Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 7 new columns ({'theme', 'label_outcome_index', 'market_id', 'token_id_1', 'market_status', 'token_id_0', 'label_outcome_name'}) and 9 missing columns ({'chi2_statistic', 'max_benford_deviation', 'mean_volume', 'total_volume', 'concentration_pct', 'candle_count', 'median_volume', 'suspicious_score', 'volume_skew'}).

This happened while the csv dataset builder was generating data using

hf://datasets/valctrl/polypolitics1000/markets_metadata_partial.csv (at revision e19eac17b475ae14b21035ff6ccc5dc3c46e03c0)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              condition_id: string
              market_id: int64
              token_id_0: string
              token_id_1: string
              label_outcome_index: int64
              label_outcome_name: string
              theme: string
              market_status: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1248
              to
              {'condition_id': Value('string'), 'candle_count': Value('int64'), 'total_volume': Value('float64'), 'mean_volume': Value('float64'), 'median_volume': Value('float64'), 'volume_skew': Value('float64'), 'concentration_pct': Value('float64'), 'chi2_statistic': Value('float64'), 'max_benford_deviation': Value('float64'), 'suspicious_score': Value('float64')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1339, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 972, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 7 new columns ({'theme', 'label_outcome_index', 'market_id', 'token_id_1', 'market_status', 'token_id_0', 'label_outcome_name'}) and 9 missing columns ({'chi2_statistic', 'max_benford_deviation', 'mean_volume', 'total_volume', 'concentration_pct', 'candle_count', 'median_volume', 'suspicious_score', 'volume_skew'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/valctrl/polypolitics1000/markets_metadata_partial.csv (at revision e19eac17b475ae14b21035ff6ccc5dc3c46e03c0)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

