Datasets:
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationError
Exception: ArrowInvalid
Message: Failed to parse string: '49b633d57c150a2f7ff640687d6623fb31e0253a' as a scalar of type double
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
writer.write_table(table)
File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
pa_table = table_cast(pa_table, self._schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
return cast_table_to_schema(table, schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2224, in cast_table_to_schema
cast_array_to_feature(
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1795, in wrapper
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2086, in cast_array_to_feature
return array_cast(
^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1797, in wrapper
return func(array, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1949, in array_cast
return array.cast(pa_type)
^^^^^^^^^^^^^^^^^^^
File "pyarrow/array.pxi", line 1135, in pyarrow.lib.Array.cast
File "/usr/local/lib/python3.12/site-packages/pyarrow/compute.py", line 412, in cast
return call_function("cast", [arr], options, memory_pool)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "pyarrow/_compute.pyx", line 604, in pyarrow._compute.call_function
File "pyarrow/_compute.pyx", line 399, in pyarrow._compute.Function.call
File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Failed to parse string: '49b633d57c150a2f7ff640687d6623fb31e0253a' as a scalar of type double
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1455, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1054, in convert_to_parquet
builder.download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
for job_id, done, content in self._prepare_split_single(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1858, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.exceptions.DatasetGenerationError: An error occurred while generating the datasetNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
input_index
int64 | input_context
string | input_file_key
string | input_first_author
string | worker_id_w1
string | work_time_in_seconds_w1
float64 | label_w1
string | worker_id_w2
string | work_time_in_seconds_w2
float64 | label_w2
string | worker_id_w3
string | work_time_in_seconds_w3
float64 | label_w3
string | batch
string | majority_vote
string | majority_agreement
float64 | rs_doi
string | rs_title
string | rs_authors
string | rs_year
null | rs_venue
string | rs_selected_claims
float64 | rs_reproduced_claims
float64 | reproducibility
string | org_doi
string | org_title
string | org_authors
string | org_year
float64 | org_venue
string | org_paper_url
string | org_citations
float64 | org_s2ga_id
string | citing_doi
string | citing_year
float64 | citing_venue
string | citing_title
string | citing_authors
string | citing_s2ga_id
null | label_type
string |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0
|
Instead of mixing the representations, G-Mixup [49] augments graphs by interpolating the graphon-based generator of graphs belonging to different classes.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 28
|
Neutral
|
A18LFH7XW61JO9
| 15
|
Neutral
|
A2R2YZTSME1K3F
| 35
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2309.10979
| 2,023
|
arXiv.org
|
Towards Data-centric Graph Machine Learning: Review and Outlook
|
['Xin Zheng', 'Yixin Liu', 'Zhifeng Bao', 'Meng Fang', 'Xia Hu', 'Alan Wee-Chung Liew', 'Shirui Pan']
| null |
crowdsourced
|
1
|
For G-Mixup, we use the same hyper-parameters reported in [7].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 55
|
Positive
|
AKSJ3C5O3V9RB
| 49,570
|
Positive
|
A2R2YZTSME1K3F
| 40
|
Positive
|
batch_1
|
Positive
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1007/978-3-031-43418-1_19
| 2,023
| null |
GDM: Dual Mixup for Graph Classification with Limited Supervision
|
['Abdullah Alchihabi', 'Yuhong Guo']
| null |
crowdsourced
|
2
|
G-Mixup performs mixup to the graphons of different classes which are learned from the graph samples, and generates augmented graphs by sampling from the mixed graphons [7].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 155
|
Neutral
|
A2R2YZTSME1K3F
| 50
|
Neutral
|
A1NF6PELRKACS9
| 89
|
Positive
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1007/978-3-031-43418-1_19
| 2,023
| null |
GDM: Dual Mixup for Graph Classification with Limited Supervision
|
['Abdullah Alchihabi', 'Yuhong Guo']
| null |
crowdsourced
|
3
|
Our result generalizes that of [16] by allowing arbitrary convex combinations and any complexon dimension.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 17
|
Positive
|
A18LFH7XW61JO9
| 13
|
Neutral
|
A2R2YZTSME1K3F
| 53
|
Positive
|
batch_1
|
Positive
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2309.07453
| 2,023
|
arXiv.org
|
SC-MAD: Mixtures of Higher-order Networks for Data Augmentation
|
['Madeline Navarro', 'Santiago Segarra']
| null |
crowdsourced
|
4
|
Note that for complexons of dimension 1, when i = , j = 1 , and k = 0 for every k = i, j, Theorem 1 reduces to the result for pairwise graphon mixup in [16].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 84
|
Neutral
|
A18LFH7XW61JO9
| 144
|
Neutral
|
A2R2YZTSME1K3F
| 52
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
5
|
Step (1) of SC-MAD is common for mixup methods, where samples are interpolated in an embedding space [16, 17, 28].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 16
|
Positive
|
A18LFH7XW61JO9
| 109
|
Neutral
|
A2R2YZTSME1K3F
| 39
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2309.07453
| 2,023
|
arXiv.org
|
SC-MAD: Mixtures of Higher-order Networks for Data Augmentation
|
['Madeline Navarro', 'Santiago Segarra']
| null |
crowdsourced
|
6
|
Graphons allow us to perform tasks on graph data typically restricted to continuous objects, such as barycenter obtention and interpolation for mixup [16, 17, 22].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 39
|
Neutral
|
A5V3ZMQI0PU3F
| 55
|
Positive
|
A2R2YZTSME1K3F
| 50
|
Positive
|
batch_1
|
Positive
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2309.07453
| 2,023
|
arXiv.org
|
SC-MAD: Mixtures of Higher-order Networks for Data Augmentation
|
['Madeline Navarro', 'Santiago Segarra']
| null |
crowdsourced
|
7
|
In particular, we assume that for each class y, there is a finite set of discriminative simplicial complexes Fy such that for every labeled simplicial complex (K, y), there exists at least one F Fy that is a subcomplex of K [16], that is, there is a homomorphism from F to K.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 64
|
Neutral
|
A18LFH7XW61JO9
| 35
|
Neutral
|
AKSJ3C5O3V9RB
| 213,068
|
Positive
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
8
|
We present the following result on the structural similarities between a complexon mixture and one of the complexons, inspired by a similar result for graphon mixup [16].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 221
|
Neutral
|
A2R2YZTSME1K3F
| 28
|
Positive
|
A5V3ZMQI0PU3F
| 39
|
Positive
|
batch_1
|
Positive
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2309.07453
| 2,023
|
arXiv.org
|
SC-MAD: Mixtures of Higher-order Networks for Data Augmentation
|
['Madeline Navarro', 'Santiago Segarra']
| null |
crowdsourced
|
9
|
In the past few years, graph neural networks (GNNs) have achieved superior performance in graph-level representation learning [26, 87].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
AKSJ3C5O3V9RB
| 81,516
|
Neutral
|
A5V3ZMQI0PU3F
| 38
|
Neutral
|
A18LFH7XW61JO9
| 65
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1145/3624018
| 2,023
|
ACM Transactions on Knowledge Discovery from Data
|
Self-supervised Graph-level Representation Learning with Adversarial Contrastive Learning
|
['Xiao Luo', 'Wei Ju', 'Yiyang Gu', 'Zhengyang Mao', 'Luchen Liu', 'Yuhui Yuan', 'Ming Zhang']
| null |
crowdsourced
|
10
|
To generalize label information from two different classes,Mixup [44] performs synthetic data generation over two samples from different classes, which has been extensively studied to augment image and textual data.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 84
|
Positive
|
A18LFH7XW61JO9
| 12
|
Neutral
|
A2R2YZTSME1K3F
| 28
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1145/3583780.3615071
| 2,023
|
arXiv.org
|
Tackling Diverse Minorities in Imbalanced Classification
|
['Kwei-Herng Lai', 'D. Zha', 'Huiyuan Chen', 'M. Bendre', 'Yuzhong Chen', 'Mahashweta Das', 'Hao Yang', 'Xia Hu']
| null |
crowdsourced
|
11
|
Recently, instead of conducting synthetic data sampling on a single class, Mixup [7, 13, 23, 44] achieves a significant improvement in the image domain by synthesizing data points through linearly combining two random samples from different classes with a given combination ratio and creating soft labels for training the neural networks.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 144
|
Neutral
|
A37WXDYYT7RCZ0
| 37
|
Neutral
|
A2R2YZTSME1K3F
| 50
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1145/3583780.3615071
| 2,023
|
arXiv.org
|
Tackling Diverse Minorities in Imbalanced Classification
|
['Kwei-Herng Lai', 'D. Zha', 'Huiyuan Chen', 'M. Bendre', 'Yuzhong Chen', 'Mahashweta Das', 'Hao Yang', 'Xia Hu']
| null |
crowdsourced
|
12
|
