We provide the inference code below:
import torch
import transformers
from transformers.cache_utils import DynamicCache
# refer to https://github.com/iiiutch-ii/RemeDi/blob/main/RL-code
from networks.block_llada.modelling_llada_bitowel import LLaDAUPMModelLM
@torch.no_grad()
def generate_block_diffusion(
model,
conv,
tokenizer,
device,
num_generations,
kv_cache=None,
steps: int = 32,
max_length = 1024,
block_size = 32,
mask_token_id = 126336,
eos_id = 126081,
):
m = [conv]
prompts = tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
inputs = tokenizer(prompts, return_tensors='pt', padding=True, padding_side='left')
x_t = inputs['input_ids'].to(device)
attention_mask = inputs['attention_mask'].to(device)
prompt_len = attention_mask.sum(dim=1)
attn_bias = torch.where(
attention_mask + attention_mask.T > 0,
0, -torch.inf
)[None, None].repeat(x_t.shape[0], 1, 1, 1)
x_t = x_t.repeat(num_generations, 1)
prompt_len = prompt_len.repeat(num_generations)
attn_bias = attn_bias.repeat(num_generations, 1, 1, 1)
batch_size = x_t.shape[0]
position_ids = torch.arange(x_t.shape[1], device=x_t.device, dtype=torch.long).unsqueeze(0) - (1 - attention_mask).sum(dim=-1)
if kv_cache is None:
kv_cache = DynamicCache()
# cache prompt first
with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
model(
x_t,
kv_cache=kv_cache,
update_kv_cache=True,
)
cur_blocks = 0
responses = [x_t]
is_eos_meet = torch.zeros((batch_size,), device=x_t.device, dtype=torch.bool)
while (cur_blocks * block_size) < max_length:
x_t = torch.full((batch_size, block_size), fill_value=mask_token_id, device=device, dtype=torch.long)
position_ids = torch.arange(
cur_blocks * block_size,
(cur_blocks + 1) * block_size,
device=x_t.device, dtype=torch.long).unsqueeze(0) + prompt_len.unsqueeze(1)
num_transfer_tokens = torch.tensor([block_size // steps for _ in range(steps)])
if block_size % steps != 0:
num_transfer_tokens[-block_size % steps:] += 1
# cumsum
num_transfer_tokens = num_transfer_tokens.cumsum(dim=0)
for i in range(steps):
mask_index = (x_t == mask_token_id)
with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
out = model(
x_t,
position_ids=position_ids,
kv_cache=kv_cache,
)
logits = out.logits.to(torch.float32)
x0 = torch.argmax(logits, dim=-1) # b, l
x0 = torch.where(mask_index, x0, x_t)
upm_prob = logits.gather(dim=-1, index=x0.unsqueeze(-1)).squeeze(-1)
samples = torch.topk(upm_prob, k=num_transfer_tokens[i], dim=-1).indices
bs_idx = torch.arange(batch_size, dtype=samples.dtype).unsqueeze(1)
remask_index = torch.ones_like(x_t).bool()
remask_index[bs_idx, samples] = False
x_t = torch.where(remask_index, mask_token_id, x0)
responses.append(x_t.clone())
cur_blocks += 1
if is_eos_meet.all(): break
# update kv_cache
with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
model(
x_t,
position_ids=position_ids,
kv_cache=kv_cache,
update_kv_cache=True,
)
response_tokens = torch.cat(responses, dim=1)
responses = []
responses_length = []
for i in range(batch_size):
if eos_id in response_tokens[i]:
eos_token_idx = (response_tokens[i] == eos_id).nonzero(as_tuple=True)[0][0].item()
resp_token = response_tokens[i, prompt_len[i]:eos_token_idx]
else:
resp_token = response_tokens[i, prompt_len[i]:]
responses.append(tokenizer.decode(resp_token, skip_special_tokens=True))
responses_length.append(resp_token.shape[0])
return responses
def main(
ckpt_path = 'iiiutch/RemeDi-Instruct',
seed: int = 112,
):
torch.manual_seed(seed)
device = 'cuda'
tokenizer = transformers.AutoTokenizer.from_pretrained(ckpt_path)
model = LLaDAUPMModelLM.from_pretrained(
ckpt_path,
torch_dtype=torch.bfloat16,
)
model.eval().requires_grad_(False).to(device)
conv = []
while True:
conv = []
print('=' * 20)
prompt = input("User: ").strip()
print('Assistant: ', end='')
conv = [{'role': 'user', 'content': prompt}]
inputs = generate_block_diffusion(
model,
conv,
tokenizer,
reward_fn=None,
device=device,
viz=True,
num_generations=1,
steps=32, max_length=1024, block_size=32,
)
conv.append({'role': 'assistant', 'content': inputs[0]})
if __name__ == "__main__":
main()
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for iiiutch/RemeDi-RL
Base model
GSAI-ML/LLaDA-8B-Instruct