sentiment-xlm-roberta-bs8
This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7918
- Accuracy: 0.6598
- F1 Macro: 0.6560
- F1 Weighted: 0.6586
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted |
|---|---|---|---|---|---|---|
| 1.102 | 1.0 | 241 | 0.9027 | 0.5858 | 0.4678 | 0.4810 |
| 0.8557 | 2.0 | 482 | 0.8232 | 0.6660 | 0.6615 | 0.6657 |
| 0.7284 | 3.0 | 723 | 0.7685 | 0.6868 | 0.6807 | 0.6851 |
| 0.5904 | 4.0 | 964 | 0.7964 | 0.7003 | 0.6924 | 0.6955 |
| 0.5075 | 5.0 | 1205 | 0.8945 | 0.6753 | 0.6787 | 0.6802 |
| 0.4169 | 6.0 | 1446 | 0.9498 | 0.6847 | 0.6804 | 0.6838 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 19
Model tree for hassen228/sentiment-xlm-roberta-bs8
Base model
FacebookAI/xlm-roberta-large