Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowInvalid
Message:      Failed to parse string: '49b633d57c150a2f7ff640687d6623fb31e0253a' as a scalar of type double
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2224, in cast_table_to_schema
                  cast_array_to_feature(
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2086, in cast_array_to_feature
                  return array_cast(
                         ^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1797, in wrapper
                  return func(array, *args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1949, in array_cast
                  return array.cast(pa_type)
                         ^^^^^^^^^^^^^^^^^^^
                File "pyarrow/array.pxi", line 1135, in pyarrow.lib.Array.cast
                File "/usr/local/lib/python3.12/site-packages/pyarrow/compute.py", line 412, in cast
                  return call_function("cast", [arr], options, memory_pool)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/_compute.pyx", line 604, in pyarrow._compute.call_function
                File "pyarrow/_compute.pyx", line 399, in pyarrow._compute.Function.call
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Failed to parse string: '49b633d57c150a2f7ff640687d6623fb31e0253a' as a scalar of type double
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1455, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1054, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1858, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

input_index
int64
input_context
string
input_file_key
string
input_first_author
string
worker_id_w1
string
work_time_in_seconds_w1
float64
label_w1
string
worker_id_w2
string
work_time_in_seconds_w2
float64
label_w2
string
worker_id_w3
string
work_time_in_seconds_w3
float64
label_w3
string
batch
string
majority_vote
string
majority_agreement
float64
rs_doi
string
rs_title
string
rs_authors
string
rs_year
null
rs_venue
string
rs_selected_claims
float64
rs_reproduced_claims
float64
reproducibility
string
org_doi
string
org_title
string
org_authors
string
org_year
float64
org_venue
string
org_paper_url
string
org_citations
float64
org_s2ga_id
string
citing_doi
string
citing_year
float64
citing_venue
string
citing_title
string
citing_authors
string
citing_s2ga_id
null
label_type
string
0
Instead of mixing the representations, G-Mixup [49] augments graphs by interpolating the graphon-based generator of graphs belonging to different classes.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
28
Neutral
A18LFH7XW61JO9
15
Neutral
A2R2YZTSME1K3F
35
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2309.10979
2,023
arXiv.org
Towards Data-centric Graph Machine Learning: Review and Outlook
['Xin Zheng', 'Yixin Liu', 'Zhifeng Bao', 'Meng Fang', 'Xia Hu', 'Alan Wee-Chung Liew', 'Shirui Pan']
null
crowdsourced
1
For G-Mixup, we use the same hyper-parameters reported in [7].
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
55
Positive
AKSJ3C5O3V9RB
49,570
Positive
A2R2YZTSME1K3F
40
Positive
batch_1
Positive
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1007/978-3-031-43418-1_19
2,023
null
GDM: Dual Mixup for Graph Classification with Limited Supervision
['Abdullah Alchihabi', 'Yuhong Guo']
null
crowdsourced
2
G-Mixup performs mixup to the graphons of different classes which are learned from the graph samples, and generates augmented graphs by sampling from the mixed graphons [7].
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
155
Neutral
A2R2YZTSME1K3F
50
Neutral
A1NF6PELRKACS9
89
Positive
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1007/978-3-031-43418-1_19
2,023
null
GDM: Dual Mixup for Graph Classification with Limited Supervision
['Abdullah Alchihabi', 'Yuhong Guo']
null
crowdsourced
3
Our result generalizes that of [16] by allowing arbitrary convex combinations and any complexon dimension.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
17
Positive
A18LFH7XW61JO9
13
Neutral
A2R2YZTSME1K3F
53
Positive
batch_1
Positive
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2309.07453
2,023
arXiv.org
SC-MAD: Mixtures of Higher-order Networks for Data Augmentation
['Madeline Navarro', 'Santiago Segarra']
null
crowdsourced
4
Note that for complexons of dimension 1, when i = , j = 1 , and k = 0 for every k = i, j, Theorem 1 reduces to the result for pairwise graphon mixup in [16].
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
84
Neutral
A18LFH7XW61JO9
144
Neutral
A2R2YZTSME1K3F
52
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
5
Step (1) of SC-MAD is common for mixup methods, where samples are interpolated in an embedding space [16, 17, 28].
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
16
Positive
A18LFH7XW61JO9
109
Neutral
A2R2YZTSME1K3F
39
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2309.07453
2,023
arXiv.org
SC-MAD: Mixtures of Higher-order Networks for Data Augmentation
['Madeline Navarro', 'Santiago Segarra']
null
crowdsourced
6
Graphons allow us to perform tasks on graph data typically restricted to continuous objects, such as barycenter obtention and interpolation for mixup [16, 17, 22].
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
39
Neutral
A5V3ZMQI0PU3F
55
Positive
A2R2YZTSME1K3F
50
Positive
batch_1
Positive
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2309.07453
2,023
arXiv.org
SC-MAD: Mixtures of Higher-order Networks for Data Augmentation
['Madeline Navarro', 'Santiago Segarra']
null
crowdsourced
7
In particular, we assume that for each class y, there is a finite set of discriminative simplicial complexes Fy such that for every labeled simplicial complex (K, y), there exists at least one F Fy that is a subcomplex of K [16], that is, there is a homomorphism from F to K.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
64
Neutral
A18LFH7XW61JO9
35
Neutral
AKSJ3C5O3V9RB
213,068
Positive
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
8
We present the following result on the structural similarities between a complexon mixture and one of the complexons, inspired by a similar result for graphon mixup [16].
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
221
Neutral
A2R2YZTSME1K3F
28
Positive
A5V3ZMQI0PU3F
39
Positive
batch_1
Positive
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2309.07453
2,023
arXiv.org
SC-MAD: Mixtures of Higher-order Networks for Data Augmentation
['Madeline Navarro', 'Santiago Segarra']
null
crowdsourced
9
In the past few years, graph neural networks (GNNs) have achieved superior performance in graph-level representation learning [26, 87].
RS_001_MLRC_2022_01
First Author: Han
AKSJ3C5O3V9RB
81,516
Neutral
A5V3ZMQI0PU3F
38
Neutral
A18LFH7XW61JO9
65
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1145/3624018
2,023
ACM Transactions on Knowledge Discovery from Data
Self-supervised Graph-level Representation Learning with Adversarial Contrastive Learning
['Xiao Luo', 'Wei Ju', 'Yiyang Gu', 'Zhengyang Mao', 'Luchen Liu', 'Yuhui Yuan', 'Ming Zhang']
null
crowdsourced
10
To generalize label information from two different classes,Mixup [44] performs synthetic data generation over two samples from different classes, which has been extensively studied to augment image and textual data.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
84
Positive
A18LFH7XW61JO9
12
Neutral
A2R2YZTSME1K3F
28
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1145/3583780.3615071
2,023
arXiv.org
Tackling Diverse Minorities in Imbalanced Classification
['Kwei-Herng Lai', 'D. Zha', 'Huiyuan Chen', 'M. Bendre', 'Yuzhong Chen', 'Mahashweta Das', 'Hao Yang', 'Xia Hu']
null
crowdsourced
11
Recently, instead of conducting synthetic data sampling on a single class, Mixup [7, 13, 23, 44] achieves a significant improvement in the image domain by synthesizing data points through linearly combining two random samples from different classes with a given combination ratio and creating soft labels for training the neural networks.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
144
Neutral
A37WXDYYT7RCZ0
37
Neutral
A2R2YZTSME1K3F
50
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1145/3583780.3615071
2,023
arXiv.org
Tackling Diverse Minorities in Imbalanced Classification
['Kwei-Herng Lai', 'D. Zha', 'Huiyuan Chen', 'M. Bendre', 'Yuzhong Chen', 'Mahashweta Das', 'Hao Yang', 'Xia Hu']
null
crowdsourced
12
In addition, the graphs we considered in the experiment all have node features, while G-Mixup [49] only applies to undirected graphs without node features, and therefore is not within the scope of our baselines.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
104
Neutral
A2R2YZTSME1K3F
31
Positive
A1NF6PELRKACS9
24
Negative
batch_1
Neutral
1
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2308.08344
2,023
arXiv.org
Graph Out-of-Distribution Generalization with Controllable Data Augmentation
['Bin Lu', 'Xiaoying Gan', 'Ze Zhao', 'Shiyu Liang', 'Luoyi Fu', 'Xinbing Wang', 'Cheng Zhou']
null
crowdsourced
13
pairs of training examples to extend the training distribution and prevent the deep neural network from overfitting the training data (Zhang et al. 2018; Yun et al. 2019; Kim, Choo, and Song 2020; Beckham et al. 2019; Verma et al. 2019; Wang et al. 2021; Han et al. 2022a; Yao et al. 2022).
