_devicehub.resources.resource import ResourceSettings from ereuse_devicehub.resources.schema import Thing from ereuse_devicehub.security.perms import DB_PERMS from ereuse_devicehub.validation.validation import ALLOWED_WRITE_ROLE class Account(Thing): """ An account represents a physical person or an organization. """ email = { 'type': 'email', 'required': True, 'unique': True, 'sink': 5 } password = { 'type': 'string', # 'required': True, todo active OR password required 'minlength': 4, 'sink': 4, 'doc': 'Users can only see their own passwords.' } role = { 'type': 'string', 'allowed': set(Role.ROLES), 'default': Role.USER, 'doc': 'See the Roles section to get more info.', ALLOWED_WRITE_ROLE: Role(Role.ADMIN) } token = { 'type': 'string', 'readonly': True, } name = { 'type': 'string', 'sink': 3, 'description': 'The name of an account, if it is a person or an organization.' } organization = { 'type': 'string', 'sink': 1, 'description': 'The name of the organization the account is in. Organizations can be inside others.' } active = { 'type': 'boolean', 'default': True, 'sink': -1, 'description': 'Activate the account so you can start using it.', 'doc': 'Inactive accounts cannot login, and they are created through regular events.' } blocked = { 'type': 'boolean', 'default': True, 'sink': -2, 'description': 'As a manager, you need to specifically accept the user by unblocking it\'s account.', ALLOWED_WRITE_ROLE: Role(Role.ADMIN) } isOrganization = { 'type': 'boolean', 'sink': 2 } databases = { # todo make admin worthy 'type': 'dict', 'valueschema': { 'type': 'string', 'allowed': list(DB_PERMS) }, 'required': True, ALLOWED_WRITE_ROLE: Role(Role.ADMIN), 'teaser': False, 'sink': -4, } defaultDatabase = { 'type': 'string', # todo If this is not set, the first databased in 'databases' it should be used ALLOWED_WRITE_ROLE: Role(Role.ADMIN), 'teaser': False, 'sink': -5 } shared = { 'type': 'list', 'schema': { 'type': 'dict', 'schema': { 'db': { 'type': 'string' }, '@type': { 'type': 'string' }, 'label': { 'type': 'string' }, '_id': { 'type': 'string' }, 'baseUrl': { 'type': 'url', 'doc': 'The scheme, domain, any path to reach the DeviceHub.' } } }, 'default': [], 'materialized': True, 'description': 'The groups (eg: lots, packages...) other people shared to this account.' } fingerprints = { 'type': 'list', 'readonly': True, } publicKey = { 'type': 'string', 'writeonly': True } class AccountSettings(ResourceSettings): resource_methods = ['GET', 'POST'] item_methods = ['PATCH', 'DELETE', 'GET'] # the standard account entry point is defined as # '/accounts/<ObjectId>'. We define an additional read-only entry # point accessible at '/accounts/<username>'. # Note that this regex is weak; it will accept more string that are not emails, which is fine; it is fast. additional_lookup = { 'url': 'regex("[^@]+@[^@]+\.[^@]+")', 'field': 'email', } # 'public_methods': ['POST'], # Everyone can create an account, which will be blocked (not active) datasource = { 'projection': {'token': 0}, # We exclude from showing tokens to everyone 'source': 'accounts' } # We also disable endpoint caching as we don't want client apps to # cache account data. cache_control = '' cache_expires = 0 # Allow 'token' to be returned with POST responses extra_response_fields = ResourceSettings.extra_response_fields + ['email', 'active', 'name', 'databases', 'defaultDatabase', 'organization', 'isOrganization'] # Finally, let's add the schema definition for this endpoint. _schema = Account allowed_write_roles = {Role.ADMIN} # Only admins or above can POST, PUT or DELETE use_default_database = True # We have a common shared database with accounts fa = 'fa-user-o' unregistered_user = { 'email': Account.email, 'name': Account.name, 'organization': Account.organization, 'isOrganization': Account.isOrganization } unregistered_user_doc = 'It can be a reference to an account, or a basic account object. ' \ + 'The object has to contain at least an e-mail. If the e-mail does ' \ + 'not match to an existing one, an account is created. If the e-mail exists, ' \ + 'that account is used, and the rest of the data (name, org...) is discarded.'
