sentiment-xlm-roberta-bs16
This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8214
- Accuracy: 0.6439
- F1 Macro: 0.6444
- F1 Weighted: 0.6438
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted |
|---|---|---|---|---|---|---|
| 1.1168 | 1.0 | 121 | 0.9948 | 0.5421 | 0.4476 | 0.4564 |
| 0.9225 | 2.0 | 242 | 0.8052 | 0.6410 | 0.6464 | 0.6474 |
| 0.8084 | 3.0 | 363 | 0.8085 | 0.6961 | 0.6760 | 0.6807 |
| 0.6813 | 4.0 | 484 | 0.7785 | 0.6670 | 0.6698 | 0.6676 |
| 0.5894 | 5.0 | 605 | 0.8427 | 0.6681 | 0.6723 | 0.6709 |
| 0.4791 | 6.0 | 726 | 0.9016 | 0.6722 | 0.6643 | 0.6663 |
| 0.4063 | 7.0 | 847 | 0.9857 | 0.6712 | 0.6715 | 0.6732 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 15
Model tree for hassen228/sentiment-xlm-roberta-bs16
Base model
FacebookAI/xlm-roberta-large