condition_id
string
candle_count
int64
total_volume
float64
mean_volume
float64
median_volume
float64
volume_skew
float64
concentration_pct
float64
chi2_statistic
float64
max_benford_deviation
float64
suspicious_score
float64
0x0010e9aa3b2a466703a2744a50a5101d11f1eaf1b6a4ebd80a68418ef57f5cf6
25
2,850.062279
123.915751
32.25
0.739743
21.818588
27.285752
0.268645
1.756863
0x00c1f064211bc4596ddb1cb743f1b204dbb174cc0f37b0a98df7d37c24b24b35
16
9,836.571377
614.785711
310.942231
0.494227
32.7666
6.84594
0.198909
1.127417
0x01a9eea306780839c5cf9a15a572a438c23af6c49b57f67e8a379f5e48e0e4f8
272
944,596,869.929749
3,591,623.079581
1,992.31
0.999445
8.192779
53.067537
0.124289
0.151419
0x01c7e880fea5b89bd8be283c28d6ed5e3248e3b154f6db04511f7508f3fb4619
30
6,012.777127
200.425904
150
0.251594
20.323388
11.767457
0.10309
-0.452931
0x02121814a639481bd2e7df36f4e4d8cae0ef1fb538b87351f8f14bca3561de2d
22
2,718.062053
123.548275
23.6842
0.8083
55.186378
11.014297
0.153515
2.411074
0x024f6cdd56880d89f22626f04d318d74a2b86a6c0a3517b683cee8839ca343a0
51
22,680.151741
444.708858
295.061536
0.336506
7.054627
11.482594
0.085723
-1.290038
0x025b49124d903dc29466cc2a8be59ca7869bd1cb5d0dd58eefa08deec449d074
217
59,587.479027
287.862218
124.651161
0.566976
11.576695
13.667821
0.060624
-1.180975
0x02a66257e74a1faf579280853c9078fd3077ff69ae8778d40496f02f2a499888
42
17,076.523495
416.500573
102.13
0.75479
11.61829
14.344755
0.162385
0.214341
0x02bb794cff1a348f415d63ce463658ce7da4622919462d6f7a0066d19f93ff35
139
151,133.468651
1,153.6906
110
0.904654
33.132965
33.190109
0.111658
1.08254
0x0395f31e645768180a7d817cef1457e8b401ce60c3655827d0fc92212555adc2
189
68,066.111983
373.989626
200
0.465226
7.345799
12.939807
0.052687
-1.605841
0x039de195553d5b83d8802d9428477b53edc69d27bb5b5b6bcaf0dc44e6145ad0
93
16,224.757162
216.330095
62.5
0.71109
12.0489
12.119842
0.072303
-0.752342
0x03f56fc522aa10a9b48141bb33b547a9cf954957feb88fcf9c371ac9a3ef0749
44
16,837.843823
391.577763
238.09
0.391973
11.581055
8.569904
0.102979
-0.891162
0x05728df137c8369cdd25d8932da04c5df4668ebb42f8ae7453038b82b86d542a
472
275,768.9013
602.115505
104.583333
0.826307
26.507671
16.467956
0.050498
-0.017019
0x0612548a0bec8fe88a7a2762eb4a58ab113515a2fa3dd65c6ea9f37c49e9f19d
1
4.0404
4.0404
4.0404
0
100
9.318851
0.90309
11.5309
0x07ca3646cc01db03efeb1d445e98d9a9ceb483aebe8b16b058daeb203dca5f89
23
61,152.102
2,658.787043
1,533
0.423421
20.345989
10.343259
0.13821
-0.1006
0x0845b2e50070ce4b4223816ff2faf757613a8fa91880a44ce0c7cf35d47dd143
41
34,679.497698
866.987442
525.55
0.393821
23.071271
8.116206
0.12397
-0.106736
0x08536d3d1a8d01ce275f8a807afc97208a90669a27c455a2cbd42dbab4abd5f9
238
46,339.884038
205.95504
104.166665
0.494226
9.030281
26.124909
0.108353
-0.964954
0x08f5fe8d0d29c08a96f0bc3dfb52f50e0caf470d94d133d95d38fa6c847e0925
1,364
1,355,742,743.48
993,946.292874
1,000
0.998994
47.33891
1,219.100246
0.219939
3.064323
0x08fbe3be22b176f9fd7a915ccd5b23470d6671747a05a4500346897f2834113e
136
60,528.351123
530.950448
52.622806
0.900889
59.872769
32.272923
