xLAM-7b-r-IMat-GGUF

Llama.cpp imatrix quantization of Salesforce/xLAM-7b-r

Original Model: Salesforce/xLAM-7b-r
Original dtype: BF16 (bfloat16)
Quantized by: llama.cpp b3647
IMatrix dataset: here


Files

IMatrix

Status: โœ… Available
Link: here

Common Quants

Filename Quant type File Size Status Uses IMatrix Is Split
xLAM-7b-r.Q8_0.gguf Q8_0 7.70GB โœ… Available โšช Static ๐Ÿ“ฆ No
xLAM-7b-r.Q6_K.gguf Q6_K 5.94GB โœ… Available โšช Static ๐Ÿ“ฆ No
xLAM-7b-r.Q4_K.gguf Q4_K 4.37GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.Q3_K.gguf Q3_K 3.52GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.Q2_K.gguf Q2_K 2.72GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No

All Quants

Filename Quant type File Size Status Uses IMatrix Is Split
xLAM-7b-r.BF16.gguf BF16 14.48GB โœ… Available โšช Static ๐Ÿ“ฆ No
xLAM-7b-r.FP16.gguf F16 14.48GB โœ… Available โšช Static ๐Ÿ“ฆ No
xLAM-7b-r.Q8_0.gguf Q8_0 7.70GB โœ… Available โšช Static ๐Ÿ“ฆ No
xLAM-7b-r.Q6_K.gguf Q6_K 5.94GB โœ… Available โšช Static ๐Ÿ“ฆ No
xLAM-7b-r.Q5_K.gguf Q5_K 5.13GB โœ… Available โšช Static ๐Ÿ“ฆ No
xLAM-7b-r.Q5_K_S.gguf Q5_K_S 5.00GB โœ… Available โšช Static ๐Ÿ“ฆ No
xLAM-7b-r.Q4_K.gguf Q4_K 4.37GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.Q4_K_S.gguf Q4_K_S 4.14GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.IQ4_NL.gguf IQ4_NL 4.13GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.IQ4_XS.gguf IQ4_XS 3.91GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.Q3_K.gguf Q3_K 3.52GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.Q3_K_L.gguf Q3_K_L 3.82GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.Q3_K_S.gguf Q3_K_S 3.16GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.IQ3_M.gguf IQ3_M 3.28GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.IQ3_S.gguf IQ3_S 3.18GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.IQ3_XS.gguf IQ3_XS 3.02GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.IQ3_XXS.gguf IQ3_XXS 2.83GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.Q2_K.gguf Q2_K 2.72GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.Q2_K_S.gguf Q2_K_S 2.53GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.IQ2_M.gguf IQ2_M 2.50GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.IQ2_S.gguf IQ2_S 2.31GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.IQ2_XS.gguf IQ2_XS 2.20GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.IQ2_XXS.gguf IQ2_XXS 1.99GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.IQ1_M.gguf IQ1_M 1.75GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No
xLAM-7b-r.IQ1_S.gguf IQ1_S 1.61GB โœ… Available ๐ŸŸข IMatrix ๐Ÿ“ฆ No

Downloading using huggingface-cli

If you do not have hugginface-cli installed:

pip install -U "huggingface_hub[cli]"

Download the specific file you want:

huggingface-cli download legraphista/xLAM-7b-r-IMat-GGUF --include "xLAM-7b-r.Q8_0.gguf" --local-dir ./

If the model file is big, it has been split into multiple files. In order to download them all to a local folder, run:

huggingface-cli download legraphista/xLAM-7b-r-IMat-GGUF --include "xLAM-7b-r.Q8_0/*" --local-dir ./
# see FAQ for merging GGUF's

Inference

Simple chat template

<s>[INST] {user_prompt} [/INST] {assistant_response}</s>[INST] {next_user_prompt} [/INST]

Llama.cpp

llama.cpp/main -m xLAM-7b-r.Q8_0.gguf --color -i -p "prompt here (according to the chat template)"

FAQ

Why is the IMatrix not applied everywhere?

According to this investigation, it appears that lower quantizations are the only ones that benefit from the imatrix input (as per hellaswag results).

How do I merge a split GGUF?

  1. Make sure you have gguf-split available
  2. Locate your GGUF chunks folder (ex: xLAM-7b-r.Q8_0)
  3. Run gguf-split --merge xLAM-7b-r.Q8_0/xLAM-7b-r.Q8_0-00001-of-XXXXX.gguf xLAM-7b-r.Q8_0.gguf
    • Make sure to point gguf-split to the first chunk of the split.

Got a suggestion? Ping me @legraphista!

Downloads last month
102
GGUF
Model size
7B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

1-bit

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for legraphista/xLAM-7b-r-IMat-GGUF

Quantized
(11)
this model

Dataset used to train legraphista/xLAM-7b-r-IMat-GGUF