In addition, the graphs we considered in the experiment all have node features, while G-Mixup [49] only applies to undirected graphs without node features, and therefore is not within the scope of our baselines.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 104
|
Neutral
|
A2R2YZTSME1K3F
| 31
|
Positive
|
A1NF6PELRKACS9
| 24
|
Negative
|
batch_1
|
Neutral
| 1
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2308.08344
| 2,023
|
arXiv.org
|
Graph Out-of-Distribution Generalization with Controllable Data Augmentation
|
['Bin Lu', 'Xiaoying Gan', 'Ze Zhao', 'Shiyu Liang', 'Luoyi Fu', 'Xinbing Wang', 'Cheng Zhou']
| null |
crowdsourced
|
13
|
pairs of training examples to extend the training distribution and prevent the deep neural network from overfitting the training data (Zhang et al. 2018; Yun et al. 2019; Kim, Choo, and Song 2020; Beckham et al. 2019; Verma et al. 2019; Wang et al. 2021; Han et al. 2022a; Yao et al. 2022).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 83
|
Positive
|
A18LFH7XW61JO9
| 26
|
Neutral
|
AKSJ3C5O3V9RB
| 181
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
14
|
To this end, mixup-based methods create mixed samples by combining pairs of training examples to extend the training distribution and prevent the deep neural network from overfitting the training data (Zhang et al. 2018; Yun et al. 2019; Kim, Choo, and Song 2020; Beckham et al. 2019; Verma et al. 2019; Wang et al. 2021; Han et al. 2022a; Yao et al. 2022).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 134
|
Neutral
|
A5V3ZMQI0PU3F
| 36
|
Neutral
|
A2R2YZTSME1K3F
| 37
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2308.06451
| 2,023
|
arXiv.org
|
Semantic Equivariant Mixup
|
['Zongbo Han', 'Tianchi Xie', 'Bing Wu', 'Qinghua Hu', 'Changqing Zhang']
| null |
crowdsourced
|
15
|
Most of the previous mixup variants focus on designing how to mix different samples so that the mixed samples are helpful for neural network training (Yun et al. 2019; Kim, Choo, and Song 2020; Beckham et al. 2019; Verma et al. 2019; Wang et al. 2021; Han et al. 2022a; Yao et al. 2022).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 56
|
Neutral
|
A18LFH7XW61JO9
| 145
|
Neutral
|
A2R2YZTSME1K3F
| 51
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2308.06451
| 2,023
|
arXiv.org
|
Semantic Equivariant Mixup
|
['Zongbo Han', 'Tianchi Xie', 'Bing Wu', 'Qinghua Hu', 'Changqing Zhang']
| null |
crowdsourced
|
16
|
In addition, mixup variants have been shown to be effective on a variety of tasks, including fairness machine learning (Han et al. 2022b, 2023; Mroueh et al. 2021), domain generalization (Zhou et al. 2020; Yao et al. 2022), confidence calibration (Zhang et al. 2022; Thulasidasan et al. 2019).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 11
|
Positive
|
A18LFH7XW61JO9
| 50
|
Neutral
|
AKSJ3C5O3V9RB
| 3,165
|
Positive
|
batch_1
|
Positive
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2308.06451
| 2,023
|
arXiv.org
|
Semantic Equivariant Mixup
|
['Zongbo Han', 'Tianchi Xie', 'Bing Wu', 'Qinghua Hu', 'Changqing Zhang']
| null |
crowdsourced
|
17
|
Due to the simplicity and effectiveness, mixup-based methods have gained popularity in various data types and tasks (Yun et al. 2019; Kim, Choo, and Song 2020; Kim et al. 2023; Sahoo et al. 2021; Wang et al. 2021; Han et al. 2022a; Verma et al. 2019; Han et al. 2022b, 2023; Zhou et al. 2020; Mroueh et al. 2021; Zhang et al. 2022; Thulasidasan et al. 2019).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 84
|
Neutral
|
A2R2YZTSME1K3F
| 36
|
Neutral
|
AKSJ3C5O3V9RB
| 27,325
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2308.06451
| 2,023
|
arXiv.org
|
Semantic Equivariant Mixup
|
['Zongbo Han', 'Tianchi Xie', 'Bing Wu', 'Qinghua Hu', 'Changqing Zhang']
| null |
crowdsourced
|
18
|
Overall, previous mixup variants mainly focus on improving the mixing process to extend the training distribution (Yun et al. 2019; Kim, Choo, and Song 2020; Kim et al. 2023; Sahoo et al. 2021; Verma et al. 2019; Wang et al. 2021; Han et al. 2022a).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 15
|
Neutral
|
A2R2YZTSME1K3F
| 40
|
Neutral
|
A5V3ZMQI0PU3F
| 14
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2308.06451
| 2,023
|
arXiv.org
|
Semantic Equivariant Mixup
|
['Zongbo Han', 'Tianchi Xie', 'Bing Wu', 'Qinghua Hu', 'Changqing Zhang']
| null |
crowdsourced
|
19
|
have gained popularity in various data types and tasks (Yun et al. 2019; Kim, Choo, and Song 2020; Kim et al. 2023; Sahoo et al. 2021; Wang et al. 2021; Han et al. 2022a; Verma et al. 2019; Han et al. 2022b, 2023; Zhou et al. 2020; Mroueh et al. 2021; Zhang et al. 2022; Thulasidasan et al. 2019).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A2R2YZTSME1K3F
| 44
|
Neutral
|
AKSJ3C5O3V9RB
| 112
|
Neutral
|
A5V3ZMQI0PU3F
| 10
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
20
|
Note that our proposed mixup approach is different from traditional mixup approaches [15, 49, 54] in data augmentation, where they usually follow a form similar to M (mix) = Ma + (1 )Mb .
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 77
|
Neutral
|
AKSJ3C5O3V9RB
| 749
|
Positive
|
A18LFH7XW61JO9
| 21
|
Positive
|
batch_1
|
Positive
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
21
|
All the previous methods [13, 15, 39, 40, 43] aim to generalize the mixup approach to improve the performance of classification models like GNNs.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 22
|
Neutral
|
A18LFH7XW61JO9
| 15
|
Neutral
|
A2R2YZTSME1K3F
| 37
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1145/3580305.3599435
| 2,023
|
Knowledge Discovery and Data Mining
|
MixupExplainer: Generalizing Explanations for Graph Neural Networks with Data Augmentation
|
['Jiaxing Zhang', 'Dongsheng Luo', 'Huazhou Wei']
| null |
crowdsourced
|
22
|
Mixup (2018) [26] data-agnostic 3 aligned by default interpolate 3 input interpolation scale TransMix (2022) [29] natural image 3 scaling or cropping mask & mix 3 target attention weights G-Mixup (2022) [30] graph 3 graphon estimation interpolate 3 graphon interpolation scale PointPatchMix (2023) [31] point cloud 3 point patch mask & mix 3 patch attention scores
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 38
|
Neutral
|
A2R2YZTSME1K3F
| 26
|
Neutral
|
A1NF6PELRKACS9
| 20
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2306.16180
| 2,023
|
arXiv.org
|
Pseudo-Bag Mixup Augmentation for Multiple Instance Learning Based Whole Slide Image Classification
|
['Pei Liu', 'Luping Ji', 'Xinyu Zhang', 'Feng Ye']
| null |
crowdsourced
|
23
|
Another work [12] proposes to learn a graph generator to align the pair of graphs and interpolate the generated counterparts.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 68
|
Neutral
|
A5V3ZMQI0PU3F
| 110
|
Neutral
|
A2R2YZTSME1K3F
| 101
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1145/3580305.3599288
| 2,023
|
Knowledge Discovery and Data Mining
|
Contrastive Meta-Learning for Few-shot Node Classification
|
['Song Wang', 'Zhen Tan', 'Huan Liu', 'Jundong Li']
| null |
crowdsourced
|
24
|
Han et al. (2022) proposes to learn a Graphon for each class and performs mixup in Graphon space.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 17
|
Neutral
|
A2R2YZTSME1K3F
| 28
|
Neutral
|
A1NF6PELRKACS9
| 35
|
Positive
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2306.06788
| 2,023
|
International Conference on Machine Learning
|
Graph Mixup with Soft Alignments
|
['Hongyi Ling', 'Zhimeng Jiang', 'Meng Liu', 'Shuiwang Ji', 'Na Zou']
| null |
crowdsourced
|
25
|
, 2022), which mixes random subgraphs of input graph pairs; (6) G-Mixup (Han et al., 2022), which is a class-level graph mixup method by interpolating graphons of different classes.
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A5V3ZMQI0PU3F
| 13
|
Neutral
|
A18LFH7XW61JO9
| 13
|
Neutral
|
A2R2YZTSME1K3F
| 33
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2306.06788
| 2,023
|
International Conference on Machine Learning
|
Graph Mixup with Soft Alignments
|
['Hongyi Ling', 'Zhimeng Jiang', 'Meng Liu', 'Shuiwang Ji', 'Na Zou']
| null |
crowdsourced
|
26
|
al., 2019; Wang et al., 2021b)4, which linearly interpolates the graph-level representations; (5) SubMix (Yoo et al., 2022), which mixes random subgraphs of input graph pairs; (6) G-Mixup (Han et al., 2022), which is a class-level graph mixup method by interpolating graphons of different classes.
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A5V3ZMQI0PU3F
| 63
|
Positive
|
A18LFH7XW61JO9
| 15
|
Neutral
|
A2R2YZTSME1K3F
| 26
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
27
|
Several existing graph mixup methods (Han et al., 2022; Park et al., 2022; Yoo et al., 2022; Guo & Mao, 2021) use various tricks to sidestep this problem.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 27
|
Neutral
|
A5V3ZMQI0PU3F
| 48
|
Neutral
|
A2R2YZTSME1K3F
| 40
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2306.06788
| 2,023
|
International Conference on Machine Learning
|
Graph Mixup with Soft Alignments
|
['Hongyi Ling', 'Zhimeng Jiang', 'Meng Liu', 'Shuiwang Ji', 'Na Zou']
| null |
crowdsourced
|
28
|
Instead of directly mixing instances, G-mixup (Han et al., 2022) proposes a class-level graph mixup method that interpolates the graph generators of different classes.