0.15511
2.846521
0x09a8e23ecd58c1110936f957e356c80ccab479d1c915951e6a270c7553da95e1
94
16,515.503148
187.676172
90
0.520451
8.716053
18.395748
0.085334
-1.16996
0x0a240f35ab60000460db978695054ee26a7b6b58be4fc631a55e29a8c5379978
56
31,039.633388
564.356971
205
0.636755
13.001732
10.762877
0.133
-0.246407
0x0a590818d20913c0b1270744fe3c27c3745e413c5a17c817d87cc8a0090bd52f
60
37,027.301095
617.121685
143.519161
0.767438
20.176314
10.573252
0.132303
0.366725
0x0ab640a55f8b87ea634911e09c064d25545160d9f659d6fe055502c5163142c8
30
8,981.839341
309.718598
100
0.677126
29.005288
14.593231
0.121261
0.51713
0x0d2d1754232252bb73cc2fc31b4a9b1e16024002c393432b213e157bc3f9fa4c
59
7,652.684205
150.052631
21.117646
0.859265
13.06731
14.431451
0.091127
-0.216836
0x0dd237d033a616990688027d241890e7fdc496e5a0f6e0985322def8910aca97
147
16,309.351214
118.183704
33.805
0.713962
5.570404
14.479095
0.052454
-1.269015
0x0e081f5cda6e94a85a3849768e67a32d1701edef186832cf79688acc3bb1c646
292
51,541.428986
199.001656
108.333332
0.455616
6.137035
21.229493
0.055569
-1.637459
0x0f8087a333699c182f5cfb20fe7e59d08fd8405cf98b436cdc99c2dbdd3d412f
307
1,164,859.723354
3,935.336903
145.698233
0.962977
18.375067
35.948067
0.124646
0.591164
0x1222b4eac2e3e587bb4f1db239bcfa8a63a4d90f759fb80846cecc249826f867
29
9,102.11162
325.075415
250
0.230948
10.125855
17.560773
0.229601
0.302307
0x12a0cb60174abc437bf1178367c72d11f069e1a3add20b148fb0ab4279b772b2
731
301,388.568407
435.532613
40
0.908158
18.470404
34.174537
0.045007
-0.310093
0x14018049e265a2d88f284be9588e2e3542e3a3df08ccdb344d28355dd7fdd8ef
1,286
4,003,179,677.250013
3,112,892.439541
1,200
0.999615
88.38894
1,084.548469
0.194536
4.864033
0x158c053d0d58503d5bca10fb3ed56bdcf8fcd895086aba783509ad7174361ee4
42
8,591.690647
214.792266
105.231428
0.510078
24.314406
7.732106
0.057992
-0.684204
0x16ee5f2f2f72bb3aeeabdaaf198dc78cbf2cee1a7a8f1af99d3d226d8258e1d4
33
17,313.0989
524.639361
250
0.523482
15.595128
19.69531
0.157242
-0.100858
0x17bc51d12f13dbbec959d016af929788c66a82c223406eac4e2e8530a51f6295
146
15,280.823412
106.116829
19.607842
0.815224
7.58539
27.609521
0.13647
-0.125582
0x1a0828d61b8246d8b013515ca0732af77440edd3189b9d7040978e7d17e2ca6f
144
44,559.549196
322.895284
123.905962
0.616266
9.913924
15.739839
0.052475
-1.247022
0x1bd963b3380036820aa9bef904ae592df679edfb048e7f940be2b32d66583f0c
122
48,764.509907
427.758859
200
0.532447
9.0818
16.314061
0.069523
-1.285789
0x1ccd080d6c5f938142b900084411bffa98dd3217de0d2ade3f654028212cc65f
5
474
94.8
50
0.472574
42.194093
10.310887
0.320819
2.817892
0x1cea4f5764667b4e3da4cef57c81764b37432949093db840dc7f74d49b80299a
83
18,199.239692
219.267948
100.47
0.541793
6.959961
27.61509
0.161258
-0.455834
0x1dc34c88189139c6dc17edfa02273d8b7d89c02516e3fd28fd0b83fab62cd3b0
2
43.75
21.875
21.875
0
57.142857
2.500401
0.323909
3.59623
0x1dddc812dcfc7236b1268192b3ad0177fc42da2063d073d5a374806c2cdec082
11
2,450.058822
245.005882
207
0.155122
38.774579
9.543667
0.323909
2.677816
0x1df86bfcf976730163fa458e8954eee0f242f604eae9ad67116e621f443a24d5
