Dataset Viewer
Auto-converted to Parquet
Name
stringlengths
1
16
Year
int64
1.91k
2.02k
Total_sum
int64
3
2.26M
Female_count
int64
0
2.23M
Male_count
int64
0
1.91M
Female_percentage
float64
0
100
Male_percentage
float64
0
100
Gender
stringclasses
3 values
JOSEPHA
1,908
17
17
0
100
0
Female
URBANIE
1,908
3
3
0
100
0
Female
VITALINE
1,908
24
24
0
100
0
Female
ALBERTE
1,908
96
96
0
100
0
Female
JUDITH
1,908
55
55
0
100
0
Female
DARIE
1,908
4
4
0
100
0
Female
EUPHRASIE
1,908
71
71
0
100
0
Female
ANNONCIADE
1,908
32
32
0
100
0
Female
ANNITA
1,908
12
12
0
100
0
Female
APPOLONIE
1,908
16
16
0
100
0
Female
ZENOBIE
1,908
7
7
0
100
0
Female
JULIANE
1,908
5
5
0
100
0
Female
BERTILDE
1,908
3
3
0
100
0
Female
SONIA
1,908
5
5
0
100
0
Female
DORIA
1,908
29
29
0
100
0
Female
REMISE
1,908
3
3
0
100
0
Female
MARIE-PAULINE
1,908
3
3
0
100
0
Female
THEODORA
1,908
25
25
0
100
0
Female
ISOLINE
1,908
7
7
0
100
0
Female
JOSEPHINE
1,908
2,917
2,917
0
100
0
Female
ANITA
1,908
38
38
0
100
0
Female
GERMINALE
1,908
3
3
0
100
0
Female
ALFREDE
1,908
3
3
0
100
0
Female
HERVELINE
1,908
11
11
0
100
0
Female
LISBETH
1,908
3
3
0
100
0
Female
JULIEN
1,908
1,616
0
1,616
0
100
Male
MARIANO
1,908
7
0
7
0
100
Male
SADI
1,908
7
0
7
0
100
Male
LEONUS
1,908
3
0
3
0
100
Male
MARCIEN
1,908
5
0
5
0
100
Male
ALBIN
1,908
59
0
59
0
100
Male
ALBERT
1,908
4,699
0
4,699
0
100
Male
BERNARDIN
1,908
18
0
18
0
100
Male
AMAURY
1,908
5
0
5
0
100
Male
LUCIEN
1,908
4,312
0
4,312
0
100
Male
MATHIAS
1,908
63
0
63
0
100
Male
CASIMIR
1,908
102
0
102
0
100
Male
HYPOLYTE
1,908
6
0
6
0
100
Male
SABAS
1,908
3
0
3
0
100
Male
THEOTIME
1,908
4
0
4
0
100
Male
OSWALD
1,908
13
0
13
0
100
Male
MODERAN
1,908
6
0
6
0
100
Male
HIPPOLYTE
1,908
207
0
207
0
100
Male
WENDELIN
1,908
3
0
3
0
100
Male
STEPHEN
1,908
8
0
8
0
100
Male
NORBERT
1,908
191
0
191
0
100
Male
JOSEPHIN
1,908
4
0
4
0
100
Male
HAROLD
1,908
5
0
5
0
100
Male
BARTHELEMI
1,908
14
0
14
0
100
Male
GEROME
1,908
10
0
10
0
100
Male
CAMILLE
1,908
287,709
207,732
79,977
72.202121
27.797879
Unisex
PULCHERIE
1,908
738
579
159
78.455285
21.544715
Unisex
PHILOGONE
1,908
396
183
213
46.212121
53.787879
Unisex
AVIT
1,908
485
106
379
21.85567
78.14433
Unisex
BONIFACE
1,908
1,187
217
970
18.281382
81.718618
Unisex
SULPICE
1,908
508
182
326
35.826772
64.173228
Unisex
WENCESLAS
1,908
877
175
702
19.95439
80.04561
Unisex
EULOGE
1,908
621
198
423
31.884058
68.115942
Unisex
MESMIN
1,908
773
183
590
23.673997
76.326003
Unisex
LEONIDE
1,908
1,588
1,245
343
78.400504
21.599496
Unisex
MODESTE
1,908
1,853
656
1,197
35.402051
64.597949
Unisex
SAINTE
1,908
1,055
648
407
61.421801
38.578199
Unisex
SEPTIME
1,908
394
119
275
30.203046
69.796954
Unisex
LEONCE
1,908
9,290
2,041
7,249
21.96986
78.03014
Unisex
MARY
1,908
6,861
5,830
1,031
84.973036
15.026964
Unisex
_PRENOMS_RARES
1,908
1,760,252
908,578
851,674
51.616359
48.383641
Unisex
AMOUR
1,908
782
287
495
36.700767
63.299233
Unisex
CRESCENT
1,908
447
87
360
19.463087
80.536913
Unisex
HYACINTHE
1,908
4,679
1,173
3,506
25.069459
74.930541
Unisex
SCHOLASTIQUE
1,908
1,080
835
245
77.314815
22.685185
Unisex
NONCE
1,908
598
172
426
28.762542
71.237458
Unisex
SOSTHENE
1,908
1,059
185
874
17.469311
82.530689
Unisex
PLACIDE
1,908
1,098
214
884
19.489982
80.510018
Unisex
ANTONIE
1,908
986
749
237
75.963489
24.036511
Unisex
NICOMEDE
1,908
430
193
237
44.883721
55.116279
Unisex
ANGELA
1,909
17
17
0
100
0
Female
LAURETTE
1,909
24
24
0
100
0
Female
ELIZE
1,909
4
4
0
100
0
Female
ROSINE
1,909
175
175
0
100
0
Female
LISE
1,909
42
42
0
100
0
Female
MATHILDE
1,909
1,008
1,008
0
100
0
Female
EDESE
1,909
3
3
0
100
0
Female
VIVIENNE
1,909
21
21
0
100
0
Female
ZENOBIE
1,909
8
8
0
100
0
Female
DOCTROVEE
1,909
3
3
0
100
0
Female
MARIE-SAINTE
1,909
3
3
0
100
0
Female
NOELE
1,909
41
41
0
100
0
Female
LILLY
1,909
7
7
0
100
0
Female
BARBE
1,909
3,019
2,623
396
86.883074
13.116926
Female
DOROTHE
1,909
3
3
0
100
0
Female
VINCIENNE
1,909
3
3
0
100
0
Female
SIDONIE
1,909
184
184
0
100
0
Female
EUGÉNIE
1,909
2,419
2,419
0
100
0
Female
MARIE-AUGUSTINE
1,909
7
7
0
100
0
Female
RUFINE
1,909
5
5
0
100
0
Female
SYLVESTINE
1,909
5
5
0
100
0
Female
OLGA
1,909
24,745
24,580
165
99.333199
0.666801
Female
AURELIA
1,909
11
11
0
100
0
Female
YVETTE
1,909
611
611
0
100
0
Female
JULIENNE
1,909
1,036
1,036
0
100
0
Female
End of preview. Expand in Data Studio