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A18LFH7XW61JO9
| 179
|
Neutral
|
A5V3ZMQI0PU3F
| 46
|
Neutral
|
A2R2YZTSME1K3F
| 32
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2306.06788
| 2,023
|
International Conference on Machine Learning
|
Graph Mixup with Soft Alignments
|
['Hongyi Ling', 'Zhimeng Jiang', 'Meng Liu', 'Shuiwang Ji', 'Na Zou']
| null |
crowdsourced
|
29
|
Comparison between ours and other graph mixup methods Preserving Mixing node Perserving Methods Instance-level motif feature space Input-level graph size G-mixup (Han et al., 2022)
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A5V3ZMQI0PU3F
| 54
|
Positive
|
A18LFH7XW61JO9
| 14
|
Positive
|
A2R2YZTSME1K3F
| 37
|
Positive
|
batch_1
|
Positive
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
30
|
We compare our methods with the following baseline methods, including (1) DropEdge (Rong et al., 2020), which uniformly removes a certain ratio of edges from the input graphs; (2) DropNode (Feng et al., 2020; You et al., 2020), which uniformly drops a certain portion of nodes from the input graphs; (3) Subgraph (You et al., 2020), which extract subgraphs from the input graphs via a random walk sampler; (4) M-Mixup (Verma et al., 2019; Wang et al., 2021b)4, which linearly interpolates the graph-level representations; (5) SubMix (Yoo et al., 2022), which mixes random subgraphs of input graph pairs; (6) G-Mixup (Han et al., 2022), which is a class-level graph mixup method by interpolating graphons of different classes.
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A5V3ZMQI0PU3F
| 15
|
Positive
|
A18LFH7XW61JO9
| 13
|
Neutral
|
A2R2YZTSME1K3F
| 113
|
Positive
|
batch_1
|
Positive
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2306.06788
| 2,023
|
International Conference on Machine Learning
|
Graph Mixup with Soft Alignments
|
['Hongyi Ling', 'Zhimeng Jiang', 'Meng Liu', 'Shuiwang Ji', 'Na Zou']
| null |
crowdsourced
|
31
|
(19)For the setting of classification, (, | = ) N ( , , ( , )2 ) , (20)To extend G-Mixup for regression, we slightly modify the augmentation process to adapt it for regression tasks as (, | ) N ( , + , ,( ) , ( 1 (,)2 ) (,)2 ) ,(21)where and are the mean and standard deviation of the weight for each edge, is the correlation coefficient between , and .C-Mixup [93] shares the same process with the V-Mixup.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 13
|
Neutral
|
A2R2YZTSME1K3F
| 38
|
Positive
|
A5V3ZMQI0PU3F
| 33
|
Positive
|
batch_1
|
Positive
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
32
|
(18)G-Mixup [39] is originally proposed for classification tasks, which augments graphs by interpolating the generator of different classes of graphs.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 73
|
Neutral
|
A18LFH7XW61JO9
| 13
|
Neutral
|
A2R2YZTSME1K3F
| 30
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
33
|
G-Mixup [39] is originally proposed for classification tasks, which augments graphs by interpolating the generator of different classes of graphs.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 52
|
Positive
|
A2R2YZTSME1K3F
| 49
|
Neutral
|
A18LFH7XW61JO9
| 29
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1145/3580305.3599483
| 2,023
|
Knowledge Discovery and Data Mining
|
R-Mixup: Riemannian Mixup for Biological Networks
|
['Xuan Kan', 'Zimu Li', 'Hejie Cui', 'Yue Yu', 'Ran Xu', 'Shaojun Yu', 'Zilong Zhang', 'Ying Guo', 'Carl Yang']
| null |
crowdsourced
|
34
|
Other works study OOD graph classification tasks and can be categorized similarly as above (Zhu et al., 2021b; Miao et al., 2022; Chen et al.; Li et al., 2022a; Han et al., 2022; Yang et al., 2022; Suresh et al., 2021).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 24
|
Positive
|
A18LFH7XW61JO9
| 18
|
Neutral
|
A2R2YZTSME1K3F
| 32
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2306.03221
| 2,023
|
International Conference on Machine Learning
|
Structural Re-weighting Improves Graph Domain Adaptation
|
['Shikun Liu', 'Tianchun Li', 'Yongbin Feng', 'Nhan Tran', 'H. Zhao', 'Qiu Qiang', 'Pan Li']
| null |
crowdsourced
|
35
|
However, we cannot use Mixup directly because it is suitable for regular, Euclidean data [54], while the users rating is discrete and non-interpolative, and there is no label for supervised learning.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A2R2YZTSME1K3F
| 132
|
Negative
|
A18LFH7XW61JO9
| 13
|
Neutral
|
A1NF6PELRKACS9
| 22
|
Negative
|
batch_1
|
Negative
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
36
|
G-Mixup[11] employs graphon to augment graphs and improve graph classifcation task.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 89
|
Neutral
|
A2R2YZTSME1K3F
| 30
|
Neutral
|
A5V3ZMQI0PU3F
| 62
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1145/3543507.3583208
| 2,023
|
The Web Conference
|
Multi-Aspect Heterogeneous Graph Augmentation
|
['Yuchen Zhou', 'Yanan Cao', 'Yongchao Liu', 'Yanmin Shang', 'P. Zhang', 'Zheng Lin', 'Yun Yue', 'Baokun Wang', 'Xingbo Fu', 'Weiqiang Wang']
| null |
crowdsourced
|
37
|
Graph augmentation modifies the overall structure of the graph, and can be seen as a combination of the previous methods [Han et al., 2022].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 74
|
Neutral
|
A5V3ZMQI0PU3F
| 16
|
Neutral
|
A2R2YZTSME1K3F
| 33
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2304.10045
| 2,023
|
arXiv.org
|
ID-MixGCL: Identity Mixup for Graph Contrastive Learning
|
['Ge Zhang', 'Yu Bowen', 'Jiangxia Cao', 'Xinghua Zhang', 'Tingwen Liu', 'Chuan Zhou']
| null |
crowdsourced
|
38
|
[17,2,4] used mixup based techniques to augment the graph data so as to improve the training performance.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 133
|
Neutral
|
A5V3ZMQI0PU3F
| 20
|
Neutral
|
A2R2YZTSME1K3F
| 25
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2304.05749
| 2,023
|
arXiv.org
|
Boosting long-term forecasting performance for continuous-time dynamic graph networks via data augmentation
|
['Yu Tian', 'Mingjie Zhu', 'Jiachi Luo', 'Song Li']
| null |
crowdsourced
|
39
|
Techniques like random graph data augmentations (e.g., edge and node dropping) (Han et al., 2022; Liu et al., 2022) and large-scale pre-training on diverse graphs (You et al., 2020a;b; 2021; Hou et al., 2022) have been widely adopted to augment the diversity of training graph structures.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 18
|
Neutral
|
A2R2YZTSME1K3F
| 20
|
Neutral
|
A1NF6PELRKACS9
| 18
|
Positive
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2304.02806
| 2,023
|
arXiv.org
|
Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit Diversity Modeling
|
['Haotao Wang', 'Ziyu Jiang', 'Yan Han', 'Zhangyang Wang']
| null |
crowdsourced
|
40
|
, edge and node dropping) (Han et al., 2022; Liu et al., 2022) and large-scale pre-training on diverse graphs (You et al.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 16
|
Neutral
|
A2R2YZTSME1K3F
| 33
|
Neutral
|
AKSJ3C5O3V9RB
| 559
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2304.02806
| 2,023
|
arXiv.org
|
Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit Diversity Modeling
|
['Haotao Wang', 'Ziyu Jiang', 'Yan Han', 'Zhangyang Wang']
| null |
crowdsourced
|
41
|
Literaturelly, graphon has been studied from two perspectives: as limit of graph sequence, and as graph generators[1, 11, 24].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A2R2YZTSME1K3F
| 68
|
Neutral
|
A18LFH7XW61JO9
| 43
|
Neutral
|
A5V3ZMQI0PU3F
| 133
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1145/3580305.3599548
| 2,023
|
Knowledge Discovery and Data Mining
|
When to Pre-Train Graph Neural Networks? From Data Generation Perspective!
|
['Yu Cao', 'Jiarong Xu', 'Carl Yang', 'Jiaan Wang', 'Yunchao Zhang', 'Chunping Wang', 'L. Chen', 'Yang Yang']
| null |
crowdsourced
|
42
|
learning methods including self-training with selected unlabeled graphs (ST-REAL) and generated graphs (ST-GEN) and INFOGRAPH (Sun et al., 2020), and (3) graph data augmentation (GDA) methods including FLAG (Kong et al., 2022), GREA (Liu et al., 2022), and G-MIXUP (Han et al., 2022).
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A5V3ZMQI0PU3F
| 38
|
Positive
|
A18LFH7XW61JO9
| 46
|
Neutral
|
A2R2YZTSME1K3F
| 32
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
43
|
Generation models (Antoniou et al., 2017; Bowles et al., 2018; Han et al., 2022) create in-class examples.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 156
|
Neutral
|
A5V3ZMQI0PU3F
| 68
|
Neutral
|
A2R2YZTSME1K3F
| 29
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2303.10108
| 2,023
|
arXiv.org
|
Data-Centric Learning from Unlabeled Graphs with Diffusion Model
|
['Gang Liu', 'Eric Inae', 'Tong Zhao', 'Jiaxin Xu', 'Te Luo', 'Meng Jiang']
| null |
crowdsourced
|
44
|
They learn to create new examples that preserve the properties of original graphs (Kong et al., 2022; Han et al., 2022; Luo et al., 2022).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 67
|
Neutral
|
A2R2YZTSME1K3F
| 54
|
Neutral
|
A5V3ZMQI0PU3F
| 26
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2303.10108
| 2,023
|
arXiv.org
|
Data-Centric Learning from Unlabeled Graphs with Diffusion Model
|
['Gang Liu', 'Eric Inae', 'Tong Zhao', 'Jiaxin Xu', 'Te Luo', 'Meng Jiang']
| null |
crowdsourced
|
45
|
Baselines and implementation: Besides GIN, there are three lines of baseline methods: (1) selfsupervised learing methods including EDGEPRED, ATTRMASK, CONTEXTPRED in (Hu et al., 2019), INFOMAX (Velickovic et al., 2019), JOAO (You et al., 2021), GRAPHLOG (Xu et al., 2021), and D-SLA (Kim et al., 2022), (2) semi-supervised learning methods including self-training with selected unlabeled graphs (ST-REAL) and generated graphs (ST-GEN) and INFOGRAPH (Sun et al., 2020), and (3) graph data augmentation (GDA) methods including FLAG (Kong et al., 2022), GREA (Liu et al., 2022), and G-MIXUP (Han et al., 2022).
