Datasets:
metadata
task_categories:
- text-classification
language:
- vi
VLSP2018-ABSA-Restaurant
Dataset Summary
The VLSP 2018 Restaurant corpus targets the same ACSA sub-tasks (ACD & SPC) on 4,751 Vietnamese restaurant reviews. This unified CSV includes:
- 12 aspect–category indicator columns, each with values {0, 1, 2, 3}.
- A
typecolumn for train/dev/test. - A
datasetcolumn fixed toVLSP2018-ABSA-Restaurant.
Supported Tasks and Metrics
- Aspect Category Detection
- Sentiment Polarity Classification
- Metrics: Precision, Recall, F1
Languages
- Vietnamese
Dataset Structure
| Column | Type | Description |
|---|---|---|
Review |
str |
The raw restaurant review. |
<Aspect#Category> (12 cols) |
int |
Polarity indicator (0=absent, 1=positive, 2=negative, 3=neutral). |
type |
str |
Split: train / validation / test. |
dataset |
str |
Always VLSP2018-ABSA-Restaurant. |
The 12 aspect–category columns:
AMBIENCE#GENERAL, DRINKS#PRICES, …, SERVICE#GENERAL
Usage
from datasets import load_dataset
ds = load_dataset("visolex/vlsp2018-absa-restaurant")
train = ds.filter(lambda ex: ex["type"] == "train")
val = ds.filter(lambda ex: ex["type"] == "dev")
test = ds.filter(lambda ex: ex["type"] == "test")
print(train.features)
Source & Links
- GitHub: https://github.com/ds4v/absa-vlsp-2018
- Publication: End-to-end Multi-task Solutions for ACSA on Vietnamese (VLSP 2018) ([github.com][1])
Citation
@INPROCEEDINGS{9865479,
author={Dang, Hoang-Quan and Nguyen, Duc-Duy-Anh and Do, Trong-Hop},
booktitle={2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)},
title={Multi-task Solution for Aspect Category Sentiment Analysis on Vietnamese Datasets},
year={2022},
volume={},
number={},
pages={404-409},
keywords={Sentiment analysis;Analytical models;Computational modeling;Multitasking;Task analysis;Cybernetics;Computational intelligence;Aspect-based Sentiment Analysis;PhoBERT;Aspect Category Detection;Sentiment Polarity Classification},
doi={10.1109/CyberneticsCom55287.2022.9865479}}
}