x5-ner-add-brands
This model is a fine-tuned version of xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6014
- Precision: 0.9337
- Recall: 0.9463
- F1: 0.9400
- Accuracy: 0.9444
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.3211 | 1.0 | 3575 | 0.3531 | 0.8843 | 0.9256 | 0.9045 | 0.9257 |
| 0.2714 | 2.0 | 7150 | 0.2769 | 0.9079 | 0.9270 | 0.9174 | 0.9330 |
| 0.1841 | 3.0 | 10725 | 0.3360 | 0.9165 | 0.9322 | 0.9243 | 0.9347 |
| 0.1294 | 4.0 | 14300 | 0.3565 | 0.9292 | 0.9433 | 0.9362 | 0.9411 |
| 0.0834 | 5.0 | 17875 | 0.3755 | 0.9285 | 0.9447 | 0.9365 | 0.9425 |
| 0.0716 | 6.0 | 21450 | 0.4562 | 0.9327 | 0.9463 | 0.9395 | 0.9437 |
| 0.0575 | 7.0 | 25025 | 0.4837 | 0.9278 | 0.9450 | 0.9363 | 0.9402 |
| 0.0342 | 8.0 | 28600 | 0.5108 | 0.9341 | 0.9494 | 0.9417 | 0.9457 |
| 0.0139 | 9.0 | 32175 | 0.5501 | 0.9355 | 0.9463 | 0.9409 | 0.9449 |
| 0.0143 | 10.0 | 35750 | 0.6014 | 0.9337 | 0.9463 | 0.9400 | 0.9444 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu128
- Datasets 4.1.1
- Tokenizers 0.22.1
- Downloads last month
- 12
Model tree for dreyk111/x5-ner-add-brands
Base model
FacebookAI/xlm-roberta-large