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
AKSJ3C5O3V9RB
| 46,401
|
Positive
|
A18LFH7XW61JO9
| 44
|
Positive
|
A2R2YZTSME1K3F
| 37
|
Neutral
|
batch_1
|
Positive
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2303.10108
| 2,023
|
arXiv.org
|
Data-Centric Learning from Unlabeled Graphs with Diffusion Model
|
['Gang Liu', 'Eric Inae', 'Tong Zhao', 'Jiaxin Xu', 'Te Luo', 'Meng Jiang']
| null |
crowdsourced
|
46
|
ogbg-HIV ogbg-ToxCast ogbg-Tox21 ogbg-BBBP ogbg-BACE ogbg-ClinTox ogbg-SIDER# Training Graphs 32,901 6,860 6,264 1,631 1,210 1,181 1,141GIN 77.4(1.2) 66.9(0.2) 76.0(0.6) 67.5(2.7) 77.5(2.8) 88.8(3.8) 58.1(0.9)Se lf-Su perv ised EDGEPRED 78.1(1.3) 63.9(0.4) 75.5(0.4) 69.9(0.5) 79.5(1.0) 62.9(2.3) 59.7(0.8) ATTRMASK 77.1(1.7) 64.2(0.5) 76.6(0.4) 63.9(1.2) 79.3(0.7) 70.4(1.1) 60.7(0.4) CONTEXTPRED 78.4(0.1) 63.7(0.3) 75.0(0.1) 68.8(1.6) 75.7(1.0) 63.2(6.5) 60.7(0.8) INFOMAX 75.4(1.8) 61.7(1.0) 75.5(0.4) 69.2(0.5) 76.8(0.2) 73.0(0.2) 58.6(0.5) JOAO 76.2(0.2) 64.8(0.3) 74.8(0.5) 69.3(2.5) 75.9(3.9) 69.4(4.5) 60.8(0.6) GRAPHLOG 74.8(1.1) 63.2(0.8) 75.4(0.8) 67.5(2.3) 80.4(3.6) 69.0(6.6) 57.0(0.9) D-SLA 76.9(0.9) 60.8(1.2) 76.1(0.1) 62.6(1.0) 80.3(0.6) 78.3(2.4) 55.1(1.0)Se miSL INFOGRAPH 73.3(0.7) 61.5(1.1) 67.6(0.9) 61.6(4.4) 75.9(1.8) 62.2(5.5) 56.3(2.3)ST-REAL 78.3(0.6) 64.5(1.0) 76.2(0.5) 66.7(1.9) 77.4(1.8) 82.2(2.4) 60.8(1.2) ST-GEN 77.9(1.6) 65.1(1.0) 75.8(0.9) 66.3(1.5) 78.4(3.0) 87.3(1.3) 59.3(1.3)G D A FLAG 74.6(1.7) 59.9(1.6) 76.9(0.7) 66.6(1.0) 79.1(1.2) 85.1(3.4) 57.6(2.3) GREA 79.3(0.9) 67.5(0.7) 77.2(1.2) 69.7(1.3) 82.4(2.4) 87.9(3.7) 60.1(2.0) G-MIXUP 77.1(1.1) 55.6(1.1) 64.6(0.4) 70.2(1.0) 77.8(3.3) 60.2(7.5) 56.8(3.5)DCT (Ours) 79.5(1.0) 68.1(0.2) 78.2(0.2) 70.8(0.5) 85.6(0.6) 92.1(0.8) 63.9(0.3) Molecule Regression: MAE Polymer Regression: MAE Bio: AUC (%)ogbg-Lipo ogbg-ESOL ogbg-FreeSolv GlassTemp MeltingTemp ThermCond O2Perm PPI # Training Graphs 3,360 902 513 4,303 2,189 455 356 60,715GIN 0.545(0.019) 0.766(0.016) 1.639(0.146) 26.4(0.2) 40.9(2.2) 3.25(0.19) 201.3(45.0) 69.1(0.0)Se lf-Su perv ised EDGEPRED 0.585(0.008) 1.062(0.066) 2.249(0.150) 27.6(1.4) 47.4(2.8) 3.69(0.50) 207.3(41.7) 63.7(1.1) ATTRMASK 0.573(0.009) 1.041(0.041) 1.952(0.088) 27.7(0.8) 45.8(2.6) 3.17(0.32) 179.9(30.8) 64.1(1.8) CONTEXTPRED 0.592(0.007) 0.971(0.027) 2.193(0.151) 27.6(0.3) 46.7(1.9) 3.15(0.24) 191.2(35.2) 62.0(1.2) INFOMAX 0.581(0.009) 0.935(0.018) 2.197(0.129) 27.5(0.8) 46.5(2.8) 3.31(0.25) 231.0(52.6) 63.3(1.2) JOAO 0.596(0.016) 1.098(0.037) 2.465(0.095) 27.5(0.2) 46.0(0.2) 3.55(0.26) 207.7(43.7) 61.5(1.2) GRAPHLOG 0.577(0.010) 1.109(0.059) 2.373(0.283) 29.5(1.3) 50.3(3.3) 3.01(0.17) 229.7(48.3) 62.1(0.6) D-SLA 0.563(0.004) 1.064(0.030) 2.190(0.149) 27.5(1.0) 51.7(2.5) 2.71(0.08) 257.8(30.2) 65.0(1.2)Se miSL INFOGRAPH 0.793(0.094) 1.285(0.093) 3.710(0.418) 30.8(1.2) 51.2(5.1) 2.75(0.15) 207.2(21.8) 67.7(0.4)ST-REAL 0.526(0.009) 0.788(0.070) 1.770(0.251) 26.6(0.3) 42.3(1.2) 2.64(0.07) 256.0(17.5) 68.9(0.1) ST-GEN 0.531(0.031) 0.724(0.082) 1.547(0.082) 26.8(0.3) 42.0(0.9) 2.70(0.03) 262.2(10.1) 68.6(0.6)G D A FLAG 0.528(0.012) 0.755(0.039) 1.565(0.098) 26.6(1.3) 44.2(2.0) 3.05(0.10) 177.7(60.7) 69.2(0.2) GREA 0.586(0.036) 0.805(0.135) 1.829(0.368) 26.7(1.0) 41.1(0.8) 3.23(0.18) 194.0(45.5) 68.8(0.2)DCT (Ours) 0.516(0.071) 0.717(0.020) 1.339(0.075) 23.7(0.2) 38.0(0.8) 2.59(0.11) 165.6(24.3) 69.5(0.2)(ogbg-HIV, ogbg-ToxCast, ogbg-Tox21, ogbg-BBBP, ogbg-BACE, ogbg-ClinTox, ogbg-SIDER), three molecule regression tasks (ogbg-Lipo, ogbg-ESOL, ogbg-FreeSolv) from open graph benchmarks (Hu et al., 2020), four polymer regression tasks (GlassTemp, MeltingTemp, O2Perm, and thermal conductivity prediction ThermCond), and also protein function prediction (PPI) (Hu et al., 2019).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 104
|
Positive
|
A2R2YZTSME1K3F
| 42
|
Neutral
|
A1NF6PELRKACS9
| 40
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
47
|
The learning to augment approaches learn from labeled graphs to perturb graph structures (Luo et al., 2022), to estimate graphons for different classes (Han et al., 2022), or to split the latent space for augmentation (Liu et al., 2022).
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A18LFH7XW61JO9
| 107
|
Neutral
|
A2R2YZTSME1K3F
| 27
|
Neutral
|
AKSJ3C5O3V9RB
| 49,758
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2303.10108
| 2,023
|
arXiv.org
|
Data-Centric Learning from Unlabeled Graphs with Diffusion Model
|
['Gang Liu', 'Eric Inae', 'Tong Zhao', 'Jiaxin Xu', 'Te Luo', 'Meng Jiang']
| null |
crowdsourced
|
48
|
Augmentation Basic manipulation Automation Programmatic [42, 93, 250, 282, 282, 288].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 157
|
Neutral
|
A2R2YZTSME1K3F
| 19
|
Neutral
|
A5V3ZMQI0PU3F
| 43
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2303.10158
| 2,023
|
arXiv.org
|
Data-centric Artificial Intelligence: A Survey
|
['D. Zha', 'Zaid Pervaiz Bhat', 'Kwei-Herng Lai', 'Fan Yang', 'Zhimeng Jiang', 'Shaochen Zhong', 'Xia Hu']
| null |
crowdsourced
|
49
|
For example, compared to image data, graph data is irregular and not well-aligned, and thus the vanilla Mixup strategy can not be directly applied [93].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 58
|
Negative
|
A18LFH7XW61JO9
| 79
|
Neutral
|
A2R2YZTSME1K3F
| 32
|
Negative
|
batch_1
|
Negative
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2303.10158
| 2,023
|
arXiv.org
|
Data-centric Artificial Intelligence: A Survey
|
['D. Zha', 'Zaid Pervaiz Bhat', 'Kwei-Herng Lai', 'Fan Yang', 'Zhimeng Jiang', 'Shaochen Zhong', 'Xia Hu']
| null |
crowdsourced
|
50
|
Mixup Improves Generalization After the initial work of Zhang et al. (2018), a series of the Mixups variants have been proposed (Guo et al., 2019a; Verma et al., 2019; Yun et al., 2019; Kim et al., 2020; Greenewald et al., 2021; Han et al., 2022; Sohn et al., 2022).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 71
|
Neutral
|
A2R2YZTSME1K3F
| 24
|
Neutral
|
A1NF6PELRKACS9
| 57
|
Positive
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
51
|
(2018), a series of the Mixups variants have been proposed (Guo et al., 2019a; Verma et al., 2019; Yun et al., 2019; Kim et al., 2020; Greenewald et al., 2021; Han et al., 2022; Sohn et al., 2022).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 238
|
Neutral
|
A2R2YZTSME1K3F
| 37
|
Neutral
|
AKSJ3C5O3V9RB
| 18,331
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
52
|
Some strong baselines such as G-MIXUP (Han et al., 2022) were excluded because they require labels during the pre-training phase.