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
83
Positive
A18LFH7XW61JO9
26
Neutral
AKSJ3C5O3V9RB
181
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
14
To this end, mixup-based methods create mixed samples by combining pairs of training examples to extend the training distribution and prevent the deep neural network from overfitting the training data (Zhang et al. 2018; Yun et al. 2019; Kim, Choo, and Song 2020; Beckham et al. 2019; Verma et al. 2019; Wang et al. 2021; Han et al. 2022a; Yao et al. 2022).
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
134
Neutral
A5V3ZMQI0PU3F
36
Neutral
A2R2YZTSME1K3F
37
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2308.06451
2,023
arXiv.org
Semantic Equivariant Mixup
['Zongbo Han', 'Tianchi Xie', 'Bing Wu', 'Qinghua Hu', 'Changqing Zhang']
null
crowdsourced
15
Most of the previous mixup variants focus on designing how to mix different samples so that the mixed samples are helpful for neural network training (Yun et al. 2019; Kim, Choo, and Song 2020; Beckham et al. 2019; Verma et al. 2019; Wang et al. 2021; Han et al. 2022a; Yao et al. 2022).
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
56
Neutral
A18LFH7XW61JO9
145
Neutral
A2R2YZTSME1K3F
51
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2308.06451
2,023
arXiv.org
Semantic Equivariant Mixup
['Zongbo Han', 'Tianchi Xie', 'Bing Wu', 'Qinghua Hu', 'Changqing Zhang']
null
crowdsourced
16
In addition, mixup variants have been shown to be effective on a variety of tasks, including fairness machine learning (Han et al. 2022b, 2023; Mroueh et al. 2021), domain generalization (Zhou et al. 2020; Yao et al. 2022), confidence calibration (Zhang et al. 2022; Thulasidasan et al. 2019).
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
11
Positive
A18LFH7XW61JO9
50
Neutral
AKSJ3C5O3V9RB
3,165
Positive
batch_1
Positive
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2308.06451
2,023
arXiv.org
Semantic Equivariant Mixup
['Zongbo Han', 'Tianchi Xie', 'Bing Wu', 'Qinghua Hu', 'Changqing Zhang']
null
crowdsourced
17
Due to the simplicity and effectiveness, mixup-based methods have gained popularity in various data types and tasks (Yun et al. 2019; Kim, Choo, and Song 2020; Kim et al. 2023; Sahoo et al. 2021; Wang et al. 2021; Han et al. 2022a; Verma et al. 2019; Han et al. 2022b, 2023; Zhou et al. 2020; Mroueh et al. 2021; Zhang et al. 2022; Thulasidasan et al. 2019).
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
84
Neutral
A2R2YZTSME1K3F
36
Neutral
AKSJ3C5O3V9RB
27,325
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2308.06451
2,023
arXiv.org
Semantic Equivariant Mixup
['Zongbo Han', 'Tianchi Xie', 'Bing Wu', 'Qinghua Hu', 'Changqing Zhang']
null
crowdsourced
18
Overall, previous mixup variants mainly focus on improving the mixing process to extend the training distribution (Yun et al. 2019; Kim, Choo, and Song 2020; Kim et al. 2023; Sahoo et al. 2021; Verma et al. 2019; Wang et al. 2021; Han et al. 2022a).
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
15
Neutral
A2R2YZTSME1K3F
40
Neutral
A5V3ZMQI0PU3F
14
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2308.06451
2,023
arXiv.org
Semantic Equivariant Mixup
['Zongbo Han', 'Tianchi Xie', 'Bing Wu', 'Qinghua Hu', 'Changqing Zhang']
null
crowdsourced
19
have gained popularity in various data types and tasks (Yun et al. 2019; Kim, Choo, and Song 2020; Kim et al. 2023; Sahoo et al. 2021; Wang et al. 2021; Han et al. 2022a; Verma et al. 2019; Han et al. 2022b, 2023; Zhou et al. 2020; Mroueh et al. 2021; Zhang et al. 2022; Thulasidasan et al. 2019).
RS_001_MLRC_2022_01
First Author: Han
A2R2YZTSME1K3F
44
Neutral
AKSJ3C5O3V9RB
112
Neutral
A5V3ZMQI0PU3F
10
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
20
Note that our proposed mixup approach is different from traditional mixup approaches [15, 49, 54] in data augmentation, where they usually follow a form similar to M (mix) = Ma + (1 )Mb .
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
77
Neutral
AKSJ3C5O3V9RB
749
Positive
A18LFH7XW61JO9
21
Positive
batch_1
Positive
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
21
All the previous methods [13, 15, 39, 40, 43] aim to generalize the mixup approach to improve the performance of classification models like GNNs.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
22
Neutral
A18LFH7XW61JO9
15
Neutral
A2R2YZTSME1K3F
37
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1145/3580305.3599435
2,023
Knowledge Discovery and Data Mining
MixupExplainer: Generalizing Explanations for Graph Neural Networks with Data Augmentation
['Jiaxing Zhang', 'Dongsheng Luo', 'Huazhou Wei']
null
crowdsourced
22
Mixup (2018) [26] data-agnostic 3 aligned by default interpolate 3 input interpolation scale TransMix (2022) [29] natural image 3 scaling or cropping mask & mix 3 target attention weights G-Mixup (2022) [30] graph 3 graphon estimation interpolate 3 graphon interpolation scale PointPatchMix (2023) [31] point cloud 3 point patch mask & mix 3 patch attention scores
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
38
Neutral
A2R2YZTSME1K3F
26
Neutral
A1NF6PELRKACS9
20
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2306.16180
2,023
arXiv.org
Pseudo-Bag Mixup Augmentation for Multiple Instance Learning Based Whole Slide Image Classification
['Pei Liu', 'Luping Ji', 'Xinyu Zhang', 'Feng Ye']
null
crowdsourced
23
Another work [12] proposes to learn a graph generator to align the pair of graphs and interpolate the generated counterparts.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
68
Neutral
A5V3ZMQI0PU3F
110
Neutral
A2R2YZTSME1K3F
101
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1145/3580305.3599288
2,023
Knowledge Discovery and Data Mining
Contrastive Meta-Learning for Few-shot Node Classification
['Song Wang', 'Zhen Tan', 'Huan Liu', 'Jundong Li']
null
crowdsourced
24
Han et al. (2022) proposes to learn a Graphon for each class and performs mixup in Graphon space.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
17
Neutral
A2R2YZTSME1K3F
28
Neutral
A1NF6PELRKACS9
35
Positive
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2306.06788
2,023
International Conference on Machine Learning
Graph Mixup with Soft Alignments
['Hongyi Ling', 'Zhimeng Jiang', 'Meng Liu', 'Shuiwang Ji', 'Na Zou']
null
crowdsourced
25
, 2022), which mixes random subgraphs of input graph pairs; (6) G-Mixup (Han et al., 2022), which is a class-level graph mixup method by interpolating graphons of different classes.
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A5V3ZMQI0PU3F
13
Neutral
A18LFH7XW61JO9
13
Neutral
A2R2YZTSME1K3F
33
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2306.06788
2,023
International Conference on Machine Learning
Graph Mixup with Soft Alignments
['Hongyi Ling', 'Zhimeng Jiang', 'Meng Liu', 'Shuiwang Ji', 'Na Zou']
null
crowdsourced
26
al., 2019; Wang et al., 2021b)4, which linearly interpolates the graph-level representations; (5) SubMix (Yoo et al., 2022), which mixes random subgraphs of input graph pairs; (6) G-Mixup (Han et al., 2022), which is a class-level graph mixup method by interpolating graphons of different classes.
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A5V3ZMQI0PU3F
63
Positive
A18LFH7XW61JO9
15
Neutral
A2R2YZTSME1K3F
26
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
27
Several existing graph mixup methods (Han et al., 2022; Park et al., 2022; Yoo et al., 2022; Guo & Mao, 2021) use various tricks to sidestep this problem.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
27
Neutral
A5V3ZMQI0PU3F
48
Neutral
A2R2YZTSME1K3F
40
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2306.06788
2,023
International Conference on Machine Learning
Graph Mixup with Soft Alignments
['Hongyi Ling', 'Zhimeng Jiang', 'Meng Liu', 'Shuiwang Ji', 'Na Zou']
null
crowdsourced
28
Instead of directly mixing instances, G-mixup (Han et al., 2022) proposes a class-level graph mixup method that interpolates the graph generators of different classes.
