Datasets:
metadata
task_categories:
- text-classification
language:
- vi
VLSP2018-ABSA-Hotel
Dataset Summary
The VLSP 2018 Hotel corpus is designed for Vietnamese Aspect-Based Sentiment Analysis (ABSA), covering two sub-tasks of Aspect Category Sentiment Analysis (ACSA):
- Aspect Category Detection (ACD): identify which
Aspect#Categorypairs are present in each review. - Sentiment Polarity Classification (SPC): assign one of three sentiment labels (
Positive,Negative,Neutral) to each detectedAspect#Category.
This unified CSV contains 5,600 reviews with a type column for train/dev/test and binary indicators for each aspect–category (0=no, 1=positive, 2=negative, 3=neutral).
Supported Tasks and Metrics
- Aspect Category Detection: multi-label classification
- Sentiment Polarity Classification: multi-class classification
- Metrics: Precision, Recall, F1 (for both ACD and SPC)
Languages
- Vietnamese
Dataset Structure
| Column | Type | Description |
|---|---|---|
Review |
str |
The raw hotel review text. |
<Aspect#Category> (34 columns) |
int |
One-hot+polarity indicator per aspect#category (0/1/2/3). |
type |
str |
Split: train / validation / test. |
dataset |
str |
Always VLSP2018-ABSA-Hotel. |
The 34 aspect–category columns are:
FACILITIES#CLEANLINESS, FACILITIES#COMFORT, …, SERVICE#GENERAL
(each value: 0=absent, 1=positive, 2=negative, 3=neutral)
Usage
from datasets import load_dataset
ds = load_dataset("visolex/vlsp2018-absa-hotel")
train = ds.filter(lambda ex: ex["type"] == "train")
val = ds.filter(lambda ex: ex["type"] == "dev")
test = ds.filter(lambda ex: ex["type"] == "test")
print(train[0])
Source & Links
- GitHub: https://github.com/ds4v/absa-vlsp-2018
- Publication: End-to-end Multi-task Solutions for ACSA on Vietnamese (VLSP 2018)
Citation
@INPROCEEDINGS{9865479,
author={Dang, Hoang-Quan and Nguyen, Duc-Duy-Anh and Do, Trong-Hop},
booktitle={2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)},
title={Multi-task Solution for Aspect Category Sentiment Analysis on Vietnamese Datasets},
year={2022},
volume={},
number={},
pages={404-409},
keywords={Sentiment analysis;Analytical models;Computational modeling;Multitasking;Task analysis;Cybernetics;Computational intelligence;Aspect-based Sentiment Analysis;PhoBERT;Aspect Category Detection;Sentiment Polarity Classification},
doi={10.1109/CyberneticsCom55287.2022.9865479}}
}