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A18LFH7XW61JO9
| 12
|
Neutral
|
A5V3ZMQI0PU3F
| 83
|
Neutral
|
A2R2YZTSME1K3F
| 41
|
Negative
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2302.02909
| 2,023
|
International Conference on Artificial Intelligence and Statistics
|
Spectral Augmentations for Graph Contrastive Learning
|
['Amur Ghose', 'Yingxue Zhang', 'Jianye Hao', 'Mark Coates']
| null |
crowdsourced
|
53
|
It is worth noting that the drop edge technique we use here is different to the standard data augmentation techniques such as DropEdge (Rong et al., 2019), and G-Mixup (Han et al., 2022b), which either add slightly modified copies of existing data or generate synthetic based on existing data.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A2R2YZTSME1K3F
| 242
|
Positive
|
A5V3ZMQI0PU3F
| 82
|
Negative
|
AKSJ3C5O3V9RB
| 310
|
Positive
|
batch_1
|
Positive
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2212.13350
| 2,022
|
International Conference on Machine Learning
|
A Generalization of ViT/MLP-Mixer to Graphs
|
['Xiaoxin He', 'Bryan Hooi', 'T. Laurent', 'Adam Perold', 'Yann LeCun', 'X. Bresson']
| null |
crowdsourced
|
54
|
et al., 2015; Gilmer et al., 2017), physics (Cranmer et al., 2019; Bapst et al., 2020), transportation (Derrow-Pinion et al., 2021), vision (Han et al., 2022a), natural language processing (NLP) (Wu et al., 2021a), knowledge graphs (Schlichtkrull et al., 2018), drug design (Stokes et al.,
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 144
|
Neutral
|
A2R2YZTSME1K3F
| 29
|
Neutral
|
A1NF6PELRKACS9
| 61
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
55
|
G-Mixup [229] generates synthetic graphs by interpolating sampled graphons in the Euclidean space, which is a generator estimated for each class.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 37
|
Positive
|
A18LFH7XW61JO9
| 104
|
Neutral
|
A2R2YZTSME1K3F
| 63
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2212.10888
| 2,022
|
arXiv.org
|
A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability
|
['Chengtai Cao', 'Fan Zhou', 'Yurou Dai', 'Jianping Wang']
| null |
crowdsourced
|
56
|
com/gasteigerjo/gdc [13] G-mixup ICML 2022 GI https://github.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 54
|
Neutral
|
A18LFH7XW61JO9
| 12
|
Neutral
|
A2R2YZTSME1K3F
| 46
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | 2,022
| null |
Data Augmentation on Graphs: A Technical Survey
|
['Jiajun Zhou', 'Chenxuan Xie', 'Z. Wen', 'Xiangyu Zhao', 'Qi Xuan']
| null |
crowdsourced
|
57
|
It is important to note that variations of mixup for Graph Neural Networks have been applied in previous papers [6], but they deal with graph datasets that have fluctuating numbers of nodes that come in different order that require far more complex implementations.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 48
|
Neutral
|
A5V3ZMQI0PU3F
| 27
|
Neutral
|
A2R2YZTSME1K3F
| 43
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1109/BigData55660.2022.10020662
| 2,022
| null |
BrainMixup: Data Augmentation for GNN-based Functional Brain Network Analysis
|
['Alex J. Li']
| null |
crowdsourced
|
58
|
G-Mixup [6] applies the principles of mixup to probability matrices with individual points representing the likelihood of an edge existing between two nodes.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 113
|
Neutral
|
A5V3ZMQI0PU3F
| 38
|
Neutral
|
A2R2YZTSME1K3F
| 26
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1109/BigData55660.2022.10020662
| 2,022
| null |
BrainMixup: Data Augmentation for GNN-based Functional Brain Network Analysis
|
['Alex J. Li']
| null |
crowdsourced
|
59
|
Another study (Han et al., 2022) have adapted the mixup technique and introduced GMixup to improve graph classification robustness on GNNs.
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A18LFH7XW61JO9
| 183
|
Neutral
|
A2R2YZTSME1K3F
| 38
|
Neutral
|
A5V3ZMQI0PU3F
| 19
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2212.07790
| 2,022
|
arXiv.org
|
Population Template-Based Brain Graph Augmentation for Improving One-Shot Learning Classification
|
['Oben Özgür', 'Arwa Rekik', 'I. Rekik']
| null |
crowdsourced
|
60
|
Another study (Han et al., 2022) have adapted the mixup technique and introduced GMixup to improve graph classification robustness on GNNs. G-Mixup makes use of graphons of a specific class as generators.
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A5V3ZMQI0PU3F
| 22
|
Neutral
|
A18LFH7XW61JO9
| 18
|
Neutral
|
A2R2YZTSME1K3F
| 462
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2212.07790
| 2,022
|
arXiv.org
|
Population Template-Based Brain Graph Augmentation for Improving One-Shot Learning Classification
|
['Oben Özgür', 'Arwa Rekik', 'I. Rekik']
| null |
crowdsourced
|
61
|
The sub-graph perturbation could be categorized as the graph-level data augmentation strategy and is frequently used for graph-level tasks such as graph classiication[11, 16, 43, 49], while the node perturbation and edge perturbation are frequently adopted for node-level or edge-level tasks.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 17
|
Neutral
|
A2R2YZTSME1K3F
| 70
|
Neutral
|
A5V3ZMQI0PU3F
| 32
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1145/3572835
| 2,022
| null |
Disentangled Representations Learning for Multi-target Cross-domain Recommendation
|
['Xiaobo Guo', 'Shaoshuai Li', 'Naicheng Guo', 'Jiangxia Cao', 'Xiaolei Liu', 'Q. Ma', 'Runsheng Gan', 'Yunan Zhao']
| null |
crowdsourced
|
62
|
Graph Data Augmentation: DropEdge (Rong et al., 2020), GREA (Liu et al., 2022), FLAG (Kong et al., 2022), M-Mixup (Wang et al., 2021), G-Mixup (Han et al., 2022).
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A5V3ZMQI0PU3F
| 102
|
Neutral
|
AKSJ3C5O3V9RB
| 6,241
|
Positive
|
A18LFH7XW61JO9
| 22
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
63
|
, 2020), and graph-level (Wang et al., 2021; Han et al., 2022) with random (You et al.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 72
|
Neutral
|
A2R2YZTSME1K3F
| 36
|
Neutral
|
A1NF6PELRKACS9
| 37
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2211.02843
| 2,022
|
arXiv.org
|
Adversarial Causal Augmentation for Graph Covariate Shift
|
['Yongduo Sui', 'Xiang Wang', 'Jiancan Wu', 'An Zhang', 'Xiangnan He']
| null |
crowdsourced
|
64
|
It can be roughly divided into node-level (Kong et al., 2022), edge-level (Rong et al., 2020), and graph-level (Wang et al., 2021; Han et al., 2022) with random (You et al., 2020) or adversarial strategies (Suresh et al., 2021).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 11
|
Neutral
|
A18LFH7XW61JO9
| 14
|
Neutral
|
A2R2YZTSME1K3F
| 23
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2211.02843
| 2,022
|
arXiv.org
|
Adversarial Causal Augmentation for Graph Covariate Shift
|
['Yongduo Sui', 'Xiang Wang', 'Jiancan Wu', 'An Zhang', 'Xiangnan He']
| null |
crowdsourced
|
65
|
For mixup of graph data gfeat, we compare GraphMADs clusterpath data mixup (7) with linear graphon mixup [15].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 108
|
Positive
|
A2R2YZTSME1K3F
| 24
|
Positive
|
AKSJ3C5O3V9RB
| 8
|
Positive
|
batch_1
|
Positive
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
66
|
Note that G-Mixup [15] has gfeat as (10) and glabel as (1b) Fig.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 138
|
Neutral
|
A2R2YZTSME1K3F
| 33
|
Neutral
|
A18LFH7XW61JO9
| 16
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2210.15721
| 2,022
|
IEEE International Conference on Acoustics, Speech, and Signal Processing
|
GraphMAD: Graph Mixup for Data Augmentation using Data-Driven Convex Clustering
|
['Madeline Navarro', 'Santiago Segarra']
| null |
crowdsourced
|
67
|
[15] X. Han, Z. Jiang, N. Liu, and X. Hu, G-Mixup: Graph data augmentation for graph classification, arXiv preprint arXiv:2202.07179, 2022.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 101
|
Positive
|
A18LFH7XW61JO9
| 137
|
Neutral
|
AKSJ3C5O3V9RB
| 424
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
68
|
Authors in [15] present the closest work to our own.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 12
|
Positive
|
A18LFH7XW61JO9
| 15
|
Neutral
|
A2R2YZTSME1K3F
| 26
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2210.15721
| 2,022
|
IEEE International Conference on Acoustics, Speech, and Signal Processing
|
GraphMAD: Graph Mixup for Data Augmentation using Data-Driven Convex Clustering
|
['Madeline Navarro', 'Santiago Segarra']
| null |
crowdsourced
|
69
|
The mixup on graphs is regarded as challenging due to the irregularity and connectivity, and existing mixup methods for GNNs aim to mix hidden embedding [11, 36].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 57
|
Neutral
|
A18LFH7XW61JO9
| 116
|
Neutral
|
A2R2YZTSME1K3F
| 59
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2210.09609
| 2,022
|
arXiv.org
|
SA-MLP: Distilling Graph Knowledge from GNNs into Structure-Aware MLP
|
['Jie Chen', 'Shouzhen Chen', 'Mingyuan Bai', 'Junbin Gao', 'Junping Zhang', 'Jian Pu']
| null |
crowdsourced
|
70
|
These generate new instances by feature or graph structure interpolation (Verma et al., 2021; Wang et al., 2021; 2020; Han et al., 2022).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 108
|
Neutral
|
AKSJ3C5O3V9RB
| 228
|
Neutral
|
A2R2YZTSME1K3F
| 19
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2209.06589
| 2,022
|
arXiv.org
|
Towards Better Generalization with Flexible Representation of Multi-Module Graph Neural Networks
|
['Hyungeun Lee', 'Hyunmok Park', 'Kijung Yoon']
| null |
crowdsourced
|
71
|
In GNNs, many GCL methods are arisen for graph representation learning, such as GraphCL (You et al., 2020), GRACE (Zhu et al., 2020), AD-GCL (Suresh et al., 2021) and G-Mixup (Han et al., 2022).
