SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("gmunkhtur/finetuned_paraphrase-multilingual_mpnet_try2")
sentences = [
'“Онцлох өгүүлэл” ангилалд ямар өгүүлэл багтаж байна вэ?',
'*Замын-Үүд сум *Иххэт сум *Мандах сум *Өргөн сум *Сайхандулаан сум *Сайншанд сум *Улаанбадрах сум *Хатанбулаг сум *Хөвсгөл сум *Эрдэнэ сум ==Цахим холбоос== * Дорноговь аймгийн албан ёсны цахим хуудас * Дорноговь аймгийн хараат бус мэдээллийн портал цахим хуудас ==Эшлэл== Ангилал:Википедиа:Онцлох өгүүлэл Ангилал:Монголын аймаг !',
'танхимд нууцаар цугларч, тухайн үеийн хаалттай сэдэв болох ардчилал, чөлөөт зах зээлийн тухай юу мэдэхээ хэлэлцэн ярилцаж, ардчилсан хөдөлгөөн зохион байгуулах төлөвлөгөө зохиож эхэлжээ. Тэд олон удаа уулзаж, шинэ найз нөхөд, шинэ дэмжигчдийг өөрсөдтэйгээ нэгдүүлэхээр дагуулж ирж байв. Нэг шөнө тэд нээлттэй цуглаан зохион байгуулах тухай зарлалаа гудамжинд шонгийн моднууд дээр наасан байв.260px|Зэвсэгт хүчний Ерөнхий командлагч Цахиагийн Элбэгдорж 1989 оны 12 дугаар сарын 10-ны өглөө Монголын Залуучуудын Эвлэлийн байрны өмнө ардчиллын төлөө анхны олон нийтийн цуглаан болов. Хүмүүс цугларахад тус цуглааныг зохион байгуулагчдын нэг Элбэгдoрж микрофон аваад, Монголд Ардчилсан хөдөлгөөн байгуулагдаж байгааг зарлан тунхагласан. Тус хөдөлгөөнөөс удалгүй Ардчилсан Холбоо байгуулагдав. Ардчилсан Холбоо нь Монголын анхны төрийн бус ардчилсан байгууллага бөгөөд Элбэгдорж үндэслэн байгуулагчдын нь нэг юм. Тухайн үеийн Монголын төрийн дээд гүйцэтгэх байгууллага болох МАХН-ын Улс Төрийн Товчооны',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.3663 |
| cosine_accuracy@3 |
0.5589 |
| cosine_accuracy@5 |
0.6219 |
| cosine_accuracy@10 |
0.6904 |
| cosine_precision@1 |
0.3663 |
| cosine_precision@3 |
0.1863 |
| cosine_precision@5 |
0.1244 |
| cosine_precision@10 |
0.069 |
| cosine_recall@1 |
0.3663 |
| cosine_recall@3 |
0.5589 |
| cosine_recall@5 |
0.6219 |
| cosine_recall@10 |
0.6904 |
| cosine_ndcg@10 |
0.5296 |
| cosine_mrr@10 |
0.4781 |
| cosine_map@100 |
0.4864 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.3679 |
| cosine_accuracy@3 |
0.5613 |
| cosine_accuracy@5 |
0.6204 |
| cosine_accuracy@10 |
0.692 |
| cosine_precision@1 |
0.3679 |
| cosine_precision@3 |
0.1871 |
| cosine_precision@5 |
0.1241 |
| cosine_precision@10 |
0.0692 |
| cosine_recall@1 |
0.3679 |
| cosine_recall@3 |
0.5613 |
| cosine_recall@5 |
0.6204 |
| cosine_recall@10 |
0.692 |
| cosine_ndcg@10 |
0.5309 |
| cosine_mrr@10 |
0.4794 |
| cosine_map@100 |
0.4878 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 14,380 training samples
- Columns:
sentence_0 and sentence_1
- Approximate statistics based on the first 1000 samples:
|
sentence_0 |
sentence_1 |
| type |
string |
string |
| details |
- min: 9 tokens
- mean: 17.65 tokens
- max: 42 tokens
|
- min: 30 tokens
- mean: 126.06 tokens
- max: 128 tokens
|
- Samples:
| sentence_0 |
sentence_1 |
Дорноговь аймаг хэдэн онд байгуулагдсан бэ? |
Дорноговь (монгол бичгээр – дорунагоби) аймаг нь Монгол Улсын зүүн аймаг бөгөөд 1931 онд байгуулагдсан. 2017 оны эцсээр 14 сум, 64 баг, 68606 хүн амтай бөгөөд олон хүн амын тоо хурдацтай нэмэгдэж байгаа юм. Аймгийн төв Сайншанд сум нь улсын нийслэл Улаанбаатар хотоос 450км-т оршдог. Дорноговь аймаг Монгол орны зүүн өмнөд хязгаарт Өмнөговь, Дундговь, Говьсүмбэр, Хэнтий, Сүхбаатар аймгуудтай хил залган оршдог. БНХАУ-тай 600 км- урт газраар хиллэдэг. Хойд, урд хоёр гүрнийг холбосон, төвийн бүсийн хөгжлийн гол тэнхлэг болсон төмөр зам дайран өнгөрдөг. Энэ замын дагуу тус аймгийн бүх сумын 42,8 хувь, хүн амын 61 хувь нь оршин сууж байна. == Хүн ам == Дорноговь аймагт 2017 оны эцсийн байдлаар 20844 өрхөд 68606 хүн ам оршин суудаг бөгөөд 1 кв.км нутаг дэвсгэрт 1.5 хүн ногдож байна. Хүн амын 61 хувь нь Сайншанд хотод, 15.2 хувь нь сумын төвд, 24.2 хувь нь хөдөөд оршин суудаг. Хүн амын 48,7 хувь нь эрэгтэйчүүд, 51,3 хувь нь эмэгтэйчүүд байна. Нэг өрхөд дунджаар 3,4 хүн ногддог. Нийт 19,7 мянган |
