SetFit with deutsche-telekom/gbert-large-paraphrase-cosine
This is a SetFit model that can be used for Text Classification. This SetFit model uses deutsche-telekom/gbert-large-paraphrase-cosine as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: deutsche-telekom/gbert-large-paraphrase-cosine
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
| Label | Examples |
|---|---|
| 1 |
|
| 0 |
|
Evaluation
Metrics
| Label | F1 | Precision | Recall |
|---|---|---|---|
| all | 0.8564 | 0.8585 | 0.8548 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("gehaustein/gbert-large-stance-multiculturalism")
# Run inference
preds = model("für Integration")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 14.6336 | 42 |
| Label | Training Sample Count |
|---|---|
| 0 | 128 |
| 1 | 366 |
Training Hyperparameters
- batch_size: (128, 128)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (1e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0008 | 1 | 0.3283 | - |
| 0.0424 | 50 | 0.2401 | 0.234 |
| 0.0848 | 100 | 0.0852 | 0.202 |
| 0.1272 | 150 | 0.0054 | 0.2493 |
| 0.1696 | 200 | 0.001 | 0.2502 |
| 0.2120 | 250 | 0.0002 | 0.2513 |
| 0.2545 | 300 | 0.0012 | 0.2496 |
| 0.2969 | 350 | 0.0046 | 0.2485 |
| 0.3393 | 400 | 0.0056 | 0.2538 |
| 0.3817 | 450 | 0.0001 | 0.2543 |
| 0.4241 | 500 | 0.0001 | 0.2443 |
| 0.4665 | 550 | 0.0001 | 0.2472 |
| 0.5089 | 600 | 0.0051 | 0.2655 |
| 0.5513 | 650 | 0.0002 | 0.2646 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.3.1
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu121
- Datasets: 2.14.4
- Tokenizers: 0.21.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 1
Model tree for gehaustein/gbert-large-stance-multiculturalism
Base model
deepset/gbert-largeEvaluation results
- F1 on Unknowntest set self-reported0.856
- Precision on Unknowntest set self-reported0.858
- Recall on Unknowntest set self-reported0.855