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A5V3ZMQI0PU3F
| 28
|
Positive
|
A18LFH7XW61JO9
| 57
|
Neutral
|
A2R2YZTSME1K3F
| 34
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2208.09126
| 2,022
|
arXiv.org
|
GraphTTA: Test Time Adaptation on Graph Neural Networks
|
['Guan-Wun Chen', 'Jiying Zhang', 'Xi Xiao', 'Y. Li']
| null |
crowdsourced
|
72
|
To this end, [43; 44; 45; 46] propose to augment graph data directly in the data space, while [47] interpolates latent representations to create novel ones.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 46
|
Positive
|
A18LFH7XW61JO9
| 13
|
Neutral
|
A2R2YZTSME1K3F
| 37
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2206.03695
| 2,022
|
LOG IN
|
Metric Based Few-Shot Graph Classification
|
['Donato Crisostomi', 'Simone Antonelli', 'Valentino Maiorca', 'Luca Moschella', 'R. Marin', 'E. Rodolà']
| null |
crowdsourced
|
73
|
Additionally, graph mixup methods (Wang et al., 2021; Han et al., 2022; Guo & Mao, 2021; Park et al., 2022) synthesize a new graph or graph representation from two input graphs.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 76
|
Neutral
|
A18LFH7XW61JO9
| 12
|
Neutral
|
AKSJ3C5O3V9RB
| 49,591
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | 2,022
|
International Conference on Learning Representations
|
Automated Data Augmentations for Graph Classification
|
['Youzhi Luo', 'Michael McThrow', 'Wing Yee Au', 'Tao Komikado', 'Kanji Uchino', 'Koji Maruhashi', 'Shuiwang Ji']
| null |
crowdsourced
|
74
|
Some studies (Wang et al., 2021; Han et al., 2022; Guo & Mao, 2021; Park et al., 2022) propose interpolation-based mixup methods for graph augmentations, and Kong et al. (2022) propose to augment node features through adversarial learning.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 50
|
Neutral
|
A5V3ZMQI0PU3F
| 21
|
Neutral
|
A2R2YZTSME1K3F
| 71
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | 2,022
|
International Conference on Learning Representations
|
Automated Data Augmentations for Graph Classification
|
['Youzhi Luo', 'Michael McThrow', 'Wing Yee Au', 'Tao Komikado', 'Kanji Uchino', 'Koji Maruhashi', 'Shuiwang Ji']
| null |
crowdsourced
|
75
|
, 2021), G-Mixup (Han et al., 2022), and FLAG (Kong et al.
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A18LFH7XW61JO9
| 131
|
Neutral
|
A2R2YZTSME1K3F
| 76
|
Neutral
|
A1NF6PELRKACS9
| 10
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | 2,022
|
International Conference on Learning Representations
|
Automated Data Augmentations for Graph Classification
|
['Youzhi Luo', 'Michael McThrow', 'Wing Yee Au', 'Tao Komikado', 'Kanji Uchino', 'Koji Maruhashi', 'Shuiwang Ji']
| null |
crowdsourced
|
76
|
In addition to the baselines in Section 4.1, we also compare with previous graph augmentation methods, including DropEdge (Rong et al., 2020), M-Mixup (Wang et al., 2021), G-Mixup (Han et al., 2022), and FLAG (Kong et al., 2022).
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A2R2YZTSME1K3F
| 45
|
Positive
|
A5V3ZMQI0PU3F
| 58
|
Positive
|
A18LFH7XW61JO9
| 109
|
Neutral
|
batch_1
|
Positive
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | 2,022
|
International Conference on Learning Representations
|
Automated Data Augmentations for Graph Classification
|
['Youzhi Luo', 'Michael McThrow', 'Wing Yee Au', 'Tao Komikado', 'Kanji Uchino', 'Koji Maruhashi', 'Shuiwang Ji']
| null |
crowdsourced
|
77
|
Some studies (Wang et al., 2021; Han et al., 2022; Guo & Mao, 2021; Park et al., 2022) propose interpolation-based mixup methods for graph augmentations, and Kong et al.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 73
|
Neutral
|
A2R2YZTSME1K3F
| 33
|
Neutral
|
A5V3ZMQI0PU3F
| 72
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | 2,022
|
International Conference on Learning Representations
|
Automated Data Augmentations for Graph Classification
|
['Youzhi Luo', 'Michael McThrow', 'Wing Yee Au', 'Tao Komikado', 'Kanji Uchino', 'Koji Maruhashi', 'Shuiwang Ji']
| null |
crowdsourced
|
78
|
The similar strategies are also applied in graphs [78, 79, 80, 81, 82, 83].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
AKSJ3C5O3V9RB
| 5,372
|
Positive
|
A2R2YZTSME1K3F
| 61
|
Neutral
|
A5V3ZMQI0PU3F
| 26
|
Positive
|
batch_1
|
Positive
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | 2,022
|
arXiv.org
|
Out-Of-Distribution Generalization on Graphs: A Survey
|
['Haoyang Li', 'Xin Wang', 'Ziwei Zhang', 'Wenwu Zhu']
| null |
crowdsourced
|
79
|
G-Mixup [83] tackles the key challenges when mixing up directly on the graph data, as graph data is irregular and not well-aligned, and graph topology between classes is divergent.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A5V3ZMQI0PU3F
| 176
|
Positive
|
A18LFH7XW61JO9
| 13
|
Neutral
|
A2R2YZTSME1K3F
| 50
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | 2,022
|
arXiv.org
|
Out-Of-Distribution Generalization on Graphs: A Survey
|
['Haoyang Li', 'Xin Wang', 'Ziwei Zhang', 'Wenwu Zhu']
| null |
crowdsourced
|
80
|
Besides, an advanced data augmentation strategy namely Mixup is recently applied to DGL and is proved to be effective for several graph-related tasks [Han et al., 2022].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
AKSJ3C5O3V9RB
| 414
|
Positive
|
A5V3ZMQI0PU3F
| 14
|
Neutral
|
A18LFH7XW61JO9
| 12
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | 2,022
| null |
Recent Advances in Reliable Deep Graph Learning: Inherent Noise, Distribution Shift, and Adversarial Attack
|
['Jintang Li', 'Bingzhe Wu', 'Chengbin Hou', 'Guoji Fu', 'Yatao Bian', 'Liang Chen', 'Junzhou Huang', 'Zibin Zheng']
| null |
crowdsourced
|
81
|
a graph pair, through mixing the graph representation resulting from passing the graph through the GNNs. Similarly, a concurrent work G-Mixup (Han et al. 2022) first interpolates represented graph generators (i.e., graphons) of different classes, and then leverages the mixed graphons for
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al. 2022)
|
A5V3ZMQI0PU3F
| 27
|
Positive
|
A18LFH7XW61JO9
| 61
|
Neutral
|
A2R2YZTSME1K3F
| 35
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
82
|
Similarly, a concurrent work G-Mixup (Han et al. 2022) first interpolates represented graph generators (i.
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al. 2022)
|
A5V3ZMQI0PU3F
| 42
|
Positive
|
A18LFH7XW61JO9
| 88
|
Neutral
|
A2R2YZTSME1K3F
| 29
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1609/aaai.v37i6.25941
| 2,021
|
AAAI Conference on Artificial Intelligence
|
Interpolating Graph Pair to Regularize Graph Classification
|
['Hongyu Guo', 'Yongyi Mao']
| null |
crowdsourced
|
83
|
Manifold Intrusion The manifold intrusion degrades the performance of Mixup-like methods (Guo, Mao, and Zhang 2019b; Han et al. 2022).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 82
|
Neutral
|
A2R2YZTSME1K3F
| 30
|
Neutral
|
A1NF6PELRKACS9
| 13
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1609/aaai.v37i6.25941
| 2,021
|
AAAI Conference on Artificial Intelligence
|
Interpolating Graph Pair to Regularize Graph Classification
|
['Hongyu Guo', 'Yongyi Mao']
| null |
crowdsourced
|
84
|
MixupGraph (Wang et al. 2021b) also leverages a simple way to avoid dealing with the arbitrary structure in the input space for mixing a graph pair, through mixing the graph representation resulting from passing the graph through the GNNs. Similarly, a concurrent work G-Mixup (Han et al. 2022) first interpolates represented graph generators (i.e., graphons) of different classes, and then leverages the mixed graphons for sampling to generate synthetic graphs.
