serbekun/CCAiM
Image Classification
•
Updated
•
8
image
imagewidth (px) 404
5.18k
| label
class label 10
classes |
|---|---|
9Stratus
|
|
1Altostratus
|
|
6Cumulus
|
|
0Altocumulus
|
|
0Altocumulus
|
|
4Cirrus
|
|
4Cirrus
|
|
6Cumulus
|
|
5Cumulonimbus
|
|
5Cumulonimbus
|
|
4Cirrus
|
|
6Cumulus
|
|
6Cumulus
|
|
0Altocumulus
|
|
9Stratus
|
|
6Cumulus
|
|
6Cumulus
|
|
9Stratus
|
|
9Stratus
|
|
9Stratus
|
|
3Cirrostratus
|
|
9Stratus
|
|
3Cirrostratus
|
|
9Stratus
|
|
6Cumulus
|
|
9Stratus
|
|
6Cumulus
|
|
6Cumulus
|
|
6Cumulus
|
|
6Cumulus
|
|
6Cumulus
|
|
8Stratocumulus
|
|
6Cumulus
|
|
8Stratocumulus
|
|
4Cirrus
|
|
4Cirrus
|
|
6Cumulus
|
|
8Stratocumulus
|
|
8Stratocumulus
|
|
4Cirrus
|
|
6Cumulus
|
|
9Stratus
|
|
4Cirrus
|
|
4Cirrus
|
|
4Cirrus
|
|
4Cirrus
|
|
8Stratocumulus
|
|
9Stratus
|
|
8Stratocumulus
|
|
8Stratocumulus
|
|
8Stratocumulus
|
|
8Stratocumulus
|
|
4Cirrus
|
|
8Stratocumulus
|
|
4Cirrus
|
|
4Cirrus
|
|
1Altostratus
|
|
9Stratus
|
|
0Altocumulus
|
|
0Altocumulus
|
|
2Cirrocumulus
|
|
9Stratus
|
|
9Stratus
|
|
4Cirrus
|
|
6Cumulus
|
|
6Cumulus
|
|
1Altostratus
|
|
4Cirrus
|
|
4Cirrus
|
|
2Cirrocumulus
|
|
2Cirrocumulus
|
|
0Altocumulus
|
|
9Stratus
|
|
0Altocumulus
|
|
0Altocumulus
|
|
0Altocumulus
|
|
2Cirrocumulus
|
|
6Cumulus
|
|
6Cumulus
|
|
3Cirrostratus
|
|
3Cirrostratus
|
|
4Cirrus
|
|
2Cirrocumulus
|
|
4Cirrus
|
|
4Cirrus
|
|
6Cumulus
|
|
6Cumulus
|
|
6Cumulus
|
|
9Stratus
|
|
3Cirrostratus
|
|
7Nimbostratus
|
|
0Altocumulus
|
|
2Cirrocumulus
|
|
4Cirrus
|
|
3Cirrostratus
|
|
4Cirrus
|
|
1Altostratus
|
|
0Altocumulus
|
|
9Stratus
|
|
8Stratocumulus
|
This dataset contains photographs of clouds collected for the CCAiM project, a model for cloud classification. It includes various types of clouds captured from the ground and can be used for training and testing computer vision models.
from datasets import load_dataset
dataset = load_dataset("serbekun/CCAiM-CloudsDataset")
print(dataset)
from datasets import load_dataset
ds = load_dataset("serbekun/CCAiM-CloudsDataset")
example = ds["train"][0]
image = example["image"]
label = example["label"]
image.show()
print("Label:", ds["train"].features["label"].int2str(label))
You will get a DatasetDict with splits like train, validation (if available) and images of clouds with their corresponding labels.
The dataset is intended for training and testing the CCAiM model for cloud classification. It can be used for educational and research purposes.
The dataset is released under the MIT
For questions or suggestions, reach out via GitHub: serbekun