SentenceTransformer based on sbintuitions/sarashina-embedding-v2-1b
This is a sentence-transformers model finetuned from sbintuitions/sarashina-embedding-v2-1b on the jsts dataset. It maps sentences & paragraphs to a 1792-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sbintuitions/sarashina-embedding-v2-1b
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1792 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: jpn
Model Sources

Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'LlamaModel'})
(1): Pooling({'word_embedding_dimension': 1792, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': False})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("kushalc1/sarashina-embedding-v2-1b-jsts-matryoshka")
sentences = [
'樹木に囲まれた芝生の上に三頭のキリンが立っています。',
'芝生の上に数頭のキリンが歩いています。',
'茶色のテーブルの上にピザと飲み物が置かれています。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev-1792, sts-test-1792 and sts-test-1792
- Evaluated with
EmbeddingSimilarityEvaluator with these parameters:{
"truncate_dim": 1792
}
| Metric |
sts-dev-1792 |
sts-test-1792 |
| pearson_cosine |
0.8088 |
0.8088 |
| spearman_cosine |
0.7435 |
0.7435 |
Semantic Similarity
- Datasets:
sts-dev-1280, sts-test-1280 and sts-test-1280
- Evaluated with
EmbeddingSimilarityEvaluator with these parameters:{
"truncate_dim": 1280
}
| Metric |
sts-dev-1280 |
sts-test-1280 |
| pearson_cosine |
0.8078 |
0.8078 |
| spearman_cosine |
0.7442 |
0.7442 |
Semantic Similarity
- Datasets:
sts-dev-768, sts-test-768 and sts-test-768
- Evaluated with
EmbeddingSimilarityEvaluator with these parameters:{
"truncate_dim": 768
}
| Metric |
sts-dev-768 |
sts-test-768 |
| pearson_cosine |
0.8049 |
0.8049 |
| spearman_cosine |
0.7423 |
0.7423 |
Semantic Similarity
- Datasets:
sts-dev-256, sts-test-256 and sts-test-256
- Evaluated with
EmbeddingSimilarityEvaluator with these parameters:{
"truncate_dim": 256
}
| Metric |
sts-dev-256 |
sts-test-256 |
| pearson_cosine |
0.8022 |
0.8022 |
| spearman_cosine |
0.7411 |
0.7411 |
Semantic Similarity
| Metric |
sts-dev-64 |
sts-test-64 |
| pearson_cosine |
0.7972 |
0.7972 |
| spearman_cosine |
0.7389 |
0.7389 |
Training Details
Training Dataset
jsts
- Dataset: jsts at b3d3097
- Size: 12,451 training samples
- Columns:
sentence1, sentence2, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
| type |
string |
string |
float |
| details |
- min: 5 tokens
- mean: 10.64 tokens
- max: 35 tokens
|
- min: 3 tokens
- mean: 10.53 tokens
- max: 30 tokens
|
- min: 0.0
- mean: 2.32
- max: 5.0
|
- Samples:
| sentence1 |
sentence2 |
score |
川べりでサーフボードを持った人たちがいます。 |
トイレの壁に黒いタオルがかけられています。 |
0.0 |
二人の男性がジャンボジェット機を見ています。 |
2人の男性が、白い飛行機を眺めています。 |
3.799999952316284 |
男性が子供を抱き上げて立っています。 |
坊主頭の男性が子供を抱いて立っています。 |
4.0 |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1792,
1280,
768,
256,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
jsts
- Dataset: jsts at b3d3097
- Size: 1,457 evaluation samples
- Columns:
sentence1, sentence2, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
| type |
string |
string |
float |
| details |
- min: 5 tokens
- mean: 10.78 tokens
- max: 34 tokens
|
- min: 3 tokens
- mean: 10.63 tokens
- max: 37 tokens
|
- min: 0.0
- mean: 2.22
- max: 5.0
|
- Samples:
| sentence1 |
sentence2 |
score |
レンガの建物の前を、乳母車を押した女性が歩いています。 |
厩舎で馬と女性とが寄り添っています。 |
0.0 |
山の上に顔の白い牛が2頭います。 |
曇り空の山肌で、牛が2匹草を食んでいます。 |
2.4000000953674316 |
バナナを持った人が道路を通行しています。 |
道の上をバナナを背負った男性が歩いています。 |
3.5999999046325684 |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1792,
1280,
768,
256,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
num_train_epochs: 4
warmup_ratio: 0.1
fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
parallelism_config: None
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
