YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

πŸ“ LLaMA 3.3 70B – Fine-tuned for Argumentative Essay Scoring

This model is a fully fine-tuned version of LLaMA 3.3 70B for the task of automated scoring of argumentative essays. It predicts a holistic score from 0 to 5 (in 0.5 increments) based on the prompt and student response, using TOEFL-style rubrics.


πŸ“Œ Task Overview

  • Task: Holistic essay scoring
  • Input: Essay prompt + student essay
  • Output: A numerical score (e.g., 3.5)
  • Score scale: 0–5, in 0.5 increments
  • Rubric: Adapted from TOEFL iBT Independent Writing scoring guidelines
  • Training data: TOEFL Public Dataset (requires permission from ETS)

πŸ”§ Training Configuration

Hyperparameter Value
Base model LLaMA 3.3 70B
Fine-tuning method Full-parameter
Epochs 5
Batch size 32
Learning rate 3e-6
Optimizer AdamW
Scheduler Cosine
Training hardware 2Γ—A100

πŸ“Š Evaluation

  • Loss curve is available in training_loss.png
  • Additional metrics (e.g., QWK, RMSE, exact match) can be provided upon request

πŸš€ Usage Example

from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("your-org/llama3-70b-argscore")
tokenizer = AutoTokenizer.from_pretrained("your-org/llama3-70b-argscore")

prompt = "Essay prompt: Do you agree or disagree... Essay: ..."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

πŸ“„ Citation

@misc{llama3-argscore, title={LLaMA 3.3 70B Fine-tuned for Argumentative Essay Scoring}, author={Wang, Q, Labib, A, Yuan, Z}, year={2025}, note={\url{https://huggingface.co/judywq/llama-ft-feedback_score}}, }

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support