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A18LFH7XW61JO9
179
Neutral
A5V3ZMQI0PU3F
46
Neutral
A2R2YZTSME1K3F
32
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2306.06788
2,023
International Conference on Machine Learning
Graph Mixup with Soft Alignments
['Hongyi Ling', 'Zhimeng Jiang', 'Meng Liu', 'Shuiwang Ji', 'Na Zou']
null
crowdsourced
29
Comparison between ours and other graph mixup methods Preserving Mixing node Perserving Methods Instance-level motif feature space Input-level graph size G-mixup (Han et al., 2022)
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A5V3ZMQI0PU3F
54
Positive
A18LFH7XW61JO9
14
Positive
A2R2YZTSME1K3F
37
Positive
batch_1
Positive
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
30
We compare our methods with the following baseline methods, including (1) DropEdge (Rong et al., 2020), which uniformly removes a certain ratio of edges from the input graphs; (2) DropNode (Feng et al., 2020; You et al., 2020), which uniformly drops a certain portion of nodes from the input graphs; (3) Subgraph (You et al., 2020), which extract subgraphs from the input graphs via a random walk sampler; (4) M-Mixup (Verma et al., 2019; Wang et al., 2021b)4, which linearly interpolates the graph-level representations; (5) SubMix (Yoo et al., 2022), which mixes random subgraphs of input graph pairs; (6) G-Mixup (Han et al., 2022), which is a class-level graph mixup method by interpolating graphons of different classes.
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A5V3ZMQI0PU3F
15
Positive
A18LFH7XW61JO9
13
Neutral
A2R2YZTSME1K3F
113
Positive
batch_1
Positive
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2306.06788
2,023
International Conference on Machine Learning
Graph Mixup with Soft Alignments
['Hongyi Ling', 'Zhimeng Jiang', 'Meng Liu', 'Shuiwang Ji', 'Na Zou']
null
crowdsourced
31
(19)For the setting of classification, (, | = ) N ( , , ( , )2 ) , (20)To extend G-Mixup for regression, we slightly modify the augmentation process to adapt it for regression tasks as (, | ) N ( , + , ,( ) , ( 1 (,)2 ) (,)2 ) ,(21)where and are the mean and standard deviation of the weight for each edge, is the correlation coefficient between , and .C-Mixup [93] shares the same process with the V-Mixup.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
13
Neutral
A2R2YZTSME1K3F
38
Positive
A5V3ZMQI0PU3F
33
Positive
batch_1
Positive
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
32
(18)G-Mixup [39] is originally proposed for classification tasks, which augments graphs by interpolating the generator of different classes of graphs.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
73
Neutral
A18LFH7XW61JO9
13
Neutral
A2R2YZTSME1K3F
30
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
33
G-Mixup [39] is originally proposed for classification tasks, which augments graphs by interpolating the generator of different classes of graphs.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
52
Positive
A2R2YZTSME1K3F
49
Neutral
A18LFH7XW61JO9
29
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1145/3580305.3599483
2,023
Knowledge Discovery and Data Mining
R-Mixup: Riemannian Mixup for Biological Networks
['Xuan Kan', 'Zimu Li', 'Hejie Cui', 'Yue Yu', 'Ran Xu', 'Shaojun Yu', 'Zilong Zhang', 'Ying Guo', 'Carl Yang']
null
crowdsourced
34
Other works study OOD graph classification tasks and can be categorized similarly as above (Zhu et al., 2021b; Miao et al., 2022; Chen et al.; Li et al., 2022a; Han et al., 2022; Yang et al., 2022; Suresh et al., 2021).
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
24
Positive
A18LFH7XW61JO9
18
Neutral
A2R2YZTSME1K3F
32
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2306.03221
2,023
International Conference on Machine Learning
Structural Re-weighting Improves Graph Domain Adaptation
['Shikun Liu', 'Tianchun Li', 'Yongbin Feng', 'Nhan Tran', 'H. Zhao', 'Qiu Qiang', 'Pan Li']
null
crowdsourced
35
However, we cannot use Mixup directly because it is suitable for regular, Euclidean data [54], while the users rating is discrete and non-interpolative, and there is no label for supervised learning.
RS_001_MLRC_2022_01
First Author: Han
A2R2YZTSME1K3F
132
Negative
A18LFH7XW61JO9
13
Neutral
A1NF6PELRKACS9
22
Negative
batch_1
Negative
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
36
G-Mixup[11] employs graphon to augment graphs and improve graph classifcation task.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
89
Neutral
A2R2YZTSME1K3F
30
Neutral
A5V3ZMQI0PU3F
62
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1145/3543507.3583208
2,023
The Web Conference
Multi-Aspect Heterogeneous Graph Augmentation
['Yuchen Zhou', 'Yanan Cao', 'Yongchao Liu', 'Yanmin Shang', 'P. Zhang', 'Zheng Lin', 'Yun Yue', 'Baokun Wang', 'Xingbo Fu', 'Weiqiang Wang']
null
crowdsourced
37
Graph augmentation modifies the overall structure of the graph, and can be seen as a combination of the previous methods [Han et al., 2022].
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
74
Neutral
A5V3ZMQI0PU3F
16
Neutral
A2R2YZTSME1K3F
33
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2304.10045
2,023
arXiv.org
ID-MixGCL: Identity Mixup for Graph Contrastive Learning
['Ge Zhang', 'Yu Bowen', 'Jiangxia Cao', 'Xinghua Zhang', 'Tingwen Liu', 'Chuan Zhou']
null
crowdsourced
38
[17,2,4] used mixup based techniques to augment the graph data so as to improve the training performance.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
133
Neutral
A5V3ZMQI0PU3F
20
Neutral
A2R2YZTSME1K3F
25
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2304.05749
2,023
arXiv.org
Boosting long-term forecasting performance for continuous-time dynamic graph networks via data augmentation
['Yu Tian', 'Mingjie Zhu', 'Jiachi Luo', 'Song Li']
null
crowdsourced
39
Techniques like random graph data augmentations (e.g., edge and node dropping) (Han et al., 2022; Liu et al., 2022) and large-scale pre-training on diverse graphs (You et al., 2020a;b; 2021; Hou et al., 2022) have been widely adopted to augment the diversity of training graph structures.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
18
Neutral
A2R2YZTSME1K3F
20
Neutral
A1NF6PELRKACS9
18
Positive
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2304.02806
2,023
arXiv.org
Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit Diversity Modeling
['Haotao Wang', 'Ziyu Jiang', 'Yan Han', 'Zhangyang Wang']
null
crowdsourced
40
, edge and node dropping) (Han et al., 2022; Liu et al., 2022) and large-scale pre-training on diverse graphs (You et al.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
16
Neutral
A2R2YZTSME1K3F
33
Neutral
AKSJ3C5O3V9RB
559
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2304.02806
2,023
arXiv.org
Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit Diversity Modeling
['Haotao Wang', 'Ziyu Jiang', 'Yan Han', 'Zhangyang Wang']
null
crowdsourced
41
Literaturelly, graphon has been studied from two perspectives: as limit of graph sequence, and as graph generators[1, 11, 24].
RS_001_MLRC_2022_01
First Author: Han
A2R2YZTSME1K3F
68
Neutral
A18LFH7XW61JO9
43
Neutral
A5V3ZMQI0PU3F
133
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1145/3580305.3599548
2,023
Knowledge Discovery and Data Mining
When to Pre-Train Graph Neural Networks? From Data Generation Perspective!
['Yu Cao', 'Jiarong Xu', 'Carl Yang', 'Jiaan Wang', 'Yunchao Zhang', 'Chunping Wang', 'L. Chen', 'Yang Yang']
null
crowdsourced
42
learning methods including self-training with selected unlabeled graphs (ST-REAL) and generated graphs (ST-GEN) and INFOGRAPH (Sun et al., 2020), and (3) graph data augmentation (GDA) methods including FLAG (Kong et al., 2022), GREA (Liu et al., 2022), and G-MIXUP (Han et al., 2022).
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A5V3ZMQI0PU3F
38
Positive
A18LFH7XW61JO9
46
Neutral
A2R2YZTSME1K3F
32
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
43
Generation models (Antoniou et al., 2017; Bowles et al., 2018; Han et al., 2022) create in-class examples.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
156
Neutral
A5V3ZMQI0PU3F
68
Neutral
A2R2YZTSME1K3F
29
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2303.10108
2,023
arXiv.org
Data-Centric Learning from Unlabeled Graphs with Diffusion Model
['Gang Liu', 'Eric Inae', 'Tong Zhao', 'Jiaxin Xu', 'Te Luo', 'Meng Jiang']
null
crowdsourced
44
They learn to create new examples that preserve the properties of original graphs (Kong et al., 2022; Han et al., 2022; Luo et al., 2022).
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
67
Neutral
A2R2YZTSME1K3F
54
Neutral
A5V3ZMQI0PU3F
26
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2303.10108
2,023
arXiv.org
Data-Centric Learning from Unlabeled Graphs with Diffusion Model
['Gang Liu', 'Eric Inae', 'Tong Zhao', 'Jiaxin Xu', 'Te Luo', 'Meng Jiang']
null
crowdsourced
45
Baselines and implementation: Besides GIN, there are three lines of baseline methods: (1) selfsupervised learing methods including EDGEPRED, ATTRMASK, CONTEXTPRED in (Hu et al., 2019), INFOMAX (Velickovic et al., 2019), JOAO (You et al., 2021), GRAPHLOG (Xu et al., 2021), and D-SLA (Kim et al., 2022), (2) semi-supervised learning methods including self-training with selected unlabeled graphs (ST-REAL) and generated graphs (ST-GEN) and INFOGRAPH (Sun et al., 2020), and (3) graph data augmentation (GDA) methods including FLAG (Kong et al., 2022), GREA (Liu et al., 2022), and G-MIXUP (Han et al., 2022).