This is the official dataset for Beyond Binary Gender Labels: Revealing Gender Bias in LLMs through Gender-Neutral Name Predictions

Name-based gender prediction has traditionally categorized individuals as either female or male based on their names, using a binary classification system. That binary approach can be problematic in the cases of gender-neutral names that do not align with any one gender, among other reasons. Relying solely on binary gender categories without recognizing gender-neutral names can reduce the inclusiveness of gender prediction tasks. We introduce an additional gender category, i.e., "neutral", to study and address potential gender biases in Large Language Models (LLMs).

The France SSA dataset had few gender-neutral names in the early 1900s. Therefore, we selected 32 names per gender for each year from 1908 to 2022.

For Dynamic Gender Labe Dataset, please visit this page.

Dataset Statistics

We split the dataset into train/val/test sets. We keep all three genders (male/female/neutral) balanced across all three sets. Please see below and the paper for more details of our curated datasets: image/png

Citation

Please cite the below paper if you intent to use our data for your research:

@inproceedings{you-etal-2024-beyond,
    title = "Beyond Binary Gender Labels: Revealing Gender Bias in {LLM}s through Gender-Neutral Name Predictions",
    author = "You, Zhiwen  and
      Lee, HaeJin  and
      Mishra, Shubhanshu  and
      Jeoung, Sullam  and
      Mishra, Apratim  and
      Kim, Jinseok  and
      Diesner, Jana",
    editor = "Fale{\'n}ska, Agnieszka  and
      Basta, Christine  and
      Costa-juss{\`a}, Marta  and
      Goldfarb-Tarrant, Seraphina  and
      Nozza, Debora",
    booktitle = "Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.gebnlp-1.16",
    doi = "10.18653/v1/2024.gebnlp-1.16",
    pages = "255--268",
}

Contact Information

If you have any questions, please email zhiweny2@illinois.edu.

Downloads last month
21