huihui-ai's picture
Update README.md
b9c108e verified
|
raw
history blame
5.9 kB
---
license: apache-2.0
license_link: https://huggingface.co/huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v3/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-0.5B-Instruct
tags:
- chat
- abliterated
- uncensored
---
# huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v3
This is an uncensored version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it).
This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens.
Ablation was performed using a new and faster method, which yields better results.
This ablation version used a more precise dataset.
The pass rate for the 320 harmful instructions test is **100%**.
## ollama
huihui_ai/qwen2.5-abliterate:0.5b-v3 is **less than 400MB** in size and performs very well.
You can use [huihui_ai/qwen2.5-abliterate:0.5b-v3](https://ollama.com/huihui_ai/qwen2.5-abliterate:0.5b-v3) directly,
```
ollama run huihui_ai/qwen2.5-abliterate:0.5b-v3
```
## Usage
You can use this model in your applications by loading it with Hugging Face's `transformers` library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
model_name = "huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v3"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialize conversation context
initial_messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
]
messages = initial_messages.copy() # Copy the initial conversation context
# Enter conversation loop
while True:
# Get user input
user_input = input("User: ").strip() # Strip leading and trailing spaces
# If the user types '/exit', end the conversation
if user_input.lower() == "/exit":
print("Exiting chat.")
break
# If the user types '/clean', reset the conversation context
if user_input.lower() == "/clean":
messages = initial_messages.copy() # Reset conversation context
print("Chat history cleared. Starting a new conversation.")
continue
# If input is empty, prompt the user and continue
if not user_input:
print("Input cannot be empty. Please enter something.")
continue
# Add user input to the conversation
messages.append({"role": "user", "content": user_input})
# Build the chat template
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize input and prepare it for the model
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate a response from the model
generated_ids = model.generate(
**model_inputs,
max_new_tokens=8192
)
# Extract model output, removing special tokens
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Add the model's response to the conversation
messages.append({"role": "assistant", "content": response})
# Print the model's response
print(f"Qwen: {response}")
```
## Pass Rate Description
The pass rate is defined as the proportion of harmful instructions that did not trigger the test condition (TestPassed=False) out of the total number of instructions processed. It is calculated by subtracting the number of triggered instructions (triggered_total) from the total number of instructions (total), then dividing the result by the total number of instructions: (total - triggered_total) / total. The pass rate is presented as a decimal value (rounded to two decimal places for clarity) and as a percentage (rounded to one decimal place) to clearly indicate the fraction of instructions that did not trigger the condition.
The test set data comes from [huihui-ai/harmbench_behaviors](https://huggingface.co/datasets/huihui-ai/harmbench_behaviors), the test code, [TestPassed.py](https://huggingface.co/huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v3/blob/main/TestPassed.py).
The test result is [100.00%](https://huggingface.co/huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v3/blob/main/TestPassed.jsonl).
```
python TestPassed.py
Load Model huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v3 ...
Processing harmful instructions: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 320/320 [01:04<00:00, 4.99it/s]
Passed total: 320/320, Passed ratio: 1.00 (100.00%)
```
Below is the comparison of pass rates.
| Model | Passed total | Passed ratio |
|--------------------------------------|--------------|--------------|
| Qwen2.5-0.5B-Instruct | 201/320 | 62.8% |
| Qwen2.5-0.5B-Instruct-abliterated | 310/320 | 96.9% |
| Qwen2.5-0.5B-Instruct-abliterated-v2 | 317/320 | 99.1% |
| Qwen2.5-0.5B-Instruct-abliterated-v3 | **320/320** | **100.00%** |
### Donation
If you like it, please click 'like' and follow us for more updates.
You can follow [x.com/support_huihui](https://x.com/support_huihui) to get the latest model information from huihui.ai.
##### Your donation helps us continue our further development and improvement, a cup of coffee can do it.
- bitcoin(BTC):
```
bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge
```