YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
π LLaMA 3.3 70B β Fine-tuned for Argumentative Essay Scoring
This model is a fully fine-tuned version of LLaMA 3.3 70B for the task of automated scoring of argumentative essays. It predicts a holistic score from 0 to 5 (in 0.5 increments) based on the prompt and student response, using TOEFL-style rubrics.
π Task Overview
- Task: Holistic essay scoring
- Input: Essay prompt + student essay
- Output: A numerical score (e.g., 3.5)
- Score scale: 0β5, in 0.5 increments
- Rubric: Adapted from TOEFL iBT Independent Writing scoring guidelines
- Training data: TOEFL Public Dataset (requires permission from ETS)
π§ Training Configuration
| Hyperparameter | Value |
|---|---|
| Base model | LLaMA 3.3 70B |
| Fine-tuning method | Full-parameter |
| Epochs | 5 |
| Batch size | 32 |
| Learning rate | 3e-6 |
| Optimizer | AdamW |
| Scheduler | Cosine |
| Training hardware | 2ΓA100 |
π Evaluation
- Loss curve is available in
training_loss.png - Additional metrics (e.g., QWK, RMSE, exact match) can be provided upon request
π Usage Example
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("your-org/llama3-70b-argscore")
tokenizer = AutoTokenizer.from_pretrained("your-org/llama3-70b-argscore")
prompt = "Essay prompt: Do you agree or disagree... Essay: ..."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
π Citation
@misc{llama3-argscore, title={LLaMA 3.3 70B Fine-tuned for Argumentative Essay Scoring}, author={Wang, Q, Labib, A, Yuan, Z}, year={2025}, note={\url{https://huggingface.co/judywq/llama-ft-feedback_score}}, }
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support