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al. 2022)
|
A18LFH7XW61JO9
| 175
|
Neutral
|
A5V3ZMQI0PU3F
| 37
|
Neutral
|
A2R2YZTSME1K3F
| 43
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1609/aaai.v37i6.25941
| 2,021
|
AAAI Conference on Artificial Intelligence
|
Interpolating Graph Pair to Regularize Graph Classification
|
['Hongyu Guo', 'Yongyi Mao']
| null |
crowdsourced
|
85
|
G-Mixup (Han et al., 2022) uses graphons as a surrogate to apply mixup techniques to graph data.
|
RS_001_MLRC_2022_01
|
Cited Paper: (Han et al., 2022)
|
A18LFH7XW61JO9
| 13
|
Neutral
|
A2R2YZTSME1K3F
| 397
|
Neutral
|
A5V3ZMQI0PU3F
| 69
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | 2,021
| null |
Calibrating and Improving Graph Contrastive Learning
|
['Kaili Ma', 'Haochen Yang', 'Han Yang', 'Tatiana Jin', 'Pengfei Chen', 'Yongqiang Chen', 'Barakeel Fanseu Kamhoua', 'James Cheng']
| null |
crowdsourced
|
86
|
Literaturelly, graphon has been studied from two perspectives: as limit of graph sequence, and as graph generators[1, 11, 24].
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 83
|
Neutral
|
A2R2YZTSME1K3F
| 37
|
Neutral
|
A5V3ZMQI0PU3F
| 21
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.1145/3580305.3599548
| 2,023
|
Knowledge Discovery and Data Mining
|
When to Pre-Train Graph Neural Networks? From Data Generation Perspective!
|
['Yu Cao', 'Jiarong Xu', 'Carl Yang', 'Jiaan Wang', 'Yunchao Zhang', 'Chunping Wang', 'L. Chen', 'Yang Yang']
| null |
crowdsourced
|
87
|
The graph augmentation methods combat the distributional shifts by increasing the data diversity (Zhao et al., 2021; Wang et al., 2021; Han et al., 2022).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 51
|
Neutral
|
A2R2YZTSME1K3F
| 30
|
Neutral
|
A1NF6PELRKACS9
| 91
|
Positive
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | 2,023
|
International Conference on Machine Learning
|
Wasserstein Barycenter Matching for Graph Size Generalization of Message Passing Neural Networks
|
['Xu Chu', 'Yujie Jin', 'Xin Wang', 'Shanghang Zhang', 'Yasha Wang', 'Wenwu Zhu', 'Hong Mei']
| null |
crowdsourced
|
88
|
Despite recent advances in graph representation learning (Grover & Leskovec, 2016; Kipf & Welling, 2017; 2016; Gilmer et al., 2017; Han et al., 2022b), these GNN models may inherit or even amplify bias from training data (Dai & Wang, 2021), thereby introducing prediction discrimination against
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 104
|
Neutral
|
A5V3ZMQI0PU3F
| 50
|
Neutral
|
A2R2YZTSME1K3F
| 35
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
89
|
their remarkable performance (Gao et al., 2021; Gao & Ji, 2019; Liu et al., 2021a;b; Yuan et al., 2021) in many applications, such as knowledge graphs (Hamaguchi et al., 2017), molecular property prediction (Liu et al., 2022; 2020; Han et al., 2022a) and social media mining (Hamilton et al., 2017).
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A2R2YZTSME1K3F
| 38
|
Neutral
|
A5V3ZMQI0PU3F
| 46
|
Neutral
|
A18LFH7XW61JO9
| 13
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | null | null | null | null | null |
crowdsourced
|
90
|
com/gasteigerjo/gdc [13] G-mixup ICML 2022 GI https://github.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A18LFH7XW61JO9
| 33
|
Neutral
|
A5V3ZMQI0PU3F
| 7
|
Neutral
|
A2R2YZTSME1K3F
| 26
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
| null | 2,022
| null |
Data Augmentation on Graphs: A Technical Survey
|
['Jiajun Zhou', 'Chenxuan Xie', 'Z. Wen', 'Xiangyu Zhao', 'Qi Xuan']
| null |
crowdsourced
|
91
|
G-Mixup [13] first estimates a graphon for each class of graphs, then performs interpolation in Euclidean space to generate mixed graphons, and finally augments synthetic graphs by sampling from the mixed graphons.
|
RS_001_MLRC_2022_01
|
First Author: Han
|
A2R2YZTSME1K3F
| 129
|
Neutral
|
A5V3ZMQI0PU3F
| 19
|
Neutral
|
A18LFH7XW61JO9
| 93
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173650
|
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
|
['Ermin Omeragic', 'Vuk Äuranović']
| null |
MLRC
| 8
| 3
|
partially-reproducible
|
https://doi.org/10.48550/arXiv.2202.07179
|
G-Mixup: Graph Data Augmentation for Graph Classification
|
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
| 2,022
|
International Conference on Machine Learning
|
https://proceedings.mlr.press/v162/han22c.html
| 76
|
arXiv:2202.07179
|
10.48550/arXiv.2212.09970
| 2,022
|
arXiv.org
|
Data Augmentation on Graphs: A Survey
|
['Jiajun Zhou', 'Chenxuan Xie', 'Z. Wen', 'Xiangyu Zhao', 'Qi Xuan']
| null |
crowdsourced
|
92
|
We further perform a user study [1, 2, 4, 35, 45, 50, 54] to investigate user preference over different stylization results.
|
RS_002_MLRC_2022_02
|
First Author: Zhang
|
A5V3ZMQI0PU3F
| 18
|
Positive
|
A18LFH7XW61JO9
| 13
|
Neutral
|
A2R2YZTSME1K3F
| 125
|
Positive
|
batch_1
|
Positive
| 2
|
https://www.doi.org/10.5281/zenodo.8173652
|
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
| null |
MLRC
| 5
| 5
|
reproducible
|
10.1109/CVPR52688.2022.00787
|
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
| 2,022
|
Computer Vision and Pattern Recognition
|
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
| 65
|
10.1109/CVPR52688.2022.00787
|
10.1145/3581783.3611819
| 2,023
|
arXiv.org
|
TSSAT: Two-Stage Statistics-Aware Transformation for Artistic Style Transfer
|
['Haibo Chen', 'Lei Zhao', 'Jun Yu Li', 'Jian Yang']
| null |
crowdsourced
|
93
|
Recent works [40] show that semantic information can be reflected via the order of pixels according to their gray value.
|
RS_002_MLRC_2022_02
|
First Author: Zhang
|
A5V3ZMQI0PU3F
| 23
|
Positive
|
A18LFH7XW61JO9
| 11
|
Neutral
|
A2R2YZTSME1K3F
| 29
|
Neutral
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173652
|
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
| null |
MLRC
| 5
| 5
|
reproducible
|
10.1109/CVPR52688.2022.00787
|
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
| 2,022
|
Computer Vision and Pattern Recognition
|
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
| 65
|
10.1109/CVPR52688.2022.00787
|
10.48550/arXiv.2309.00188
| 2,023
|
International Conference on Medical Image Computing and Computer-Assisted Intervention
|
DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus Segmentation
|
['Shengcong Chen', 'Changxing Ding', 'Dacheng Tao', 'Hao Chen']
| null |
crowdsourced
|
94
|
Inspired by recent studies [5,7,14,22,27,42], we believe that by introducing a suitable normalization strategy, it is possible to effectively balance the training stability and image generation quality of GANs.
|
RS_002_MLRC_2022_02
|
First Author: Zhang
|
A18LFH7XW61JO9
| 53
|
Neutral
|
A2R2YZTSME1K3F
| 32
|
Positive
|
A1NF6PELRKACS9
| 14
|
Positive
|
batch_1
|
Positive
| 2
|
https://www.doi.org/10.5281/zenodo.8173652
|
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
| null |
MLRC
| 5
| 5
|
reproducible
|
10.1109/CVPR52688.2022.00787
|
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
| 2,022
|
Computer Vision and Pattern Recognition
|
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
| 65
|
10.1109/CVPR52688.2022.00787
|
10.3390/s23177338
| 2,023
|
Italian National Conference on Sensors
|
SUGAN: A Stable U-Net Based Generative Adversarial Network
|
['Shijie Cheng', 'Lingfeng Wang', 'M. Zhang', 'Cheng Zeng', 'Yan Meng']
| null |
crowdsourced
|
95
|
EFDMix [5] achieves precise feature distribution matching in the feature space using higher-order statistics and augments the training data with style transfer techniques to mitigate overfitting to the source domain.
|
RS_002_MLRC_2022_02
|
First Author: Zhang
|
A18LFH7XW61JO9
| 103
|
Neutral
|
A2R2YZTSME1K3F
| 55
|
Neutral
|
A5V3ZMQI0PU3F
| 85
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173652
|
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
| null |
MLRC
| 5
| 5
|
reproducible
|
10.1109/CVPR52688.2022.00787
|
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
| 2,022
|
Computer Vision and Pattern Recognition
|
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
| 65
|
10.1109/CVPR52688.2022.00787
|
10.48550/arXiv.2308.00918
| 2,023
|
arXiv.org
|
A Novel Cross-Perturbation for Single Domain Generalization
|
['Dongjia Zhao', 'Lei Qi', 'Xiao Shi', 'Yinghuan Shi', 'Xin Geng']
| null |
crowdsourced
|
96
|
Following the methodology described in [5], we employ the OSNet architecture as the backbone for our experiments.
