FP16 Optimized ONNX Model
This model is a ONNX-FP16 optimized version of tabularisai/multilingual-sentiment-analysis. It runs exclusively on the GPU. Depending on the model, ONNX-FP16 versions can be 2-3X faster than base PyTorch models. For more information on ONNX-FP16 benchmarks vs ONNX and pytorch, as well as the scripts used to generate and check the accuracy of this model, please check https://github.com/joaopn/encoder-optimization-guide.
On a test set of 10000 reddit comments, the label probability differences between it and the FP32 model were
Mean: 0.00079844
Std Dev: 0.00081052
Min: 0.00000495
Max: 0.01064476
Median: 0.00053981
Quantiles:
25th percentile: 0.00024994
50th percentile: 0.00053981
75th percentile: 0.00105973
90th percentile: 0.00183549
95th percentile: 0.00242578
99th percentile: 0.00374105
Usage
The model was generated with:
from optimum.onnxruntime import ORTOptimizer, ORTModelForSequenceClassification, AutoOptimizationConfig
from transformers import AutoTokenizer
model_id = "tabularisai/multilingual-sentiment-analysis"
save_dir = "./model-onnx-fp16"
# 1. Export the base model to ONNX
model = ORTModelForSequenceClassification.from_pretrained(model_id, export=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# 2. Setup the Optimizer
optimizer = ORTOptimizer.from_pretrained(model)
# 3. Apply O4 Optimization (GPU-only FP16)
optimization_config = AutoOptimizationConfig.O4()
optimizer.optimize(
save_dir=save_dir,
optimization_config=optimization_config
)
# 4. Save tokenizer for a complete package
tokenizer.save_pretrained(save_dir)
You will need the GPU version of the ONNX Runtime. It can be installed with:
pip install optimum[onnxruntime-gpu] --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
For convenience, this benchmark repo provides an environment.yml file to create a conda env with all the requirements. Below is an optimized, batched usage example:
import pandas as pd
import torch
from tqdm import tqdm
from transformers import AutoTokenizer
from optimum.onnxruntime import ORTModelForSequenceClassification
def sentiment_analysis_batched(df, batch_size, field_name):
# Replace with your HuggingFace username/model_id after uploading
model_id = 'YOUR_USERNAME/YOUR_MODEL_ID'
file_name = 'model.onnx'
gpu_id = 0
model = ORTModelForSequenceClassification.from_pretrained(model_id, file_name=file_name, provider="CUDAExecutionProvider", provider_options={'device_id': gpu_id})
device = torch.device(f"cuda:{gpu_id}")
tokenizer = AutoTokenizer.from_pretrained(model_id)
results = []
# Precompute id2label mapping
id2label = model.config.id2label
total_samples = len(df)
with tqdm(total=total_samples, desc="Processing samples") as pbar:
for start_idx in range(0, total_samples, batch_size):
end_idx = start_idx + batch_size
texts = df[field_name].iloc[start_idx:end_idx].tolist()
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
input_ids = inputs['input_ids'].to(device)
attention_mask = inputs['attention_mask'].to(device)
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
predictions = torch.sigmoid(outputs.logits) # Use sigmoid for multi-label classification
# Collect predictions on GPU
results.append(predictions)
pbar.update(end_idx - start_idx)
# Concatenate all results on GPU
all_predictions = torch.cat(results, dim=0).cpu().numpy()
# Convert to DataFrame
predictions_df = pd.DataFrame(all_predictions, columns=[id2label[i] for i in range(all_predictions.shape[1])])
# Add prediction columns to the original DataFrame
combined_df = pd.concat([df.reset_index(drop=True), predictions_df], axis=1)
return combined_df
df = pd.read_csv('https://github.com/joaopn/gpu_benchmark_goemotions/raw/main/data/random_sample_10k.csv.gz')
df = sentiment_analysis_batched(df, batch_size=8, field_name='body')
- Downloads last month
- 485