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
AKSJ3C5O3V9RB
46,401
Positive
A18LFH7XW61JO9
44
Positive
A2R2YZTSME1K3F
37
Neutral
batch_1
Positive
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2303.10108
2,023
arXiv.org
Data-Centric Learning from Unlabeled Graphs with Diffusion Model
['Gang Liu', 'Eric Inae', 'Tong Zhao', 'Jiaxin Xu', 'Te Luo', 'Meng Jiang']
null
crowdsourced
46
ogbg-HIV ogbg-ToxCast ogbg-Tox21 ogbg-BBBP ogbg-BACE ogbg-ClinTox ogbg-SIDER# Training Graphs 32,901 6,860 6,264 1,631 1,210 1,181 1,141GIN 77.4(1.2) 66.9(0.2) 76.0(0.6) 67.5(2.7) 77.5(2.8) 88.8(3.8) 58.1(0.9)Se lf-Su perv ised EDGEPRED 78.1(1.3) 63.9(0.4) 75.5(0.4) 69.9(0.5) 79.5(1.0) 62.9(2.3) 59.7(0.8) ATTRMASK 77.1(1.7) 64.2(0.5) 76.6(0.4) 63.9(1.2) 79.3(0.7) 70.4(1.1) 60.7(0.4) CONTEXTPRED 78.4(0.1) 63.7(0.3) 75.0(0.1) 68.8(1.6) 75.7(1.0) 63.2(6.5) 60.7(0.8) INFOMAX 75.4(1.8) 61.7(1.0) 75.5(0.4) 69.2(0.5) 76.8(0.2) 73.0(0.2) 58.6(0.5) JOAO 76.2(0.2) 64.8(0.3) 74.8(0.5) 69.3(2.5) 75.9(3.9) 69.4(4.5) 60.8(0.6) GRAPHLOG 74.8(1.1) 63.2(0.8) 75.4(0.8) 67.5(2.3) 80.4(3.6) 69.0(6.6) 57.0(0.9) D-SLA 76.9(0.9) 60.8(1.2) 76.1(0.1) 62.6(1.0) 80.3(0.6) 78.3(2.4) 55.1(1.0)Se miSL INFOGRAPH 73.3(0.7) 61.5(1.1) 67.6(0.9) 61.6(4.4) 75.9(1.8) 62.2(5.5) 56.3(2.3)ST-REAL 78.3(0.6) 64.5(1.0) 76.2(0.5) 66.7(1.9) 77.4(1.8) 82.2(2.4) 60.8(1.2) ST-GEN 77.9(1.6) 65.1(1.0) 75.8(0.9) 66.3(1.5) 78.4(3.0) 87.3(1.3) 59.3(1.3)G D A FLAG 74.6(1.7) 59.9(1.6) 76.9(0.7) 66.6(1.0) 79.1(1.2) 85.1(3.4) 57.6(2.3) GREA 79.3(0.9) 67.5(0.7) 77.2(1.2) 69.7(1.3) 82.4(2.4) 87.9(3.7) 60.1(2.0) G-MIXUP 77.1(1.1) 55.6(1.1) 64.6(0.4) 70.2(1.0) 77.8(3.3) 60.2(7.5) 56.8(3.5)DCT (Ours) 79.5(1.0) 68.1(0.2) 78.2(0.2) 70.8(0.5) 85.6(0.6) 92.1(0.8) 63.9(0.3) Molecule Regression: MAE Polymer Regression: MAE Bio: AUC (%)ogbg-Lipo ogbg-ESOL ogbg-FreeSolv GlassTemp MeltingTemp ThermCond O2Perm PPI # Training Graphs 3,360 902 513 4,303 2,189 455 356 60,715GIN 0.545(0.019) 0.766(0.016) 1.639(0.146) 26.4(0.2) 40.9(2.2) 3.25(0.19) 201.3(45.0) 69.1(0.0)Se lf-Su perv ised EDGEPRED 0.585(0.008) 1.062(0.066) 2.249(0.150) 27.6(1.4) 47.4(2.8) 3.69(0.50) 207.3(41.7) 63.7(1.1) ATTRMASK 0.573(0.009) 1.041(0.041) 1.952(0.088) 27.7(0.8) 45.8(2.6) 3.17(0.32) 179.9(30.8) 64.1(1.8) CONTEXTPRED 0.592(0.007) 0.971(0.027) 2.193(0.151) 27.6(0.3) 46.7(1.9) 3.15(0.24) 191.2(35.2) 62.0(1.2) INFOMAX 0.581(0.009) 0.935(0.018) 2.197(0.129) 27.5(0.8) 46.5(2.8) 3.31(0.25) 231.0(52.6) 63.3(1.2) JOAO 0.596(0.016) 1.098(0.037) 2.465(0.095) 27.5(0.2) 46.0(0.2) 3.55(0.26) 207.7(43.7) 61.5(1.2) GRAPHLOG 0.577(0.010) 1.109(0.059) 2.373(0.283) 29.5(1.3) 50.3(3.3) 3.01(0.17) 229.7(48.3) 62.1(0.6) D-SLA 0.563(0.004) 1.064(0.030) 2.190(0.149) 27.5(1.0) 51.7(2.5) 2.71(0.08) 257.8(30.2) 65.0(1.2)Se miSL INFOGRAPH 0.793(0.094) 1.285(0.093) 3.710(0.418) 30.8(1.2) 51.2(5.1) 2.75(0.15) 207.2(21.8) 67.7(0.4)ST-REAL 0.526(0.009) 0.788(0.070) 1.770(0.251) 26.6(0.3) 42.3(1.2) 2.64(0.07) 256.0(17.5) 68.9(0.1) ST-GEN 0.531(0.031) 0.724(0.082) 1.547(0.082) 26.8(0.3) 42.0(0.9) 2.70(0.03) 262.2(10.1) 68.6(0.6)G D A FLAG 0.528(0.012) 0.755(0.039) 1.565(0.098) 26.6(1.3) 44.2(2.0) 3.05(0.10) 177.7(60.7) 69.2(0.2) GREA 0.586(0.036) 0.805(0.135) 1.829(0.368) 26.7(1.0) 41.1(0.8) 3.23(0.18) 194.0(45.5) 68.8(0.2)DCT (Ours) 0.516(0.071) 0.717(0.020) 1.339(0.075) 23.7(0.2) 38.0(0.8) 2.59(0.11) 165.6(24.3) 69.5(0.2)(ogbg-HIV, ogbg-ToxCast, ogbg-Tox21, ogbg-BBBP, ogbg-BACE, ogbg-ClinTox, ogbg-SIDER), three molecule regression tasks (ogbg-Lipo, ogbg-ESOL, ogbg-FreeSolv) from open graph benchmarks (Hu et al., 2020), four polymer regression tasks (GlassTemp, MeltingTemp, O2Perm, and thermal conductivity prediction ThermCond), and also protein function prediction (PPI) (Hu et al., 2019).
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
104
Positive
A2R2YZTSME1K3F
42
Neutral
A1NF6PELRKACS9
40
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
47
The learning to augment approaches learn from labeled graphs to perturb graph structures (Luo et al., 2022), to estimate graphons for different classes (Han et al., 2022), or to split the latent space for augmentation (Liu et al., 2022).
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A18LFH7XW61JO9
107
Neutral
A2R2YZTSME1K3F
27
Neutral
AKSJ3C5O3V9RB
49,758
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2303.10108
2,023
arXiv.org
Data-Centric Learning from Unlabeled Graphs with Diffusion Model
['Gang Liu', 'Eric Inae', 'Tong Zhao', 'Jiaxin Xu', 'Te Luo', 'Meng Jiang']
null
crowdsourced
48
Augmentation Basic manipulation Automation Programmatic [42, 93, 250, 282, 282, 288].
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
157
Neutral
A2R2YZTSME1K3F
19
Neutral
A5V3ZMQI0PU3F
43
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2303.10158
2,023
arXiv.org
Data-centric Artificial Intelligence: A Survey
['D. Zha', 'Zaid Pervaiz Bhat', 'Kwei-Herng Lai', 'Fan Yang', 'Zhimeng Jiang', 'Shaochen Zhong', 'Xia Hu']
null
crowdsourced
49
For example, compared to image data, graph data is irregular and not well-aligned, and thus the vanilla Mixup strategy can not be directly applied [93].
