garrison's picture
Upload README.md with huggingface_hub
ffb8c73 verified
---
language:
- en
library_name: transformers
tags:
- glm
- MOE
- pruning
- compression
- mlx
- mlx-my-repo
license: mit
name: cerebras/GLM-4.5-Air-REAP-82B-A12B
description: 'This model was obtained by uniformly pruning 25% of experts in GLM-4.5-Air
using the REAP method.
'
readme: 'https://huggingface.co/cerebras/GLM-4.5-Air-REAP-82B-A12B/main/README.md
'
license_link: https://huggingface.co/zai-org/GLM-4.5-Air/blob/main/LICENSE
pipeline_tag: text-generation
base_model: cerebras/GLM-4.5-Air-REAP-82B-A12B
---
# garrison/GLM-4.5-Air-REAP-82B-A12B-mlx-3Bit
The Model [garrison/GLM-4.5-Air-REAP-82B-A12B-mlx-3Bit](https://huggingface.co/garrison/GLM-4.5-Air-REAP-82B-A12B-mlx-3Bit) was converted to MLX format from [cerebras/GLM-4.5-Air-REAP-82B-A12B](https://huggingface.co/cerebras/GLM-4.5-Air-REAP-82B-A12B) using mlx-lm version **0.28.3**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("garrison/GLM-4.5-Air-REAP-82B-A12B-mlx-3Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```