Дорноговь аймгийн хүн амын тоо 2017 онд хэд байв? |
Дорноговь (монгол бичгээр – дорунагоби) аймаг нь Монгол Улсын зүүн аймаг бөгөөд 1931 онд байгуулагдсан. 2017 оны эцсээр 14 сум, 64 баг, 68606 хүн амтай бөгөөд олон хүн амын тоо хурдацтай нэмэгдэж байгаа юм. Аймгийн төв Сайншанд сум нь улсын нийслэл Улаанбаатар хотоос 450км-т оршдог. Дорноговь аймаг Монгол орны зүүн өмнөд хязгаарт Өмнөговь, Дундговь, Говьсүмбэр, Хэнтий, Сүхбаатар аймгуудтай хил залган оршдог. БНХАУ-тай 600 км- урт газраар хиллэдэг. Хойд, урд хоёр гүрнийг холбосон, төвийн бүсийн хөгжлийн гол тэнхлэг болсон төмөр зам дайран өнгөрдөг. Энэ замын дагуу тус аймгийн бүх сумын 42,8 хувь, хүн амын 61 хувь нь оршин сууж байна. == Хүн ам == Дорноговь аймагт 2017 оны эцсийн байдлаар 20844 өрхөд 68606 хүн ам оршин суудаг бөгөөд 1 кв.км нутаг дэвсгэрт 1.5 хүн ногдож байна. Хүн амын 61 хувь нь Сайншанд хотод, 15.2 хувь нь сумын төвд, 24.2 хувь нь хөдөөд оршин суудаг. Хүн амын 48,7 хувь нь эрэгтэйчүүд, 51,3 хувь нь эмэгтэйчүүд байна. Нэг өрхөд дунджаар 3,4 хүн ногддог. Нийт 19,7 мянган |
Дорноговь аймаг ямар аймгуудтай хиллэдэг вэ? |
Дорноговь (монгол бичгээр – дорунагоби) аймаг нь Монгол Улсын зүүн аймаг бөгөөд 1931 онд байгуулагдсан. 2017 оны эцсээр 14 сум, 64 баг, 68606 хүн амтай бөгөөд олон хүн амын тоо хурдацтай нэмэгдэж байгаа юм. Аймгийн төв Сайншанд сум нь улсын нийслэл Улаанбаатар хотоос 450км-т оршдог. Дорноговь аймаг Монгол орны зүүн өмнөд хязгаарт Өмнөговь, Дундговь, Говьсүмбэр, Хэнтий, Сүхбаатар аймгуудтай хил залган оршдог. БНХАУ-тай 600 км- урт газраар хиллэдэг. Хойд, урд хоёр гүрнийг холбосон, төвийн бүсийн хөгжлийн гол тэнхлэг болсон төмөр зам дайран өнгөрдөг. Энэ замын дагуу тус аймгийн бүх сумын 42,8 хувь, хүн амын 61 хувь нь оршин сууж байна. == Хүн ам == Дорноговь аймагт 2017 оны эцсийн байдлаар 20844 өрхөд 68606 хүн ам оршин суудаг бөгөөд 1 кв.км нутаг дэвсгэрт 1.5 хүн ногдож байна. Хүн амын 61 хувь нь Сайншанд хотод, 15.2 хувь нь сумын төвд, 24.2 хувь нь хөдөөд оршин суудаг. Хүн амын 48,7 хувь нь эрэгтэйчүүд, 51,3 хувь нь эмэгтэйчүүд байна. Нэг өрхөд дунджаар 3,4 хүн ногддог. Нийт 19,7 мянган |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
num_train_epochs: 7
multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1
num_train_epochs: 7
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.0
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: round_robin
Training Logs
| Epoch |
Step |
Training Loss |
cosine_ndcg@10 |
| 0.2222 |
50 |
- |
0.4494 |
| 0.4444 |
100 |
- |
0.4902 |
| 0.6667 |
150 |
- |
0.5005 |
| 0.8889 |
200 |
- |
0.5040 |
| 1.0 |
225 |
- |
0.5126 |
| 1.1111 |
250 |
- |
0.5163 |
| 1.3333 |
300 |
- |
0.5194 |
| 1.5556 |
350 |
- |
0.5132 |
| 1.7778 |
400 |
- |
0.5217 |
| 2.0 |
450 |
- |
0.5223 |
| 2.2222 |
500 |
6.223 |
0.5196 |
| 2.4444 |
550 |
- |
0.5195 |
| 2.6667 |
600 |
- |
0.5243 |
| 2.8889 |
650 |
- |
0.5284 |
| 3.0 |
675 |
- |
0.5287 |
| 3.1111 |
700 |
- |
0.5302 |
| 3.3333 |
750 |
- |
0.5268 |
| 3.5556 |
800 |
- |
0.5257 |
| 3.7778 |
850 |
- |
0.5297 |
| 4.0 |
900 |
- |
0.5296 |
| 4.2222 |
950 |
- |
0.5324 |
| 4.4444 |
1000 |
2.6699 |
0.5333 |
| 4.6667 |
1050 |
- |
0.5313 |
| 4.8889 |
1100 |
- |
0.5305 |
| 5.0 |
1125 |
- |
0.5296 |
| 0.2222 |
100 |
- |
0.5309 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}