See axolotl config
axolotl version: 0.8.0.dev0
# === MODÈLE ===
#base_model: grimjim/mistralai-Mistral-7B-v0.3
base_model: mistralai/Mistral-7B-Instruct-v0.3
model_type: MistralForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
# === LORA CONFIGURATION ===
adapter: lora
lora_r: 32
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules: [q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj]
lora_modules_to_save:
- lm_head
# === DATASET ===
datasets:
- path: laurent-maille/pcl-test-S27
type: chat_template
field_messages: messages
chat_template: chatml
test_size: 0.2 # Split automatique 80/20
shuffle: true
dataset_prepared_path: ./prepared/plc_sharegpt
output_dir: ./outputs/valuoty-indus-plc-7BV2
# === DATA LOADING ===
dataloader_num_workers: 4
dataloader_pin_memory: true
# === SEQUENCES ===
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
train_on_inputs: false
group_by_length: true # batching par longueur pour meilleur débit
# === QUANTIZATION ===
load_in_4bit: true
bnb_4bit_quant_type: nf4
bnb_4bit_use_double_quant: true
bnb_4bit_compute_dtype: bfloat16
bf16: true
# === OPTIMIZER ===
optimizer: paged_adamw_8bit
learning_rate: 1e-4
weight_decay: 0.0
max_grad_norm: 0.3
lr_scheduler: cosine
warmup_ratio: 0.05
seed: 42
# === TRAINING PARAMETERS ===
epochs: 6
micro_batch_size: 6
gradient_accumulation_steps: 16
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resize_token_embeddings_to_multiple_of: 8
mask_user_tokens: true
# === ATTENTION ===
flash_attention_2: true
# === SAVING & EVALUATION ===
save_safetensors: true
save_strategy: steps
save_steps: 20
save_total_limit: 4
evaluation_strategy: steps
per_device_eval_batch_size: 5
eval_steps: 10
logging_steps: 5
# === EARLY STOPPING ===
load_best_model_at_end: true
metric_for_best_model: eval_loss
greater_is_better: false
#early_stopping_patience: 3
# === LOGGING ===
wandb_project: Valuoty-plc
wandb_run_name: V0.8_a40_run_01
wandb_watch: gradients
outputs/valuoty-indus-plc-7BV2
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the laurent-maille/pcl-test-S27 dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 96
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- num_epochs: 1.0
Training results
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for laurent-maille/Valuoty-industry-plc-7B-V0.8Adap
Base model
mistralai/Mistral-7B-v0.3
Finetuned
mistralai/Mistral-7B-Instruct-v0.3