|
RS_002_MLRC_2022_02
|
First Author: Zhang
|
A18LFH7XW61JO9
| 116
|
Positive
|
A2R2YZTSME1K3F
| 33
|
Positive
|
A1NF6PELRKACS9
| 13
|
Positive
|
batch_1
|
Positive
| 3
|
https://www.doi.org/10.5281/zenodo.8173652
|
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
| null |
MLRC
| 5
| 5
|
reproducible
|
10.1109/CVPR52688.2022.00787
|
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
| 2,022
|
Computer Vision and Pattern Recognition
|
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
| 65
|
10.1109/CVPR52688.2022.00787
|
10.48550/arXiv.2308.00918
| 2,023
|
arXiv.org
|
A Novel Cross-Perturbation for Single Domain Generalization
|
['Dongjia Zhao', 'Lei Qi', 'Xiao Shi', 'Yinghuan Shi', 'Xin Geng']
| null |
crowdsourced
|
97
|
Due to the inherent distribution disparities between multiple source domains and the target domain, domain generalization [1, 2, 5, 6] has emerged as a prominent research area.
|
RS_002_MLRC_2022_02
|
First Author: Zhang
|
A18LFH7XW61JO9
| 126
|
Neutral
|
A2R2YZTSME1K3F
| 31
|
Neutral
|
A1NF6PELRKACS9
| 40
|
Positive
|
batch_1
|
Neutral
| 2
|
https://www.doi.org/10.5281/zenodo.8173652
|
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
| null |
MLRC
| 5
| 5
|
reproducible
|
10.1109/CVPR52688.2022.00787
|
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
| 2,022
|
Computer Vision and Pattern Recognition
|
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
| 65
|
10.1109/CVPR52688.2022.00787
|
10.48550/arXiv.2308.00918
| 2,023
|
arXiv.org
|
A Novel Cross-Perturbation for Single Domain Generalization
|
['Dongjia Zhao', 'Lei Qi', 'Xiao Shi', 'Yinghuan Shi', 'Xin Geng']
| null |
crowdsourced
|
98
|
To mitigate the impact of domain shift, a multitude of domain generalization techniques have emerged [5, 6].
|
RS_002_MLRC_2022_02
|
First Author: Zhang
|
A5V3ZMQI0PU3F
| 38
|
Neutral
|
A18LFH7XW61JO9
| 16
|
Neutral
|
A2R2YZTSME1K3F
| 43
|
Neutral
|
batch_1
|
Neutral
| 3
|
https://www.doi.org/10.5281/zenodo.8173652
|
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
| null |
MLRC
| 5
| 5
|
reproducible
|
10.1109/CVPR52688.2022.00787
|
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
| 2,022
|
Computer Vision and Pattern Recognition
|
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
| 65
|
10.1109/CVPR52688.2022.00787
|
10.48550/arXiv.2308.00918
| 2,023
|
arXiv.org
|
A Novel Cross-Perturbation for Single Domain Generalization
|
['Dongjia Zhao', 'Lei Qi', 'Xiao Shi', 'Yinghuan Shi', 'Xin Geng']
| null |
crowdsourced
|
99
|
Each column denotes a distinct domain, with the first column representing the source domain and the remaining three columns representing the target domains.when using Market1501 as the source domain and GRID as the target domain, where the CPerb framework achieves a significant 3.8% improvement in mean average precision (mAP) compared to the EFDMix [5].
|
RS_002_MLRC_2022_02
|
First Author: Zhang
|
A2R2YZTSME1K3F
| 87
|
Positive
|
A18LFH7XW61JO9
| 18
|
Positive
|
AKSJ3C5O3V9RB
| 57,606
|
Positive
|
batch_1
|
Positive
| 3
|
https://www.doi.org/10.5281/zenodo.8173652
|
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
| null |
MLRC
| 5
| 5
|
reproducible
|
10.1109/CVPR52688.2022.00787
|
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
|
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
| 2,022
|
Computer Vision and Pattern Recognition
|
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
| 65
|
10.1109/CVPR52688.2022.00787
| null | null | null | null | null | null |
crowdsourced
|
CC30k: A Citation Contexts Dataset for Reproducibility-Oriented Sentiment Analysis
The CC30k dataset consists of labeled citation contexts obtained through crowdsourcing. Each context is labeled by three independent workers. This README describes the structure and columns of the dataset.
Dataset Description
The CC30k dataset is unique in its focus on reproducibility-oriented sentiments (ROS) within scientific literature. This introduces a novel approach to studying computational reproducibility by leveraging citation contexts, which are textual fragments in scientific papers that reference prior work. This dataset comprises 30,734 labeled citation contexts from scientific literature published at AI venues, each annotated with one of three ROS labels: Positive, Negative, or Neutral. These labels reflect the cited work's perceived reproducibility. The dataset contains ROS labeled contexts along with metadata about the workers, reproducibility study, related original paper, citing paper, the final aggregated labels and the label type. The columns in the dataset are detailed in the table below:
| Column Name | Description |
|---|---|
input_index |
Unique ID for each citation context. |
input_context |
Citation context that workers are asked to label. |
input_file_key |
Identifier linking the context to a rep-study. |
input_first_author |
Name or identifier of the first author of the cited paper. |
worker_id_w1 |
Unique ID of the first worker who labeled this citation context. |
work_time_in_seconds_w1 |
Time (in seconds) the first worker took to label the citation context. |
worker_id_w2 |
Unique ID of the second worker who labeled this citation context. |
work_time_in_seconds_w2 |
Time (in seconds) the second worker took to label the citation context. |
worker_id_w3 |
Unique ID of the third worker who labeled this citation context. |
work_time_in_seconds_w3 |
Time (in seconds) the third worker took to label the citation context. |
label_w1 |
Label assigned by the first worker. |
label_w2 |
Label assigned by the second worker. |
label_w3 |
Label assigned by the third worker. |
batch |
Batch number for the posted Mechanical Turk job. |
majority_vote |
Final label based on the majority vote among workers’ labels (reproducibility-oriented sentiment: Positive, Negative, or Neutral). |
majority_agreement |
Indicates how many of the three workers agreed on the final majority vote. |
rs_doi |
Digital Object Identifier (DOI) of the reproducibility study paper. |
rs_title |
Title of the reproducibility study paper. |
rs_authors |
List of authors of the reproducibility study paper. |
rs_year |
Publication year of the reproducibility study paper. |
rs_venue |
Venue (conference or journal) where the reproducibility study was published. |
rs_selected_claims |
Number of claims selected from the original paper for reproducibility study (by manual inspection). |
rs_reproduced_claims |
Number of selected claims that were successfully reproduced (by manual inspection). |
reproducibility |
Final reproducibility label assigned to the original paper by manual inspection (reproducible, not-reproducible, partially-reproducible [if 0 < rs_reproduced_claims < rs_selected_claims]). |
org_doi |
DOI of the original (cited) paper that was assessed for reproducibility. |
org_title |
Title of the original (cited) paper. |
org_authors |
List of authors of the original (cited) paper. |
org_year |
Publication year of the original (cited) paper. |
org_venue |
Venue where the original (cited) paper was published. |
org_paper_url |
URL to access the original (cited) paper. |
org_citations |
Number of citations received by the original (cited) paper. |
org_s2ga_id |
Semantic Scholar Graph API ID of the original (cited) paper. |
citing_doi |
DOI of the citing paper that cited the original (cited) paper. |
citing_year |
Publication year of the citing paper. |
citing_venue |
Venue where the citing paper was published. |
citing_title |
Title of the citing paper. |
citing_authors |
List of authors of the citing paper. |
citing_s2ga_id |
Semantic Scholar Graph API ID of the citing paper. |
label_type |
Label source: crowdsourced or augmented_human_validated or augmented_machine_labeled. |
Jupyter Notebook Descriptions
The GitHub repository's notebooks directory contains the following Jupyter notebooks, which were used to produce and analyze the dataset:
- R001_AWS_Labelling_Dataset_Preprocessing_Mturk.ipynb
- Used to pre-process data for Mechanical Turk (MTurk) labeling.
- R001_AWS_MTurk_API.ipynb
- Used to communicate with MTurk workers.
- R001_AWS_MTurk_process_results.ipynb
- Used to process crowdsourced results from MTurk.
- R001_Extend_CC25k_Dataset.ipynb
- Used to extend the crowdsourced labels with newly augmented ROS: Negative contexts.
- R_001_Creating_the_RS_superset.ipynb
- Used to collect the original and reproducibility studies.
- R_001_Extract_Citing_Paper_Details.ipynb
- Used to collect citing paper details and contexts using the Semantic Scholar Graph API (S2GA).
- R001_MTurk_Sentiment_Analysis_5_models.ipynb
- Generates the performance measures for the selected five open-source multiclass sentiment analysis models.
Citation
@misc{obadage2025cc30kcitationcontextsdataset,
title={CC30k: A Citation Contexts Dataset for Reproducibility-Oriented Sentiment Analysis},
author={Rochana R. Obadage and Sarah M. Rajtmajer and Jian Wu},
year={2025},
eprint={2511.07790},
archivePrefix={arXiv},
primaryClass={cs.DL},
url={https://arxiv.org/abs/2511.07790},
}
- Downloads last month
- 26
