Model Card for gold-model
This model is a fine-tuned version of Qwen/Qwen3-0.6B. It has been trained using TRL.
Quick start
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="johnnyd-gensyn/gold-model", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
Training procedure
This model was trained with GOLD.
Framework versions
- TRL: 0.27.0.dev0
- Transformers: 4.57.3
- Pytorch: 2.4.1+cu124
- Datasets: 4.4.1
- Tokenizers: 0.22.1
Citations
Cite GOLD as:
@misc{patino2025unlocking,
title = {{Unlocking On-Policy Distillation for Any Model Family}},
author = {Carlos Miguel Patiño and Kashif Rasul and Quentin Gallouédec and Ben Burtenshaw and Sergio Paniego and Vaibhav Srivastav and Thibaud Frere and Ed Beeching and Lewis Tunstall and Leandro von Werra and Thomas Wolf},
year = 2025,
url = {https://huggingface.co/spaces/HuggingFaceH4/general-on-policy-logit-distillation},
}
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support