agpl-3.0
5,062,361,657,323,126,000
32.680982
117
0.532058
false
4.184451
false
false
false
codedsk/hubcheck
hubcheck/pageobjects/widgets/groups_wiki_edit_form.py
1
3453
from hubcheck.pageobjects.widgets.groups_wiki_new_form import \ GroupsWikiNewForm1, GroupsWikiNewForm1_Locators_Base, \ GroupsWikiNewForm2, GroupsWikiNewForm2_Locators_Base, \ GroupsWikiNewForm3, GroupsWikiNewForm3_Locators_Base from hubcheck.pageobjects.basepageelement import Link class GroupsWikiEditForm1(GroupsWikiNewForm1): """ GroupsWikiNewForm with TextArea widget for pagetext """ def __init__(self, owner, locatordict={}): super(GroupsWikiEditForm1,self).__init__(owner,locatordict) # load hub's classes GroupsWikiEditForm_Locators = self.load_class('GroupsWikiEditForm_Locators') # update this object's locator self.locators.update(GroupsWikiEditForm_Locators.locators) # update the locators with those from the owner self.update_locators_from_owner() # setup page object's components self.rename = Link(self,{'base':'rename'}) # update the component's locators with this objects overrides self._updateLocators() def goto_rename(self): """click the rename link""" self.rename.click() class GroupsWikiEditForm1_Locators_Base(object): """locators for GroupsWikiEditForm1 object""" locators = { 'rename' : "xpath=//a[text()='here']", } class GroupsWikiEditForm2(GroupsWikiNewForm2): """ GroupsWikiEditForm that uses an IframeWrap widget for pagetext """ def __init__(self, owner, locatordict={}): super(GroupsWikiEditForm2,self).__init__(owner,locatordict) # load hub's classes GroupsWikiEditForm_Locators = self.load_class('GroupsWikiEditForm_Locators') # update this object's locator self.locators.update(GroupsWikiEditForm_Locators.locators) # update the locators with those from the owner self.update_locators_from_owner() # setup page object's components self.rename = Link(self,{'base':'rename'}) # update the component's locators with this objects overrides self._updateLocators() def goto_rename(self): """click the rename link""" self.rename.click() class GroupsWikiEditForm2_Locators_Base(object): """locators for GroupsWikiEditForm2 object""" locators = { 'rename' : "xpath=//a[text()='here']", } class GroupsWikiEditForm3(GroupsWikiNewForm3): """GroupsWikiEditForm TextArea widget for pagetext Upload3 file upload widget with embedded iframes """ def __init__(self, owner, locatordict={}): super(GroupsWikiEditForm3,self).__init__(owner,locatordict) # load hub's classes GroupsWikiEditForm_Locators = self.load_class('GroupsWikiEditForm_Locators') # update this object's locator self.locators.update(GroupsWikiEditForm_Locators.locators) # update the locators with those from the owner self.update_locators_from_owner() # setup page object's components self.rename = Link(self,{'base':'rename'}) # update the component's locators with this objects overrides self._updateLocators() def goto_rename(self): """click the rename link""" self.rename.click() class GroupsWikiEditForm3_Locators_Base(object): """locators for GroupsWikiEditForm3 object""" locators = { 'rename' : "xpath=//a[text()='here']", }
mit
2,063,670,874,993,383,400
27.073171
84
0.660875
false
4.015116
false
false
false
couchbaselabs/devguide-examples
python/cas.py
1
1612
from __future__ import print_function from couchbase.bucket import Bucket from couchbase.bucket import LOCKMODE_WAIT from threading import Thread from couchbase.exceptions import KeyExistsError cb = Bucket('couchbase://10.0.0.31/default', lockmode=LOCKMODE_WAIT) cb.upsert('a_list', []) print('Will attempt concurrent document mutations without CAS') def add_item_to_list(client, new_item): l = client.get('a_list').value l.append(new_item) client.replace('a_list', l) threads = [Thread(target=add_item_to_list, args=(cb, "item_" + str(x))) for x in range(0, 10)] [t.start() for t in threads] [t.join() for t in threads] cur_list = cb.get('a_list').value print('Current list has {0} elements'.format(len(cur_list))) if len(cur_list) != 10: print('Concurrent modifications removed some of our items!', cur_list) # The same as above, but using CAS def add_item_to_list_safe(client, new_item): while True: rv = client.get('a_list') l = rv.value l.append(new_item) try: cb.replace('a_list', l, cas=rv.cas) return except KeyExistsError: print("Cas mismatch for item", new_item) continue # Reset the list again cb.upsert('a_list', []) print('Will attempt concurrent modifications using CAS') threads = [Thread(target=add_item_to_list_safe, args=(cb, "item_" + str(x))) for x in range(0, 10)] [t.start() for t in threads] [t.join() for t in threads] cur_list = cb.get('a_list').value print('Current list has {0} elements'.format(len(cur_list))) assert len(cur_list) == 10
