MPNet base trained on AllNLI triplets
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("korruz/mpnet-base-all-nli-triplet")
# Run inference
sentences = [
'A dog is swimming.',
'A dog with yellow fur swims, neck deep, in water.',
'A white dog with a stick in his mouth standing next to a black dog.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-dev - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.906 |
| dot_accuracy | 0.0939 |
| manhattan_accuracy | 0.9008 |
| euclidean_accuracy | 0.9017 |
| max_accuracy | 0.906 |
Triplet
- Dataset:
all-nli-test - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9186 |
| dot_accuracy | 0.0802 |
| manhattan_accuracy | 0.9142 |
| euclidean_accuracy | 0.9142 |
| max_accuracy | 0.9186 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 100,000 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.A person is at a diner, ordering an omelette.Children smiling and waving at cameraThere are children presentThe kids are frowningA boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.The boy skates down the sidewalk. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
|---|---|---|---|---|
| 0 | 0 | - | 0.6832 | - |
| 0.032 | 100 | 3.2593 | 0.8010 | - |
| 0.064 | 200 | 1.318 | 0.8152 | - |
| 0.096 | 300 | 1.2552 | 0.8256 | - |
| 0.128 | 400 | 1.3322 | 0.8141 | - |
| 0.16 | 500 | 1.4141 | 0.8224 | - |
| 0.192 | 600 | 1.2339 | 0.8149 | - |
| 0.224 | 700 | 1.2556 | 0.8091 | - |
| 0.256 | 800 | 1.138 | 0.8262 | - |
| 0.288 | 900 | 1.0928 | 0.8311 | - |
| 0.32 | 1000 | 1.0438 | 0.8341 | - |
| 0.352 | 1100 | 1.1159 | 0.8323 | - |
| 0.384 | 1200 | 1.1909 | 0.8472 | - |
| 0.416 | 1300 | 1.2542 | 0.8543 | - |
| 0.448 | 1400 | 1.2359 | 0.8574 | - |
| 0.48 | 1500 | 1.0265 | 0.8712 | - |
| 0.512 | 1600 | 0.8688 | 0.8783 | - |
| 0.544 | 1700 | 0.8819 | 0.8841 | - |
| 0.576 | 1800 | 0.8903 | 0.8931 | - |
| 0.608 | 1900 | 0.9334 | 0.8858 | - |
| 0.64 | 2000 | 1.0225 | 0.9028 | - |
| 0.672 | 2100 | 0.9252 | 0.9034 | - |
| 0.704 | 2200 | 0.9036 | 0.9033 | - |
| 0.736 | 2300 | 0.8122 | 0.9040 | - |
| 0.768 | 2400 | 0.8503 | 0.9058 | - |
| 0.8 | 2500 | 0.8448 | 0.9055 | - |
| 0.832 | 2600 | 0.7918 | 0.9039 | - |
| 0.864 | 2700 | 0.7787 | 0.9025 | - |
| 0.896 | 2800 | 0.8624 | 0.9034 | - |
| 0.928 | 2900 | 0.9513 | 0.9058 | - |
| 0.96 | 3000 | 0.6548 | 0.9072 | - |
| 0.992 | 3100 | 0.0163 | 0.9060 | - |
| 1.0 | 3125 | - | - | 0.9186 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Model tree for korruz/mpnet-base-all-nli-triplet
Base model
microsoft/mpnet-baseDataset used to train korruz/mpnet-base-all-nli-triplet
Evaluation results
- Cosine Accuracy on all nli devself-reported0.906
- Dot Accuracy on all nli devself-reported0.094
- Manhattan Accuracy on all nli devself-reported0.901
- Euclidean Accuracy on all nli devself-reported0.902
- Max Accuracy on all nli devself-reported0.906
- Cosine Accuracy on all nli testself-reported0.919
- Dot Accuracy on all nli testself-reported0.080
- Manhattan Accuracy on all nli testself-reported0.914
- Euclidean Accuracy on all nli testself-reported0.914
- Max Accuracy on all nli testself-reported0.919