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
58
Negative
A18LFH7XW61JO9
79
Neutral
A2R2YZTSME1K3F
32
Negative
batch_1
Negative
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2303.10158
2,023
arXiv.org
Data-centric Artificial Intelligence: A Survey
['D. Zha', 'Zaid Pervaiz Bhat', 'Kwei-Herng Lai', 'Fan Yang', 'Zhimeng Jiang', 'Shaochen Zhong', 'Xia Hu']
null
crowdsourced
50
Mixup Improves Generalization After the initial work of Zhang et al. (2018), a series of the Mixups variants have been proposed (Guo et al., 2019a; Verma et al., 2019; Yun et al., 2019; Kim et al., 2020; Greenewald et al., 2021; Han et al., 2022; Sohn et al., 2022).
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
71
Neutral
A2R2YZTSME1K3F
24
Neutral
A1NF6PELRKACS9
57
Positive
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
51
(2018), a series of the Mixups variants have been proposed (Guo et al., 2019a; Verma et al., 2019; Yun et al., 2019; Kim et al., 2020; Greenewald et al., 2021; Han et al., 2022; Sohn et al., 2022).
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
238
Neutral
A2R2YZTSME1K3F
37
Neutral
AKSJ3C5O3V9RB
18,331
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
52
Some strong baselines such as G-MIXUP (Han et al., 2022) were excluded because they require labels during the pre-training phase.
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A18LFH7XW61JO9
12
Neutral
A5V3ZMQI0PU3F
83
Neutral
A2R2YZTSME1K3F
41
Negative
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2302.02909
2,023
International Conference on Artificial Intelligence and Statistics
Spectral Augmentations for Graph Contrastive Learning
['Amur Ghose', 'Yingxue Zhang', 'Jianye Hao', 'Mark Coates']
null
crowdsourced
53
It is worth noting that the drop edge technique we use here is different to the standard data augmentation techniques such as DropEdge (Rong et al., 2019), and G-Mixup (Han et al., 2022b), which either add slightly modified copies of existing data or generate synthetic based on existing data.
RS_001_MLRC_2022_01
First Author: Han
A2R2YZTSME1K3F
242
Positive
A5V3ZMQI0PU3F
82
Negative
AKSJ3C5O3V9RB
310
Positive
batch_1
Positive
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2212.13350
2,022
International Conference on Machine Learning
A Generalization of ViT/MLP-Mixer to Graphs
['Xiaoxin He', 'Bryan Hooi', 'T. Laurent', 'Adam Perold', 'Yann LeCun', 'X. Bresson']
null
crowdsourced
54
et al., 2015; Gilmer et al., 2017), physics (Cranmer et al., 2019; Bapst et al., 2020), transportation (Derrow-Pinion et al., 2021), vision (Han et al., 2022a), natural language processing (NLP) (Wu et al., 2021a), knowledge graphs (Schlichtkrull et al., 2018), drug design (Stokes et al.,
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
144
Neutral
A2R2YZTSME1K3F
29
Neutral
A1NF6PELRKACS9
61
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
55
G-Mixup [229] generates synthetic graphs by interpolating sampled graphons in the Euclidean space, which is a generator estimated for each class.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
37
Positive
A18LFH7XW61JO9
104
Neutral
A2R2YZTSME1K3F
63
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2212.10888
2,022
arXiv.org
A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability
['Chengtai Cao', 'Fan Zhou', 'Yurou Dai', 'Jianping Wang']
null
crowdsourced
56
com/gasteigerjo/gdc [13] G-mixup ICML 2022 GI https://github.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
54
Neutral
A18LFH7XW61JO9
12
Neutral
A2R2YZTSME1K3F
46
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
2,022
null
Data Augmentation on Graphs: A Technical Survey
['Jiajun Zhou', 'Chenxuan Xie', 'Z. Wen', 'Xiangyu Zhao', 'Qi Xuan']
null
crowdsourced
57
It is important to note that variations of mixup for Graph Neural Networks have been applied in previous papers [6], but they deal with graph datasets that have fluctuating numbers of nodes that come in different order that require far more complex implementations.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
48
Neutral
A5V3ZMQI0PU3F
27
Neutral
A2R2YZTSME1K3F
43
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1109/BigData55660.2022.10020662
2,022
null
BrainMixup: Data Augmentation for GNN-based Functional Brain Network Analysis
['Alex J. Li']
null
crowdsourced
58
G-Mixup [6] applies the principles of mixup to probability matrices with individual points representing the likelihood of an edge existing between two nodes.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
113
Neutral
A5V3ZMQI0PU3F
38
Neutral
A2R2YZTSME1K3F
26
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1109/BigData55660.2022.10020662
2,022
null
BrainMixup: Data Augmentation for GNN-based Functional Brain Network Analysis
['Alex J. Li']
null
crowdsourced
59
Another study (Han et al., 2022) have adapted the mixup technique and introduced GMixup to improve graph classification robustness on GNNs.
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A18LFH7XW61JO9
183
Neutral
A2R2YZTSME1K3F
38
Neutral
A5V3ZMQI0PU3F
19
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2212.07790
2,022
arXiv.org
Population Template-Based Brain Graph Augmentation for Improving One-Shot Learning Classification
['Oben Özgür', 'Arwa Rekik', 'I. Rekik']
null
crowdsourced
60
Another study (Han et al., 2022) have adapted the mixup technique and introduced GMixup to improve graph classification robustness on GNNs. G-Mixup makes use of graphons of a specific class as generators.
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A5V3ZMQI0PU3F
22
Neutral
A18LFH7XW61JO9
18
Neutral
A2R2YZTSME1K3F
462
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2212.07790
2,022
arXiv.org
Population Template-Based Brain Graph Augmentation for Improving One-Shot Learning Classification
['Oben Özgür', 'Arwa Rekik', 'I. Rekik']
null
crowdsourced
61
The sub-graph perturbation could be categorized as the graph-level data augmentation strategy and is frequently used for graph-level tasks such as graph classiication[11, 16, 43, 49], while the node perturbation and edge perturbation are frequently adopted for node-level or edge-level tasks.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
17
Neutral
A2R2YZTSME1K3F
70
Neutral
A5V3ZMQI0PU3F
32
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1145/3572835
2,022
null
Disentangled Representations Learning for Multi-target Cross-domain Recommendation
['Xiaobo Guo', 'Shaoshuai Li', 'Naicheng Guo', 'Jiangxia Cao', 'Xiaolei Liu', 'Q. Ma', 'Runsheng Gan', 'Yunan Zhao']
null
crowdsourced
62
Graph Data Augmentation: DropEdge (Rong et al., 2020), GREA (Liu et al., 2022), FLAG (Kong et al., 2022), M-Mixup (Wang et al., 2021), G-Mixup (Han et al., 2022).
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A5V3ZMQI0PU3F
102
Neutral
AKSJ3C5O3V9RB
6,241
Positive
A18LFH7XW61JO9
22
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
63
, 2020), and graph-level (Wang et al., 2021; Han et al., 2022) with random (You et al.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
72
Neutral
A2R2YZTSME1K3F
36
Neutral
A1NF6PELRKACS9
37
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2211.02843
2,022
arXiv.org
Adversarial Causal Augmentation for Graph Covariate Shift
['Yongduo Sui', 'Xiang Wang', 'Jiancan Wu', 'An Zhang', 'Xiangnan He']
null
crowdsourced
64
It can be roughly divided into node-level (Kong et al., 2022), edge-level (Rong et al., 2020), and graph-level (Wang et al., 2021; Han et al., 2022) with random (You et al., 2020) or adversarial strategies (Suresh et al., 2021).
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
11
Neutral
A18LFH7XW61JO9
14
Neutral
A2R2YZTSME1K3F
23
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2211.02843
2,022
arXiv.org
Adversarial Causal Augmentation for Graph Covariate Shift
['Yongduo Sui', 'Xiang Wang', 'Jiancan Wu', 'An Zhang', 'Xiangnan He']
null
crowdsourced
65
For mixup of graph data gfeat, we compare GraphMADs clusterpath data mixup (7) with linear graphon mixup [15].
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
108
Positive
A2R2YZTSME1K3F
24
Positive
AKSJ3C5O3V9RB
8
Positive
batch_1
Positive
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
66
Note that G-Mixup [15] has gfeat as (10) and glabel as (1b) Fig.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
138
Neutral
A2R2YZTSME1K3F
33
Neutral
A18LFH7XW61JO9
16
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2210.15721
2,022
IEEE International Conference on Acoustics, Speech, and Signal Processing
GraphMAD: Graph Mixup for Data Augmentation using Data-Driven Convex Clustering
['Madeline Navarro', 'Santiago Segarra']
null
crowdsourced
67
[15] X. Han, Z. Jiang, N. Liu, and X. Hu, G-Mixup: Graph data augmentation for graph classification, arXiv preprint arXiv:2202.07179, 2022.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
101
Positive
A18LFH7XW61JO9
137
Neutral
AKSJ3C5O3V9RB
424
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
68
Authors in [15] present the closest work to our own.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
12
Positive
A18LFH7XW61JO9
15
Neutral
A2R2YZTSME1K3F
26
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2210.15721
2,022
IEEE International Conference on Acoustics, Speech, and Signal Processing
GraphMAD: Graph Mixup for Data Augmentation using Data-Driven Convex Clustering
['Madeline Navarro', 'Santiago Segarra']
null
crowdsourced
69
The mixup on graphs is regarded as challenging due to the irregularity and connectivity, and existing mixup methods for GNNs aim to mix hidden embedding [11, 36].