58
22,212.990575
382.982596
215
0.438617
12.788444
7.029574
0.061039
-1.250188
0x1e65074e23b92b9407f3eac0527464a8e3058189b704b152d09500c4197053bc
516
17,684.101229
37.705973
10
0.73479
36.640709
24.366759
0.080633
0.607947
0x1f116bd36976395aba4319abea038ed13b013a86c54a78d1198426b2175817cf
381
174,876.951712
481.754688
150
0.688638
11.809897
13.733986
0.040491
-1.127316
0x1f5e91cec5de2c58c8b51e5830819bbed6c0978dc05b964e4f432d7744977d2a
75
110,640.729571
1,495.144994
106.060605
0.929063
21.135625
9.270388
0.117889
0.593797
0x21ed8848ab47f2b88878be0ffdaa9a874f1c6acc93a07a8fd1f02b2eb89f43a3
255
97,288.448188
403.686507
100.257256
0.751646
19.677567
17.522502
0.049449
-0.518336
0x222996f7a25c537b06fc33f9955cfb5e215e384e205a183be199aef016eee35f
15
6,410.893856
427.392924
341.79487
0.20028
28.591957
11.407898
0.187485
0.804452
0x23301bcd4979d15b032d38937937efd6700b1d8e9a52710d9a45c083e97467fb
30
18,301.554091
610.051803
435.36
0.286356
10.015538
10.247933
0.09691
-1.030123
0x2337344249a1a8ac54e70afad282143ac5586dcae1f14ae21040e6b92ced5aba
13
1,947.663332
149.820256
83.333332
0.443778
33.835416
11.51472
0.224107
1.43284
0x23a8c070468592394f2364384f78195dcd809a20deda59647c1512c98e5b400f
382
107,426.007329
291.918498
200
0.314877
7.969672
26.21196
0.076626
-1.335255
0x24d8bca52f2abed3e1e566a279e4033734f6032f32b0624cc19ba971549c64aa
178
44,406.520583
253.751546
80
0.684731
6.236598
13.034487
0.09248
-0.893906
0x26c77208c81a1453fcab3ac7c99ced140b85d258da9b3d4f53899fe4466af16f
706
546,807.436616
793.624727
200
0.747992
14.106872
98.282534
0.073214
-0.566538
0x26ee82bee2493a302d21283cb578f7e2fff2dd15743854f53034d12420863b55
570
696,900,955.357025
1,251,168.681072
14,970
0.988035
29.722426
33.372945
0.044009
0.402283
0x26f54f65d8720f8b5ff683fdf0b5a5e4fd56edbc87dc7692b4ad4d2f62ee5453
26
11,149.731406
428.835823
175.005
0.591907
26.906478
12.503797
0.113126
0.160402
0x278ef9e34bb097efef3f8198414f3039017a6a29890a3b9bb3ff10464268009d
430
179,905.624458
438.794206
103.312193
0.764554
11.646381
51.053809
0.094092
-0.447653
0x27a8e6777f5b3e6daf7395f00d542fd37f79d8b183495287773df1091d429bbd
42
5,369.833148
134.245829
7.142856
0.946793
40.410939
9.441
0.19897
2.403832
0x282afccfc6f9e7cd36bdd7d4e540d9052417e95c43ad7025dab04f2207dd2937
22
3,347.22222
159.391534
105
0.341245
14.549378
8.490905
0.141185
-0.360679
0x2855ec5d0831e31ec65c2a3f690a3a80773988d1804e2fe8c77fbd574256a3eb
146
29,947.028399
215.446247
107.142856
0.502693
5.939933
10.532413
0.068513
-1.512486
0x285d6bd65077c23feedf4dfa795ab56b35f6e2ed07d53056144569cc908499de
135
137,703.19397
1,035.362361
100
0.903415
11.466511
61.823406
0.104618
-0.073659
0x29f8437fee9a3c972bcdc483874dc6f5192142a2158e999ace849dedb342d671
1,026
477,916,105.399865
480,317.693869
3,743.2375
0.992207
21.38975
29.59343
0.028456
-0.161536
0x2a01b9e7bf7cff2a59b2d764191553d7e451646dd6916e53fdb180894c852f06
29
4,696.549971
161.949999
41.666665
0.742719
21.287594
4.28111
0.075504
-0.195145
0x2a9c818392b7e213bebe13ef773d2ecfe637221dbe04c4b9f47a3ce890f1cf4c
548
800,625,089.101122
