Linear Model Merging Unlocks Simple and Scalable Multimodal Data Mixture Optimization

arXiv 🤗 Model (HuggingFace) 🤗 Dataset (HuggingFace) github

This is an official checkpoint from the paper: "Linear Model Merging Unlocks Simple and Scalable Multimodal Data Mixture Optimization " (link). See the official implementation for more information on how to use the models.

intern35_2b_lora_expert_general-102400

This model is a fine-tuned version of OpenGVLab/InternVL3_5-2B-Pretrained-HF on a custom dataset with General VQA data (~100k samples).

It achieves the following results on the evaluation set:

  • Loss: 0.8717

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 800

Training results

Training Loss Epoch Step Validation Loss
0.9434 0.125 100 0.9643
0.8927 0.25 200 0.9049
0.9207 0.375 300 0.8887
0.8682 0.5 400 0.8803
0.8758 0.625 500 0.8755
0.8926 0.75 600 0.8730
0.8777 0.875 700 0.8720
0.8962 1.0 800 0.8717

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.4
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
13
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for daviBera/intern35_2b_lora_expert_general-102400

Adapter
(4)
this model

Collection including daviBera/intern35_2b_lora_expert_general-102400

Paper for daviBera/intern35_2b_lora_expert_general-102400