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
57
Neutral
A18LFH7XW61JO9
116
Neutral
A2R2YZTSME1K3F
59
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2210.09609
2,022
arXiv.org
SA-MLP: Distilling Graph Knowledge from GNNs into Structure-Aware MLP
['Jie Chen', 'Shouzhen Chen', 'Mingyuan Bai', 'Junbin Gao', 'Junping Zhang', 'Jian Pu']
null
crowdsourced
70
These generate new instances by feature or graph structure interpolation (Verma et al., 2021; Wang et al., 2021; 2020; Han et al., 2022).
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
108
Neutral
AKSJ3C5O3V9RB
228
Neutral
A2R2YZTSME1K3F
19
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2209.06589
2,022
arXiv.org
Towards Better Generalization with Flexible Representation of Multi-Module Graph Neural Networks
['Hyungeun Lee', 'Hyunmok Park', 'Kijung Yoon']
null
crowdsourced
71
In GNNs, many GCL methods are arisen for graph representation learning, such as GraphCL (You et al., 2020), GRACE (Zhu et al., 2020), AD-GCL (Suresh et al., 2021) and G-Mixup (Han et al., 2022).
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A5V3ZMQI0PU3F
28
Positive
A18LFH7XW61JO9
57
Neutral
A2R2YZTSME1K3F
34
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2208.09126
2,022
arXiv.org
GraphTTA: Test Time Adaptation on Graph Neural Networks
['Guan-Wun Chen', 'Jiying Zhang', 'Xi Xiao', 'Y. Li']
null
crowdsourced
72
To this end, [43; 44; 45; 46] propose to augment graph data directly in the data space, while [47] interpolates latent representations to create novel ones.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
46
Positive
A18LFH7XW61JO9
13
Neutral
A2R2YZTSME1K3F
37
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2206.03695
2,022
LOG IN
Metric Based Few-Shot Graph Classification
['Donato Crisostomi', 'Simone Antonelli', 'Valentino Maiorca', 'Luca Moschella', 'R. Marin', 'E. Rodolà']
null
crowdsourced
73
Additionally, graph mixup methods (Wang et al., 2021; Han et al., 2022; Guo & Mao, 2021; Park et al., 2022) synthesize a new graph or graph representation from two input graphs.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
76
Neutral
A18LFH7XW61JO9
12
Neutral
AKSJ3C5O3V9RB
49,591
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
2,022
International Conference on Learning Representations
Automated Data Augmentations for Graph Classification
['Youzhi Luo', 'Michael McThrow', 'Wing Yee Au', 'Tao Komikado', 'Kanji Uchino', 'Koji Maruhashi', 'Shuiwang Ji']
null
crowdsourced
74
Some studies (Wang et al., 2021; Han et al., 2022; Guo & Mao, 2021; Park et al., 2022) propose interpolation-based mixup methods for graph augmentations, and Kong et al. (2022) propose to augment node features through adversarial learning.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
50
Neutral
A5V3ZMQI0PU3F
21
Neutral
A2R2YZTSME1K3F
71
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
2,022
International Conference on Learning Representations
Automated Data Augmentations for Graph Classification
['Youzhi Luo', 'Michael McThrow', 'Wing Yee Au', 'Tao Komikado', 'Kanji Uchino', 'Koji Maruhashi', 'Shuiwang Ji']
null
crowdsourced
75
, 2021), G-Mixup (Han et al., 2022), and FLAG (Kong et al.
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A18LFH7XW61JO9
131
Neutral
A2R2YZTSME1K3F
76
Neutral
A1NF6PELRKACS9
10
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
2,022
International Conference on Learning Representations
Automated Data Augmentations for Graph Classification
['Youzhi Luo', 'Michael McThrow', 'Wing Yee Au', 'Tao Komikado', 'Kanji Uchino', 'Koji Maruhashi', 'Shuiwang Ji']
null
crowdsourced
76
In addition to the baselines in Section 4.1, we also compare with previous graph augmentation methods, including DropEdge (Rong et al., 2020), M-Mixup (Wang et al., 2021), G-Mixup (Han et al., 2022), and FLAG (Kong et al., 2022).
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A2R2YZTSME1K3F
45
Positive
A5V3ZMQI0PU3F
58
Positive
A18LFH7XW61JO9
109
Neutral
batch_1
Positive
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
2,022
International Conference on Learning Representations
Automated Data Augmentations for Graph Classification
['Youzhi Luo', 'Michael McThrow', 'Wing Yee Au', 'Tao Komikado', 'Kanji Uchino', 'Koji Maruhashi', 'Shuiwang Ji']
null
crowdsourced
77
Some studies (Wang et al., 2021; Han et al., 2022; Guo & Mao, 2021; Park et al., 2022) propose interpolation-based mixup methods for graph augmentations, and Kong et al.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
73
Neutral
A2R2YZTSME1K3F
33
Neutral
A5V3ZMQI0PU3F
72
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
2,022
International Conference on Learning Representations
Automated Data Augmentations for Graph Classification
['Youzhi Luo', 'Michael McThrow', 'Wing Yee Au', 'Tao Komikado', 'Kanji Uchino', 'Koji Maruhashi', 'Shuiwang Ji']
null
crowdsourced
78
The similar strategies are also applied in graphs [78, 79, 80, 81, 82, 83].
RS_001_MLRC_2022_01
First Author: Han
AKSJ3C5O3V9RB
5,372
Positive
A2R2YZTSME1K3F
61
Neutral
A5V3ZMQI0PU3F
26
Positive
batch_1
Positive
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
2,022
arXiv.org
Out-Of-Distribution Generalization on Graphs: A Survey
['Haoyang Li', 'Xin Wang', 'Ziwei Zhang', 'Wenwu Zhu']
null
crowdsourced
79
G-Mixup [83] tackles the key challenges when mixing up directly on the graph data, as graph data is irregular and not well-aligned, and graph topology between classes is divergent.
RS_001_MLRC_2022_01
First Author: Han
A5V3ZMQI0PU3F
176
Positive
A18LFH7XW61JO9
13
Neutral
A2R2YZTSME1K3F
50
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
2,022
arXiv.org
Out-Of-Distribution Generalization on Graphs: A Survey
['Haoyang Li', 'Xin Wang', 'Ziwei Zhang', 'Wenwu Zhu']
null
crowdsourced
80
Besides, an advanced data augmentation strategy namely Mixup is recently applied to DGL and is proved to be effective for several graph-related tasks [Han et al., 2022].
RS_001_MLRC_2022_01
First Author: Han
AKSJ3C5O3V9RB
414
Positive
A5V3ZMQI0PU3F
14
Neutral
A18LFH7XW61JO9
12
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
2,022
null
Recent Advances in Reliable Deep Graph Learning: Inherent Noise, Distribution Shift, and Adversarial Attack
['Jintang Li', 'Bingzhe Wu', 'Chengbin Hou', 'Guoji Fu', 'Yatao Bian', 'Liang Chen', 'Junzhou Huang', 'Zibin Zheng']
null
crowdsourced
81
a graph pair, through mixing the graph representation resulting from passing the graph through the GNNs. Similarly, a concurrent work G-Mixup (Han et al. 2022) first interpolates represented graph generators (i.e., graphons) of different classes, and then leverages the mixed graphons for
RS_001_MLRC_2022_01
Cited Paper: (Han et al. 2022)
A5V3ZMQI0PU3F
27
Positive
A18LFH7XW61JO9
61
Neutral
A2R2YZTSME1K3F
35
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
82
Similarly, a concurrent work G-Mixup (Han et al. 2022) first interpolates represented graph generators (i.
RS_001_MLRC_2022_01
Cited Paper: (Han et al. 2022)
A5V3ZMQI0PU3F
42
Positive
A18LFH7XW61JO9
88
Neutral
A2R2YZTSME1K3F
29
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1609/aaai.v37i6.25941
2,021
AAAI Conference on Artificial Intelligence
Interpolating Graph Pair to Regularize Graph Classification
['Hongyu Guo', 'Yongyi Mao']
null
crowdsourced
83
Manifold Intrusion The manifold intrusion degrades the performance of Mixup-like methods (Guo, Mao, and Zhang 2019b; Han et al. 2022).