1,466,346.317035
290.408
0.999802
33.950656
178.577201
0.108089
1.278023
0x2b8608c1c9816047da72346fa0f7f23f286b0ac08270f79fb629c58cb94f852d
427
363,281.912355
862.902405
122.789471
0.857702
18.534096
42.050387
0.05146
-0.343291
0x2bc4fc51bc1b872c0cff09f6bae839ec815de70ad51fd95505023311230ae16f
205
326,090.768241
1,614.310734
112.190555
0.930503
14.702791
24.724654
0.119762
0.293765
0x2bccda07440e97cf86b165698c08cdd022755053ff1a1b2a03e4d35b8cc5beef
38
24,790.464991
688.624028
70.56
0.897535
33.278924
11.945876
0.087736
0.836379
0x2c315428b15ad8ec6a24e29520a332891d578e55814aa799bb981de8e34bbb5a
175
96,107.213147
568.681735
200
0.648309
5.549011
37.373512
0.137518
-0.550748
0x2d4cc9a10b60450b446aa515c2c246ec8b5641cb6bf95e6a4176175fc99eb43a
36
13,727.193713
392.205535
47.619046
0.878587
29.139241
7.662346
0.09897
0.703835
0x2ffcb33724226952e3c4e43f84306ecf00e70d43b2e6e199e1ed3ff3b36f2624
112
36,140.716061
340.950152
50
0.853351
30.714804
4.87687
0.050324
0.245681
0x307fc1b752158ec5ef2d67e99cf0a3a8111a26276b3821c258dab243a4a20653
14
657.729026
73.081003
42
0.425295
31.167851
5.804151
0.157242
0.630813
0x308f90fa510f7ef7319e8d9948511abdae4d47032ef1421138f20b2ec5e73f03
532
357,688.014687
709.698442
123.724489
0.825666
14.786651
27.59903
0.04185
-0.69083
0x311198b7194c8eb1890df4d3a2e5171a313066bba76b0bdb431af757eeaf4e51
15
8,350.350503
835.03505
136.23
0.836857
86.223926
4.614797
0.19897
4.474611
0x3120827dc12167d09fd9f08233e2b540054a2ed90aad65c023bc1da9d38b29d9
1,354
1,058,676,988.86
781,888.470355
1,010
0.998708
39.459894
1,128.717568
0.208116
2.551568
0x32c02dd293eae94b38ad90b6c5cc237c29d0cbdc0d528a0b98d3ae0fda35c1d7
467
114,088.727309
245.880878
100
0.593299
16.417533
28.870817
0.071754
-0.77499
0x32f5ee4c802f311e1a991373ae06625a5f62ab2703173a9472d4a84b7ff7f408
359
293,877.801678
837.258694
150
0.820844
14.031968
18.901234
0.040433
-0.752384
0x330de5734db1c9528002357e39bd033ea06e7f083989f1b1a2aa991004ff6133
109
47,357.007292
473.570073
143.611111
0.696748
18.165724
14.2699
0.07897
-0.408518
0x331a0ad79408a5616512bbeace6e277452146d121d6a0886ee26fe56071b650e
19
5,432.709997
285.932105
90
0.68524
46.017549
7.042211
0.120023
1.371584
0x33a7545297ab2dce2b8f233f5130d40b4369b7d03fc1d503f28ffc29c6c4399e
35
7,443.350097
225.556064
100
0.556651
14.898802
9.167357
0.102637
-0.615388
0x35115172ec3f3838e4f97fccb74688ec8b6ee7b42966cefa18d39a708369ccbb
79
100,166.328983
1,284.183705
203.817115
0.841287
17.57433
44.02478
0.177229
0.83358
0x3648ab7c146a9a85957e07c1d43a82272be71fde767822fd425e10ba0d6c0757
46
6,440.727904
146.38018
55.246666
0.622581
13.895945
20.89979
0.176243
0.202386
0x367bf31df3b99187d96bae1e32a934cb022565ce22a3baee7ae0bc15d6eb3612
147
158,663.699947
1,079.344898
149.25373
0.861718
9.413867
21.72395
0.07732
-0.532673
0x368ca9c31c0efdf5e3c6d4a20e9a195d5f0105fa2538c7364a42526c49260f13
3
57.7311
28.86555
28.86555
0
50.005283
9.357747
0.823909
8.239352
0x36ba60d18ab5be0e82413d57458f8ea93bfe349e9d3ed6369d3202e3b3a2b6c4
252
33,772.144842
144.944828
10.41665
0.928134
20.727141