apache-2.0
2,503,954,480,258,937,300
26.322034
76
0.653226
false
3.192079
false
false
false
tanonev/codewebs
src/dataBaseTools/PrecomputeNN.py
1
3695
import sys import os.path sys.path.append(os.path.abspath('../../')) sys.path.append(os.path.abspath('../../site/cwsite')) import src.util.DBSetup from src.util.MLClass import MLClass from src.util.FileSystem import FileSystem from src.util.AstNetwork import AstNetwork from src.util.Assignment import Assignment from models.models import Octave from operator import itemgetter import logging from sets import Set class PrecomputeNN(object): def getASTs(self, assn, label): dataDir = FileSystem.getDataDir() outputDir = os.path.join(dataDir, 'incorrects') fileName = label + '_' + str(assn) + '.txt' path = os.path.join(outputDir, fileName) astList = [] astFile = open(path) for line in astFile.readlines(): astList.append(int(line)) return Set(astList) def getAllParts(self): return [(4,1), (4,2), (4,3), (4,4), (4,5)] def getNN(self, corrects, incorrects, astNetwork): NNmap = {} numASTs = len(corrects) + len(incorrects) row = 0 astNetwork.matrixFile.seek(0) while(True): if row % 100 == 0: logging.info(str(row) + ' of ' + str(numASTs)) line = astNetwork.matrixFile.readline() if not line: break rowValues = map(int, line.strip().split()) for col in range(row+1, len(rowValues)): value = rowValues[col] if value == -1: continue if col in corrects: try: if value < NNmap[row][1]: NNmap[row] = (col, value) except KeyError: NNmap[row] = (col, value) if row in corrects: try: if value < NNmap[col][1]: NNmap[col] = (row, value) except KeyError: NNmap[col] = (row, value) row += 1 return NNmap def writeNN(self, path, NNmap): fid = open(path,'wt') NNmaptuples = sorted(NNmap.iteritems(), key = itemgetter(0)) for t in NNmaptuples: fid.write(str(t[0]) + ', ' + str(t[1][0]) + ', ' + str(t[1][1]) + '\n') fid.close() def initializeLog(self): logDir = os.path.join(FileSystem.getLogDir(),'PrecomputeNN') if not os.path.exists(logDir): os.makedirs(logDir) logFileName = os.path.join(logDir,'log') logging.basicConfig(filename = logFileName, format = '%(asctime)s %(message)s', \ datefmt = '%m/%d/%Y %I:%M:%S %p', level = logging.INFO) def run(self): self.initializeLog() for (h,p) in self.getAllParts(): assn = Assignment(h,p) logging.info('PrecomputeNN (hw,part): ' + str(assn)) corrects = self.getASTs(assn, 'corrects') incorrects = self.getASTs(assn, 'incorrects') distanceMatrix = FileSystem.loadDistanceMatrix(assn.getTuple(),False) subIdMap = FileSystem.loadSubmissionIdMap(assn.getTuple()) astNetwork = AstNetwork(assn.getTuple(), distanceMatrix, subIdMap) NNmap = self.getNN(corrects, incorrects, astNetwork) outputDir = os.path.join(FileSystem.getDataDir(), 'nearestNeighbors') if not os.path.exists(outputDir): os.makedirs(outputDir) outputPath = os.path.join(outputDir, 'NNmap_' + str(assn) + '.txt') self.writeNN(outputPath, NNmap) if __name__ == '__main__': PrecomputeNN().run()
mit
-6,443,573,087,008,330,000
35.584158
89
0.540731
false
3.724798
false
false
false
zandao/stn3270
stn3270/field.py
1
1639
# -*- coding: utf-8 -*- """ ****************** Super TN3270 Field ****************** Super TN3270 Field - stn3270.field - implements the field manipulation on a 3270 virtual screen: read, write, verify and find fields. """ class Field: """It's a representation of a 3270 field, with a *start of field* sequence, its position (*row* and *column*), raw *text* and its ASCII *data* representation :param start_of_field: a 3270 SF sequence :param row: starting row of the field :param col: starting column of the field :param text: raw text of the field :param filler: ASCII character used to fill empty editable field :type start_of_field: string :type row: int :type col: int :type text: string :type filler: string """ def __init__(self, start_of_field, row=None, col=None, text="", filler="_"): self.filler = filler self.start_of_field = self._SF(start_of_field) self.row = row self.col = col self.set_text(text) self.is_visible = ("c0=cd" not in start_of_field) self.is_editable = False for sf in self.start_of_field: self.is_editable = self.is_editable or sf in ("c0=c1","c0=cd") def set_text(self, text): """Sets the text of the field and the filtered data (text without filler characters) :param text: raw text of field :type text: string """ self.text = text self.length = len(text) self.data = text.replace(self.filler," ").rstrip() return self.data def _SF(self, char): return char[3:-1].split(',')
lgpl-2.1
-6,518,581,165,051,224,000
31.78
92
0.597315
false
3.602198
false
false
false