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
82
Neutral
A2R2YZTSME1K3F
30
Neutral
A1NF6PELRKACS9
13
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1609/aaai.v37i6.25941
2,021
AAAI Conference on Artificial Intelligence
Interpolating Graph Pair to Regularize Graph Classification
['Hongyu Guo', 'Yongyi Mao']
null
crowdsourced
84
MixupGraph (Wang et al. 2021b) also leverages a simple way to avoid dealing with the arbitrary structure in the input space for mixing a graph pair, through mixing the graph representation resulting from passing the graph through the GNNs. Similarly, a concurrent work G-Mixup (Han et al. 2022) first interpolates represented graph generators (i.e., graphons) of different classes, and then leverages the mixed graphons for sampling to generate synthetic graphs.
RS_001_MLRC_2022_01
Cited Paper: (Han et al. 2022)
A18LFH7XW61JO9
175
Neutral
A5V3ZMQI0PU3F
37
Neutral
A2R2YZTSME1K3F
43
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1609/aaai.v37i6.25941
2,021
AAAI Conference on Artificial Intelligence
Interpolating Graph Pair to Regularize Graph Classification
['Hongyu Guo', 'Yongyi Mao']
null
crowdsourced
85
G-Mixup (Han et al., 2022) uses graphons as a surrogate to apply mixup techniques to graph data.
RS_001_MLRC_2022_01
Cited Paper: (Han et al., 2022)
A18LFH7XW61JO9
13
Neutral
A2R2YZTSME1K3F
397
Neutral
A5V3ZMQI0PU3F
69
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
2,021
null
Calibrating and Improving Graph Contrastive Learning
['Kaili Ma', 'Haochen Yang', 'Han Yang', 'Tatiana Jin', 'Pengfei Chen', 'Yongqiang Chen', 'Barakeel Fanseu Kamhoua', 'James Cheng']
null
crowdsourced
86
Literaturelly, graphon has been studied from two perspectives: as limit of graph sequence, and as graph generators[1, 11, 24].
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
83
Neutral
A2R2YZTSME1K3F
37
Neutral
A5V3ZMQI0PU3F
21
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.1145/3580305.3599548
2,023
Knowledge Discovery and Data Mining
When to Pre-Train Graph Neural Networks? From Data Generation Perspective!
['Yu Cao', 'Jiarong Xu', 'Carl Yang', 'Jiaan Wang', 'Yunchao Zhang', 'Chunping Wang', 'L. Chen', 'Yang Yang']
null
crowdsourced
87
The graph augmentation methods combat the distributional shifts by increasing the data diversity (Zhao et al., 2021; Wang et al., 2021; Han et al., 2022).
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
51
Neutral
A2R2YZTSME1K3F
30
Neutral
A1NF6PELRKACS9
91
Positive
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
2,023
International Conference on Machine Learning
Wasserstein Barycenter Matching for Graph Size Generalization of Message Passing Neural Networks
['Xu Chu', 'Yujie Jin', 'Xin Wang', 'Shanghang Zhang', 'Yasha Wang', 'Wenwu Zhu', 'Hong Mei']
null
crowdsourced
88
Despite recent advances in graph representation learning (Grover & Leskovec, 2016; Kipf & Welling, 2017; 2016; Gilmer et al., 2017; Han et al., 2022b), these GNN models may inherit or even amplify bias from training data (Dai & Wang, 2021), thereby introducing prediction discrimination against
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
104
Neutral
A5V3ZMQI0PU3F
50
Neutral
A2R2YZTSME1K3F
35
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
89
their remarkable performance (Gao et al., 2021; Gao & Ji, 2019; Liu et al., 2021a;b; Yuan et al., 2021) in many applications, such as knowledge graphs (Hamaguchi et al., 2017), molecular property prediction (Liu et al., 2022; 2020; Han et al., 2022a) and social media mining (Hamilton et al., 2017).
RS_001_MLRC_2022_01
First Author: Han
A2R2YZTSME1K3F
38
Neutral
A5V3ZMQI0PU3F
46
Neutral
A18LFH7XW61JO9
13
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
null
null
null
null
null
crowdsourced
90
com/gasteigerjo/gdc [13] G-mixup ICML 2022 GI https://github.
RS_001_MLRC_2022_01
First Author: Han
A18LFH7XW61JO9
33
Neutral
A5V3ZMQI0PU3F
7
Neutral
A2R2YZTSME1K3F
26
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
null
2,022
null
Data Augmentation on Graphs: A Technical Survey
['Jiajun Zhou', 'Chenxuan Xie', 'Z. Wen', 'Xiangyu Zhao', 'Qi Xuan']
null
crowdsourced
91
G-Mixup [13] first estimates a graphon for each class of graphs, then performs interpolation in Euclidean space to generate mixed graphons, and finally augments synthetic graphs by sampling from the mixed graphons.
RS_001_MLRC_2022_01
First Author: Han
A2R2YZTSME1K3F
129
Neutral
A5V3ZMQI0PU3F
19
Neutral
A18LFH7XW61JO9
93
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173650
[Re] $\mathcal{G}$-Mixup: Graph Data Augmentation for Graph Classification
['Ermin Omeragic', 'Vuk Đuranović']
null
MLRC
8
3
partially-reproducible
https://doi.org/10.48550/arXiv.2202.07179
G-Mixup: Graph Data Augmentation for Graph Classification
['Xiaotian Han', 'Zhimeng Jiang', 'Ninghao Liu', 'Xia Hu']
2,022
International Conference on Machine Learning
https://proceedings.mlr.press/v162/han22c.html
76
arXiv:2202.07179
10.48550/arXiv.2212.09970
2,022
arXiv.org
Data Augmentation on Graphs: A Survey
['Jiajun Zhou', 'Chenxuan Xie', 'Z. Wen', 'Xiangyu Zhao', 'Qi Xuan']
null
crowdsourced
92
We further perform a user study [1, 2, 4, 35, 45, 50, 54] to investigate user preference over different stylization results.
RS_002_MLRC_2022_02
First Author: Zhang
A5V3ZMQI0PU3F
18
Positive
A18LFH7XW61JO9
13
Neutral
A2R2YZTSME1K3F
125
Positive
batch_1
Positive
2
https://www.doi.org/10.5281/zenodo.8173652
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
null
MLRC
5
5
reproducible
10.1109/CVPR52688.2022.00787
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
2,022
Computer Vision and Pattern Recognition
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
65
10.1109/CVPR52688.2022.00787
10.1145/3581783.3611819
2,023
arXiv.org
TSSAT: Two-Stage Statistics-Aware Transformation for Artistic Style Transfer
['Haibo Chen', 'Lei Zhao', 'Jun Yu Li', 'Jian Yang']
null
crowdsourced
93
Recent works [40] show that semantic information can be reflected via the order of pixels according to their gray value.
RS_002_MLRC_2022_02
First Author: Zhang
A5V3ZMQI0PU3F
23
Positive
A18LFH7XW61JO9
11
Neutral
A2R2YZTSME1K3F
29
Neutral
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173652
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
null
MLRC
5
5
reproducible
10.1109/CVPR52688.2022.00787
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
2,022
Computer Vision and Pattern Recognition
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
65
10.1109/CVPR52688.2022.00787
10.48550/arXiv.2309.00188
2,023
International Conference on Medical Image Computing and Computer-Assisted Intervention
DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus Segmentation
['Shengcong Chen', 'Changxing Ding', 'Dacheng Tao', 'Hao Chen']
null
crowdsourced
94
Inspired by recent studies [5,7,14,22,27,42], we believe that by introducing a suitable normalization strategy, it is possible to effectively balance the training stability and image generation quality of GANs.
RS_002_MLRC_2022_02
First Author: Zhang
A18LFH7XW61JO9
53
Neutral
A2R2YZTSME1K3F
32
Positive
A1NF6PELRKACS9
14
Positive
batch_1
Positive
2
https://www.doi.org/10.5281/zenodo.8173652
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
null
MLRC
5
5
reproducible
10.1109/CVPR52688.2022.00787
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
2,022
Computer Vision and Pattern Recognition
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
65
10.1109/CVPR52688.2022.00787
10.3390/s23177338
2,023
Italian National Conference on Sensors
SUGAN: A Stable U-Net Based Generative Adversarial Network
['Shijie Cheng', 'Lingfeng Wang', 'M. Zhang', 'Cheng Zeng', 'Yan Meng']
null
crowdsourced
95
EFDMix [5] achieves precise feature distribution matching in the feature space using higher-order statistics and augments the training data with style transfer techniques to mitigate overfitting to the source domain.
RS_002_MLRC_2022_02
First Author: Zhang
A18LFH7XW61JO9
103
Neutral
A2R2YZTSME1K3F
55
Neutral
A5V3ZMQI0PU3F
85
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173652
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
null
MLRC
5
5
reproducible
10.1109/CVPR52688.2022.00787
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
2,022
Computer Vision and Pattern Recognition
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
65
10.1109/CVPR52688.2022.00787
10.48550/arXiv.2308.00918
2,023
arXiv.org
A Novel Cross-Perturbation for Single Domain Generalization
['Dongjia Zhao', 'Lei Qi', 'Xiao Shi', 'Yinghuan Shi', 'Xin Geng']
null
crowdsourced
96
Following the methodology described in [5], we employ the OSNet architecture as the backbone for our experiments.