78.795923
0.213991
1.532539
0x3978b2934835876523d1b61a205db7c6e61ee8254a16461d63cafcd40cc2be65
15
1,629.329779
108.621985
66.66645
0.386253
18.412479
10.115799
0.208395
0.50457
0x3a1b1f9e99cdd969752824d9b3d3c452f9f14754ad9d5cf73347e4eb21286cfd
163
79,974.563599
499.841022
227.884615
0.544086
9.426372
37.184565
0.161409
-0.326422
0x3aacd25625f8dbf5bc0407d622067c2eb5706937a25cdba448f12aea6f38a2c3
199
413,980.67026
2,144.977566
266.666665
0.875679
19.319327
46.273353
0.122891
0.446236
0x3ac961dca3c4f0fc34bf94c661962012ab5e8bcdcadfc99affa06eddde00b29f
714
859,778,541.788726
1,223,013.572957
1,510
0.998765
41.377563
30.198319
0.05435
1.109906
0x3af10dde6c918841f2551ae31bb5d31451d83c9c965e7d96080e7f7627555813
13
1,224.21964
94.170742
47.619046
0.494333
16.745361
10.523879
0.285447
1.19174
0x3b0aa8cf94d772ef1fb1dab5e094ac39842735ef01bbbf285ac5fea1377dbe84
64
702,174.766607
11,325.399461
1,829
0.838505
18.26586
4.785157
0.050818
-0.40152
0x3c0d6c6ac5328e215a240b4d401047c03a85046cf7615520cb1c5ddfe6de405b
5
16,200
3,240
800
0.753086
46.296296
17.247993
0.342008
3.741068
0x3c1b76f77f93f19371d3df801047c0fba2e6ca4c4bd489dbabea990ea68f8941
215
82,065.019775
477.122208
38.518518
0.919269
33.939713
25.847702
0.066168
0.6972
0x3da9f54e3f239ff48966128917f229da5fc7d2289c40a52966d67ff2c5d0f192
104
123,237.912981
1,297.241189
61
0.952977
71.439688
18.807848
0.099766
2.9756
0x3dde8cb914fde7cf905a07b701892ea2ead3e3276c77b2f15af7ce6308890fe2
33
3,106.147823
107.108546
25
0.766592
13.907902
13.029702
0.181729
0.545865
0x3ea2136259e57288343b15c0c1d6248393d227414cef1f53dbaeb96f7721faf8
307
57,864.805221
224.282191
97.025
0.567398
18.151603
11.183963
0.037098
-1.086646
0x40bbdd26dc08406eedcb913efee7f7faddf50e16fc21caedb4972d57fd71e0d1
1,359
639,272,433.73
470,399.141818
1,030
0.99781
35.716215
1,282.112191
0.219568
2.47711
0x41190eb9336ae73949c04f4900f9865092e69a57cf9c942a6157abf6ae8d16c6
1,242
375,147,793.788119
308,256.198676
500
0.998378
44.803666
26.763083
0.033399
1.070929
0x41a09bfef86f1126b57d05692f11cae07716c5e28b88e7aa6d4fc640e2ed769b
958
573,077.758927
636.046347
156.58325
0.753818
17.831966
41.259031
0.068082
-0.419947
0x41d097dd0404f9ced7bbedbe09aa06e961ac339350a67cc7a563826e2f8a9010
131
85,270.217013
693.253797
210.75
0.695999
34.85625
15.997113
0.081518
0.449988
0x423ecd26b81f751e36da1190b0531d12345a04bdf31c771239d683d7852849fc
9
243.857675
27.095297
25.252524
0.068011
29.344986
13.645883
0.379464
2.761892
0x426cf619bab4d089ae92b1cf4ab28a3c86332b53b509e9aeb8b3753afdb168f1
13
5,578.786612
429.137432
86.95
0.797384
85.3933
8.239615
0.131601
3.680444
0x430fd0b3a028045d02d8f1ffde1de9d5cbf7540cbcfee3fe75683e189e7d5422
263
45,908.568019
179.330344
39.230769
0.781237
20.58167
30.150542
0.058532
-0.323117
0x43d7d4602d2c3ca67db94667152d0ed86c0b5151b6de4328daabf27e94698171
406
812,846.048394
2,027.047502
417
0.794282
17.95996
19.569164
0.053335
-0.480086
0x45dfa99da9ef3e0cc772cd58470bda4fffb0b6de3e765e06ff84520ee99a0882
2
252.5252
126.2626
126.2626
0
59.999992
4.643856
0.69897
7.4897
End of preview.

