xlm-roberta-sentiment-batch-8
This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0995
- F1 Macro: 0.1483
- F1 Weighted: 0.1273
- Accuracy: 0.2861
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | Accuracy |
|---|---|---|---|---|---|---|
| 1.1304 | 1.0 | 601 | 1.1000 | 0.1868 | 0.2182 | 0.3893 |
| 1.1093 | 2.0 | 1202 | 1.1101 | 0.1634 | 0.1591 | 0.3246 |
| 1.1074 | 3.0 | 1803 | 1.1067 | 0.1868 | 0.2182 | 0.3893 |
| 1.1137 | 4.0 | 2404 | 1.0995 | 0.1483 | 0.1273 | 0.2861 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 6
Model tree for iaderegg/xlm-roberta-sentiment-batch-8
Base model
FacebookAI/xlm-roberta-large