File size: 4,147 Bytes
52e23c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
library_name: transformers
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Resneteau-50-2024_09_23-batch-size32_freeze
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Resneteau-50-2024_09_23-batch-size32_freeze

This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1906
- F1 Micro: 0.6954
- F1 Macro: 0.4462
- Accuracy: 0.1827
- Learning Rate: 0.0001

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 400
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy | Rate   |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:------:|
| No log        | 1.0   | 273  | 0.2460          | 0.5802   | 0.2267   | 0.0877   | 0.001  |
| 0.2786        | 2.0   | 546  | 0.2217          | 0.6412   | 0.3160   | 0.1369   | 0.001  |
| 0.2786        | 3.0   | 819  | 0.2117          | 0.6596   | 0.3581   | 0.1486   | 0.001  |
| 0.231         | 4.0   | 1092 | 0.2049          | 0.6674   | 0.3831   | 0.1618   | 0.001  |
| 0.231         | 5.0   | 1365 | 0.2016          | 0.6707   | 0.3965   | 0.1677   | 0.001  |
| 0.2206        | 6.0   | 1638 | 0.2002          | 0.6720   | 0.4076   | 0.1677   | 0.001  |
| 0.2206        | 7.0   | 1911 | 0.1976          | 0.6752   | 0.4142   | 0.1746   | 0.001  |
| 0.2157        | 8.0   | 2184 | 0.1971          | 0.6824   | 0.4281   | 0.1764   | 0.001  |
| 0.2157        | 9.0   | 2457 | 0.1961          | 0.6845   | 0.4300   | 0.1764   | 0.001  |
| 0.2127        | 10.0  | 2730 | 0.1944          | 0.6763   | 0.4264   | 0.1805   | 0.001  |
| 0.2117        | 11.0  | 3003 | 0.1940          | 0.6902   | 0.4391   | 0.1781   | 0.001  |
| 0.2117        | 12.0  | 3276 | 0.1945          | 0.6939   | 0.4523   | 0.1729   | 0.001  |
| 0.2107        | 13.0  | 3549 | 0.1936          | 0.6908   | 0.4461   | 0.1795   | 0.001  |
| 0.2107        | 14.0  | 3822 | 0.1931          | 0.6916   | 0.4424   | 0.1781   | 0.001  |
| 0.2105        | 15.0  | 4095 | 0.1935          | 0.6936   | 0.4431   | 0.1809   | 0.001  |
| 0.2105        | 16.0  | 4368 | 0.1931          | 0.6896   | 0.4429   | 0.1805   | 0.001  |
| 0.2086        | 17.0  | 4641 | 0.1931          | 0.6953   | 0.4411   | 0.1819   | 0.001  |
| 0.2086        | 18.0  | 4914 | 0.1908          | 0.6984   | 0.4490   | 0.1857   | 0.001  |
| 0.2101        | 19.0  | 5187 | 0.1925          | 0.6879   | 0.4428   | 0.1812   | 0.001  |
| 0.2101        | 20.0  | 5460 | 0.1913          | 0.6797   | 0.4357   | 0.1774   | 0.001  |
| 0.2088        | 21.0  | 5733 | 0.1915          | 0.6958   | 0.4381   | 0.1823   | 0.001  |
| 0.2084        | 22.0  | 6006 | 0.1919          | 0.7039   | 0.4535   | 0.1826   | 0.001  |
| 0.2084        | 23.0  | 6279 | 0.1926          | 0.6907   | 0.4363   | 0.1798   | 0.001  |
| 0.2083        | 24.0  | 6552 | 0.1919          | 0.6953   | 0.4544   | 0.1805   | 0.001  |
| 0.2083        | 25.0  | 6825 | 0.1919          | 0.6962   | 0.4466   | 0.1781   | 0.0001 |
| 0.2076        | 26.0  | 7098 | 0.1912          | 0.6943   | 0.4418   | 0.1823   | 0.0001 |
| 0.2076        | 27.0  | 7371 | 0.1912          | 0.6972   | 0.4500   | 0.1809   | 0.0001 |
| 0.2081        | 28.0  | 7644 | 0.1915          | 0.6944   | 0.4454   | 0.1857   | 0.0001 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1