AnnyNguyen's picture
Update README.md
63f952a verified
metadata
task_categories:
  - text-classification
language:
  - vi

VLSP2018-ABSA-Restaurant

Dataset Summary

The VLSP 2018 Restaurant corpus targets the same ACSA sub-tasks (ACD & SPC) on 4,751 Vietnamese restaurant reviews. This unified CSV includes:

  • 12 aspect–category indicator columns, each with values {0, 1, 2, 3}.
  • A type column for train/dev/test.
  • A dataset column fixed to VLSP2018-ABSA-Restaurant.

Supported Tasks and Metrics

  • Aspect Category Detection
  • Sentiment Polarity Classification
  • Metrics: Precision, Recall, F1

Languages

  • Vietnamese

Dataset Structure

Column Type Description
Review str The raw restaurant review.
<Aspect#Category> (12 cols) int Polarity indicator (0=absent, 1=positive, 2=negative, 3=neutral).
type str Split: train / validation / test.
dataset str Always VLSP2018-ABSA-Restaurant.

The 12 aspect–category columns:

AMBIENCE#GENERAL, DRINKS#PRICES, …, SERVICE#GENERAL

Usage

from datasets import load_dataset

ds = load_dataset("visolex/vlsp2018-absa-restaurant")

train = ds.filter(lambda ex: ex["type"] == "train")
val   = ds.filter(lambda ex: ex["type"] == "dev")
test  = ds.filter(lambda ex: ex["type"] == "test")

print(train.features)

Source & Links


Citation

@INPROCEEDINGS{9865479,
  author={Dang, Hoang-Quan and Nguyen, Duc-Duy-Anh and Do, Trong-Hop},
  booktitle={2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)}, 
  title={Multi-task Solution for Aspect Category Sentiment Analysis on Vietnamese Datasets}, 
  year={2022},
  volume={},
  number={},
  pages={404-409},
  keywords={Sentiment analysis;Analytical models;Computational modeling;Multitasking;Task analysis;Cybernetics;Computational intelligence;Aspect-based Sentiment Analysis;PhoBERT;Aspect Category Detection;Sentiment Polarity Classification},
  doi={10.1109/CyberneticsCom55287.2022.9865479}}
}