sts-dev-1792_spearman_cosine |
sts-dev-1280_spearman_cosine |
sts-dev-768_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-test-1792_spearman_cosine |
sts-test-1280_spearman_cosine |
sts-test-768_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-64_spearman_cosine |
| 0.1284 |
100 |
4.911 |
6.2373 |
0.7573 |
0.7572 |
0.7517 |
0.7350 |
0.7114 |
- |
- |
- |
- |
- |
| 0.2567 |
200 |
5.8664 |
7.9813 |
0.6739 |
0.6692 |
0.6636 |
0.6500 |
0.6146 |
- |
- |
- |
- |
- |
| 0.3851 |
300 |
7.259 |
7.9829 |
0.6831 |
0.6815 |
0.6797 |
0.6698 |
0.6529 |
- |
- |
- |
- |
- |
| 0.5135 |
400 |
7.1234 |
7.5810 |
0.6878 |
0.6887 |
0.6881 |
0.6819 |
0.6679 |
- |
- |
- |
- |
- |
| 0.6418 |
500 |
7.233 |
6.9384 |
0.6628 |
0.6694 |
0.6658 |
0.6662 |
0.6583 |
- |
- |
- |
- |
- |
| 0.7702 |
600 |
7.0228 |
7.0102 |
0.6352 |
0.6364 |
0.6346 |
0.6310 |
0.6246 |
- |
- |
- |
- |
- |
| 0.8986 |
700 |
6.539 |
6.7671 |
0.6411 |
0.6415 |
0.6403 |
0.6394 |
0.6346 |
- |
- |
- |
- |
- |
| 1.0270 |
800 |
6.2863 |
7.5846 |
0.6120 |
0.6342 |
0.6314 |
0.6266 |
0.6189 |
- |
- |
- |
- |
- |
| 1.1553 |
900 |
5.7608 |
6.7480 |
0.6773 |
0.6790 |
0.6758 |
0.6748 |
0.6691 |
- |
- |
- |
- |
- |
| 1.2837 |
1000 |
5.672 |
6.6481 |
0.6846 |
0.6836 |
0.6817 |
0.6834 |
0.6794 |
- |
- |
- |
- |
- |
| 1.4121 |
1100 |
5.7371 |
6.6843 |
0.6945 |
0.6953 |
0.6966 |
0.6939 |
0.6891 |
- |
- |
- |
- |
- |
| 1.5404 |
1200 |
5.8827 |
6.6863 |
0.6903 |
0.6940 |
0.6922 |
0.6883 |
0.6834 |
- |
- |
- |
- |
- |
| 1.6688 |
1300 |
5.6242 |
6.6517 |
0.6856 |
0.6857 |
0.6847 |
0.6809 |
0.6762 |
- |
- |
- |
- |
- |
| 1.7972 |
1400 |
5.5211 |
6.1428 |
0.7134 |
0.7123 |
0.7117 |
0.7065 |
0.7022 |
- |
- |
- |
- |
- |
| 1.9255 |
1500 |
5.4882 |
6.0439 |
0.7227 |
0.7227 |
0.7214 |
0.7192 |
0.7134 |
- |
- |
- |
- |
- |
| 2.0539 |
1600 |
5.4436 |
6.0361 |
0.7199 |
0.7203 |
0.7191 |
0.7201 |
0.7143 |
- |
- |
- |
- |
- |
| 2.1823 |
1700 |
4.366 |
6.1447 |
0.7286 |
0.7290 |
0.7274 |
0.7283 |
0.7231 |
- |
- |
- |
- |
- |
| 2.3107 |
1800 |
4.6607 |
6.1692 |
0.7365 |
0.7356 |
0.7344 |
0.7303 |
0.7263 |
- |
- |
- |
- |
- |
| 2.4390 |
1900 |
4.3651 |
6.2109 |
0.7178 |
0.7169 |
0.7149 |
0.7134 |
0.7125 |
- |
- |
- |
- |
- |
| 2.5674 |
2000 |
4.4692 |
6.1421 |
0.7237 |
0.7233 |
0.7214 |
0.7192 |
0.7150 |
- |
- |
- |
- |
- |
| 2.6958 |
2100 |
4.434 |
5.9462 |
0.7275 |
0.7267 |
0.7260 |
0.7253 |
0.7203 |
- |
- |
- |
- |
- |
| 2.8241 |
2200 |
4.2634 |
6.0055 |
0.7218 |
0.7216 |
0.7205 |
0.7196 |
0.7177 |
- |
- |
- |
- |
- |
| 2.9525 |
2300 |
4.2524 |
5.8834 |
0.7297 |
0.7308 |
0.7302 |
0.7282 |
0.7245 |
- |
- |
- |
- |
- |
| 3.0809 |
2400 |
3.5146 |
6.2635 |
0.7430 |
0.7425 |
0.7416 |
0.7402 |
0.7357 |
- |
- |
- |
- |
- |
| 3.2092 |
2500 |
3.0137 |
6.1396 |
0.7455 |
0.7441 |
0.7430 |
0.7410 |
0.7377 |
- |
- |
- |
- |
- |
| 3.3376 |
2600 |
2.9956 |
6.2779 |
0.7426 |
0.7427 |
0.7407 |
0.7402 |
0.7371 |
- |
- |
- |
- |
- |
| 3.4660 |
2700 |
3.0125 |
6.2415 |
0.7459 |
0.7457 |
0.7435 |
0.7425 |
0.7378 |
- |
- |
- |
- |
- |
| 3.5944 |
2800 |
3.2683 |
6.2214 |
0.7407 |
0.7407 |
0.7385 |
0.7378 |
0.7342 |
- |
- |
- |
- |
- |
| 3.7227 |
2900 |
2.7818 |
6.2854 |
0.7444 |
0.7442 |
0.7422 |
0.7411 |
0.7390 |
- |
- |
- |
- |
- |
| 3.8511 |
3000 |
2.7216 |
6.2760 |
0.7425 |
0.7429 |
0.7411 |
0.7401 |
0.7378 |
- |
- |
- |
- |
- |
| 3.9795 |
3100 |
2.8901 |
6.2306 |
0.7435 |
0.7442 |
0.7423 |
0.7411 |
0.7389 |
- |
- |
- |
- |
- |
| -1 |
-1 |
- |
- |
- |
- |
- |
- |
- |
0.7435 |
0.7442 |
0.7423 |
0.7411 |
0.7389 |
Framework Versions
- Python: 3.12.6
- Sentence Transformers: 5.2.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu129
- Accelerate: 1.10.1
- Datasets: 4.4.2
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}