PolyPolitics1000: Prediction Market Dataset

A curated dataset of 316 resolved political prediction markets from Polymarket, containing 63,331 5-minute OHLC candles with ground truth labels. Designed for machine learning research, this dataset includes filtered data to remove wash trading and comprehensive market metadata.

Dataset Structure

Files

  • candles_5m_partial_cleaned.parquet (Recommended): Cleaned dataset with wash trading filtered. Contains 237 markets and 46,515 candles.
  • candles_5m_partial.parquet: Original dataset (316 markets, 63,331 candles) including markets flagged for suspicious volume.
  • markets_metadata_partial.csv: Metadata for all markets, including resolution status and themes.
  • market_volume_stats.csv: Volume statistics and Benford's Law test results.
  • suspicious_markets.csv: List of 79 markets filtered due to suspicious trading patterns.

Statistics

Metric Cleaned Dataset Original Dataset
Markets 237 316
Candles 46,515 63,331
Granularity 5-minute OHLC 5-minute OHLC
Label Coverage 100% 100%

Schema

Candles (candles_5m_partial_cleaned.parquet)

Field Type Description
condition_id string Market condition ID (primary key component)
market_id string Market identifier
token_id string Outcome token ID (2 per market)
bucket_start_ts int Unix timestamp (5-minute bucket start)
open, high, low, close float OHLC prices (0-1 range)
volume float Total volume traded
trade_count int Number of trades in bucket
label_outcome_index int Ground truth outcome (0 or 1)

Metadata (markets_metadata_partial.csv)

Field Type Description
condition_id string Market condition ID
market_id string Market identifier
token_id_0, token_id_1 string Outcome token IDs
label_outcome_index int Ground truth outcome (0 or 1)
theme string Market category

Usage

Loading

import pandas as pd

# Load cleaned dataset (recommended)
df = pd.read_parquet("candles_5m_partial_cleaned.parquet")
metadata = pd.read_csv("markets_metadata_partial.csv")

Feature Engineering Example

# Sort and calculate features
df = df.sort_values(["condition_id", "token_id", "bucket_start_ts"])

# Moving averages and price changes
df["price_change"] = df.groupby(["condition_id", "token_id"])["close"].pct_change()
df["volume_ma_10"] = df.groupby(["condition_id", "token_id"])["volume"].transform(
    lambda x: x.rolling(10, min_periods=1).mean()
)

Data Quality

  • Wash Trading: 79 markets (25% of original) were removed using Benford's Law analysis to filter artificial volume.
  • Validation:
    • Prices strictly within range.[1]
    • OHLC constraints enforced (low <= open/close <= high).
    • No negative volumes or trade counts.

Model Performance (Baseline)

Random Forest results on the cleaned dataset:

  • Accuracy: 60.42%
  • ROC-AUC: 0.6328
  • Brier Score: 0.2174

Citation

@dataset{polypolitics1000,
  title={PolyPolitics1000: Prediction Market Dataset},
  author={ValCtrl},
  year={2025},
  url={https://huggingface.co/datasets/valctrl/polypolitics1000}
}
Downloads last month
3