See axolotl config
axolotl version: 0.8.0.dev0
#base_model: ertghiu256/qwen3-4b-code-reasoning
base_model: Qwen/Qwen3-4B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# QLoRA
adapter: lora
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_modules: [q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj]
datasets:
- path: laurent-maille/pcl-test-S17
type: chat_template
field_messages: messages
conversation: chat
dataset_prepared_path: ./prepared/plc_sharegpt
output_dir: ./outputs/valuoty-indus-plc-4B
# SFT propre
train_on_inputs: false
mask_user_tokens: true
# Séquences
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: false
group_by_length: true
flash_attn_impl: fa2 # "none" si FA2 non dispo
# Quantization / dtypes
load_in_4bit: true
load_in_8bit: false
bnb_4bit_quant_type: nf4
bnb_4bit_use_double_quant: true
bnb_4bit_compute_dtype: bfloat16
bf16: true
fp16: false
# Optim & training
optimizer: adamw_bnb_8bit
micro_batch_size: 8 # 8–12 selon VRAM
gradient_accumulation_steps: 16 # effectif ≈ 192 (12×16)
gradient_checkpointing: true
max_grad_norm: 0.3
learning_rate: 8.0e-5 # 5e-5 si tu veux lisser
weight_decay: 0.0
lr_scheduler_type: cosine
warmup_ratio: 0.03
num_train_epochs: 1
seed: 42
# Eval / logs / save
val_set_size: 2000
evaluation_strategy: steps
eval_steps: 500
logging_steps: 20
load_best_model_at_end: true
metric_for_best_model: loss
save_strategy: steps
save_steps: 1500
save_total_limit: 4
save_safetensors: true
outputs/valuoty-indus-plc-4B
This model is a fine-tuned version of Qwen/Qwen3-4B on the laurent-maille/pcl-test-S17 dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1.0
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 0.0667 | 1 | 3.8828 |
Framework versions
- PEFT 0.14.0
- Transformers 4.55.4
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support