LightOnOCR-2-1B Banner

LightOnOCR-2-1B

Best OCR model . LightOnOCR-2-1B is our flagship OCR model, refined with RLVR training for maximum accuracy. We recommend this variant for most OCR tasks.

About LightOnOCR-2

LightOnOCR-2 is an efficient end-to-end 1B-parameter vision-language model for converting documents (PDFs, scans, images) into clean, naturally ordered text without relying on brittle pipelines. This second version is trained on a larger and higher-quality corpus with stronger French, arXiv, and scan coverage, improved LaTeX handling, and cleaner normalization. LightOnOCR-2 achieves state-of-the-art performance on OlmOCR-Bench while being ~9Γ— smaller and significantly faster than competing approaches.

Highlights

  • ⚑ Speed: 3.3Γ— faster than Chandra OCR, 1.7Γ— faster than OlmOCR, 5Γ— faster than dots.ocr, 2Γ— faster than PaddleOCR-VL-0.9B, 1.73Γ— faster than DeepSeekOCR
  • πŸ’Έ Efficiency: Processes 5.71 pages/s on a single H100 (~493k pages/day) for <$0.01 per 1,000 pages
  • 🧠 End-to-End: Fully differentiable, no external OCR pipeline
  • 🧾 Versatile: Handles tables, receipts, forms, multi-column layouts, and math notation
  • πŸ“ Image detection: Predicts bounding boxes for embedded images (bbox variants)

πŸ“„ Paper | πŸ“ Blog Post | πŸš€ Demo | πŸ“Š Dataset | πŸ“Š BBox Dataset | πŸ““ Finetuning Notebook


Model Variants

Variant Description
LightOnOCR-2-1B Best OCR model
LightOnOCR-2-1B-base Base model, ideal for fine-tuning
LightOnOCR-2-1B-bbox Best model with image bounding boxes
LightOnOCR-2-1B-bbox-base Base bbox model, ideal for fine-tuning
LightOnOCR-2-1B-ocr-soup Merged variant for extra robustness
LightOnOCR-2-1B-bbox-soup Merged variant: OCR + bbox combined

Benchmarks

OlmOCR-Bench Results

See the paper for full benchmark details and methodology.


Usage with Transformers

Note: LightOnOCR-2 requires transformers installed from source (not yet in a stable release).

uv pip install git+https://github.com/huggingface/transformers
uv pip install pillow pypdfium2
import torch
from transformers import LightOnOcrForConditionalGeneration, LightOnOcrProcessor

device = "mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float32 if device == "mps" else torch.bfloat16

model = LightOnOcrForConditionalGeneration.from_pretrained("lightonai/LightOnOCR-2-1B", torch_dtype=dtype).to(device)
processor = LightOnOcrProcessor.from_pretrained("lightonai/LightOnOCR-2-1B")

url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ocr/resolve/main/SROIE-receipt.jpeg"

conversation = [{"role": "user", "content": [{"type": "image", "url": url}]}]

inputs = processor.apply_chat_template(
    conversation,
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    return_tensors="pt",
)
inputs = {k: v.to(device=device, dtype=dtype) if v.is_floating_point() else v.to(device) for k, v in inputs.items()}

output_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids = output_ids[0, inputs["input_ids"].shape[1]:]
output_text = processor.decode(generated_ids, skip_special_tokens=True)
print(output_text)

Usage with vLLM

vllm serve lightonai/LightOnOCR-2-1B \
    --limit-mm-per-prompt '{"image": 1}' --mm-processor-cache-gb 0 --no-enable-prefix-caching
import base64
import requests
import pypdfium2 as pdfium
import io

ENDPOINT = "http://localhost:8000/v1/chat/completions"
MODEL = "lightonai/LightOnOCR-2-1B"

# Download PDF from arXiv
pdf_url = "https://arxiv.org/pdf/2412.13663"
pdf_data = requests.get(pdf_url).content

# Open PDF and convert first page to image
pdf = pdfium.PdfDocument(pdf_data)
page = pdf[0]
# Render at 200 DPI (scale factor = 200/72 β‰ˆ 2.77)
pil_image = page.render(scale=2.77).to_pil()

# Convert to base64
buffer = io.BytesIO()
pil_image.save(buffer, format="PNG")
image_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')

# Make request
payload = {
    "model": MODEL,
    "messages": [{
        "role": "user",
        "content": [{
            "type": "image_url",
            "image_url": {"url": f"data:image/png;base64,{image_base64}"}
        }]
    }],
    "max_tokens": 4096,
    "temperature": 0.2,
    "top_p": 0.9,
}

response = requests.post(ENDPOINT, json=payload)
text = response.json()['choices'][0]['message']['content']
print(text)

Rendering and Preprocessing Tips

  • Render PDFs to PNG or JPEG at a target longest dimension of 1540px
  • Maintain aspect ratio to preserve text geometry
  • Use one image per page; batching supported by vLLM

Fine-tuning

LightOnOCR-2 is fully differentiable and supports:

  • LoRA fine-tuning
  • Domain adaptation (receipts, scientific articles, forms, etc.)
  • Multilingual fine-tuning with task-specific corpora

For fine-tuning, we recommend starting with the LightOnOCR-2-1B-base variant.


License

Apache License 2.0


Citation

@misc{lightonocr2_2026,
  title        = {LightOnOCR: A 1B End-to-End Multilingual Vision-Language Model for State-of-the-Art OCR},
  author       = {Said Taghadouini and Adrien Cavaill\`{e}s and Baptiste Aubertin},
  year         = {2026},
  howpublished = {\url{https://arxiv.org/pdf/2601.14251}}
}
Downloads last month
1,784
Safetensors
Model size
1B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ 3 Ask for provider support

Spaces using lightonai/LightOnOCR-2-1B 3

Collection including lightonai/LightOnOCR-2-1B

Papers for lightonai/LightOnOCR-2-1B