RS_002_MLRC_2022_02
First Author: Zhang
A18LFH7XW61JO9
116
Positive
A2R2YZTSME1K3F
33
Positive
A1NF6PELRKACS9
13
Positive
batch_1
Positive
3
https://www.doi.org/10.5281/zenodo.8173652
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
null
MLRC
5
5
reproducible
10.1109/CVPR52688.2022.00787
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
2,022
Computer Vision and Pattern Recognition
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
65
10.1109/CVPR52688.2022.00787
10.48550/arXiv.2308.00918
2,023
arXiv.org
A Novel Cross-Perturbation for Single Domain Generalization
['Dongjia Zhao', 'Lei Qi', 'Xiao Shi', 'Yinghuan Shi', 'Xin Geng']
null
crowdsourced
97
Due to the inherent distribution disparities between multiple source domains and the target domain, domain generalization [1, 2, 5, 6] has emerged as a prominent research area.
RS_002_MLRC_2022_02
First Author: Zhang
A18LFH7XW61JO9
126
Neutral
A2R2YZTSME1K3F
31
Neutral
A1NF6PELRKACS9
40
Positive
batch_1
Neutral
2
https://www.doi.org/10.5281/zenodo.8173652
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
null
MLRC
5
5
reproducible
10.1109/CVPR52688.2022.00787
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
2,022
Computer Vision and Pattern Recognition
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
65
10.1109/CVPR52688.2022.00787
10.48550/arXiv.2308.00918
2,023
arXiv.org
A Novel Cross-Perturbation for Single Domain Generalization
['Dongjia Zhao', 'Lei Qi', 'Xiao Shi', 'Yinghuan Shi', 'Xin Geng']
null
crowdsourced
98
To mitigate the impact of domain shift, a multitude of domain generalization techniques have emerged [5, 6].
RS_002_MLRC_2022_02
First Author: Zhang
A5V3ZMQI0PU3F
38
Neutral
A18LFH7XW61JO9
16
Neutral
A2R2YZTSME1K3F
43
Neutral
batch_1
Neutral
3
https://www.doi.org/10.5281/zenodo.8173652
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
null
MLRC
5
5
reproducible
10.1109/CVPR52688.2022.00787
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
2,022
Computer Vision and Pattern Recognition
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
65
10.1109/CVPR52688.2022.00787
10.48550/arXiv.2308.00918
2,023
arXiv.org
A Novel Cross-Perturbation for Single Domain Generalization
['Dongjia Zhao', 'Lei Qi', 'Xiao Shi', 'Yinghuan Shi', 'Xin Geng']
null
crowdsourced
99
Each column denotes a distinct domain, with the first column representing the source domain and the remaining three columns representing the target domains.when using Market1501 as the source domain and GRID as the target domain, where the CPerb framework achieves a significant 3.8% improvement in mean average precision (mAP) compared to the EFDMix [5].
RS_002_MLRC_2022_02
First Author: Zhang
A2R2YZTSME1K3F
87
Positive
A18LFH7XW61JO9
18
Positive
AKSJ3C5O3V9RB
57,606
Positive
batch_1
Positive
3
https://www.doi.org/10.5281/zenodo.8173652
[Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Mert Erkol', 'Furkan Kınlı', 'Barış Özcan', 'Furkan Kıraç']
null
MLRC
5
5
reproducible
10.1109/CVPR52688.2022.00787
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
['Yabin Zhang', 'Minghan Li', 'Ruihuang Li', 'K. Jia', 'Lei Zhang']
2,022
Computer Vision and Pattern Recognition
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Exact_Feature_Distribution_Matching_for_Arbitrary_Style_Transfer_and_Domain_CVPR_2022_paper.pdf
65
10.1109/CVPR52688.2022.00787
null
null
null
null
null
null
crowdsourced
End of preview.

CC30k: A Citation Contexts Dataset for Reproducibility-Oriented Sentiment Analysis

Paper | Code

The CC30k dataset consists of labeled citation contexts obtained through crowdsourcing. Each context is labeled by three independent workers. This README describes the structure and columns of the dataset.

Citation Contexts for AI Reproducibility - Dataset

Dataset Description

The CC30k dataset is unique in its focus on reproducibility-oriented sentiments (ROS) within scientific literature. This introduces a novel approach to studying computational reproducibility by leveraging citation contexts, which are textual fragments in scientific papers that reference prior work. This dataset comprises 30,734 labeled citation contexts from scientific literature published at AI venues, each annotated with one of three ROS labels: Positive, Negative, or Neutral. These labels reflect the cited work's perceived reproducibility. The dataset contains ROS labeled contexts along with metadata about the workers, reproducibility study, related original paper, citing paper, the final aggregated labels and the label type. The columns in the dataset are detailed in the table below:

Column Name Description
input_index Unique ID for each citation context.
input_context Citation context that workers are asked to label.
input_file_key Identifier linking the context to a rep-study.
input_first_author Name or identifier of the first author of the cited paper.
worker_id_w1 Unique ID of the first worker who labeled this citation context.
work_time_in_seconds_w1 Time (in seconds) the first worker took to label the citation context.
worker_id_w2 Unique ID of the second worker who labeled this citation context.
work_time_in_seconds_w2 Time (in seconds) the second worker took to label the citation context.
worker_id_w3 Unique ID of the third worker who labeled this citation context.
work_time_in_seconds_w3 Time (in seconds) the third worker took to label the citation context.
label_w1 Label assigned by the first worker.
label_w2 Label assigned by the second worker.
label_w3 Label assigned by the third worker.
batch Batch number for the posted Mechanical Turk job.
majority_vote Final label based on the majority vote among workers’ labels (reproducibility-oriented sentiment: Positive, Negative, or Neutral).
majority_agreement Indicates how many of the three workers agreed on the final majority vote.
rs_doi Digital Object Identifier (DOI) of the reproducibility study paper.
rs_title Title of the reproducibility study paper.
rs_authors List of authors of the reproducibility study paper.
rs_year Publication year of the reproducibility study paper.
rs_venue Venue (conference or journal) where the reproducibility study was published.
rs_selected_claims Number of claims selected from the original paper for reproducibility study (by manual inspection).
rs_reproduced_claims Number of selected claims that were successfully reproduced (by manual inspection).
reproducibility Final reproducibility label assigned to the original paper by manual inspection (reproducible, not-reproducible, partially-reproducible [if 0 < rs_reproduced_claims < rs_selected_claims]).
org_doi DOI of the original (cited) paper that was assessed for reproducibility.
org_title Title of the original (cited) paper.
org_authors List of authors of the original (cited) paper.
org_year Publication year of the original (cited) paper.
org_venue Venue where the original (cited) paper was published.
org_paper_url URL to access the original (cited) paper.
org_citations Number of citations received by the original (cited) paper.
org_s2ga_id Semantic Scholar Graph API ID of the original (cited) paper.
citing_doi DOI of the citing paper that cited the original (cited) paper.
citing_year Publication year of the citing paper.
citing_venue Venue where the citing paper was published.
citing_title Title of the citing paper.
citing_authors List of authors of the citing paper.
citing_s2ga_id Semantic Scholar Graph API ID of the citing paper.
label_type Label source: crowdsourced or augmented_human_validated or augmented_machine_labeled.

Jupyter Notebook Descriptions

The GitHub repository's notebooks directory contains the following Jupyter notebooks, which were used to produce and analyze the dataset:

  • R001_AWS_Labelling_Dataset_Preprocessing_Mturk.ipynb
    • Used to pre-process data for Mechanical Turk (MTurk) labeling.
  • R001_AWS_MTurk_API.ipynb
    • Used to communicate with MTurk workers.
  • R001_AWS_MTurk_process_results.ipynb
    • Used to process crowdsourced results from MTurk.
  • R001_Extend_CC25k_Dataset.ipynb
    • Used to extend the crowdsourced labels with newly augmented ROS: Negative contexts.
  • R_001_Creating_the_RS_superset.ipynb
    • Used to collect the original and reproducibility studies.
  • R_001_Extract_Citing_Paper_Details.ipynb
    • Used to collect citing paper details and contexts using the Semantic Scholar Graph API (S2GA).
  • R001_MTurk_Sentiment_Analysis_5_models.ipynb
    • Generates the performance measures for the selected five open-source multiclass sentiment analysis models.

Citation

@misc{obadage2025cc30kcitationcontextsdataset,
      title={CC30k: A Citation Contexts Dataset for Reproducibility-Oriented Sentiment Analysis}, 
      author={Rochana R. Obadage and Sarah M. Rajtmajer and Jian Wu},
      year={2025},
      eprint={2511.07790},
      archivePrefix={arXiv},
      primaryClass={cs.DL},
      url={https://arxiv.org/abs/2511.07790}, 
}
Downloads last month
26