We prepared the 2025 version of the HF AI Timeline Grid, highlighting open vs API-based model releases, and allowing you to browse and filter by access, modality, and release type!
1οΈβ£ Q1 β Learning to Reason Deepseek not only releases a top-notch reasoning model, but shows how to train them and compete with closed frontier models. OpenAI debuts Deep Research.
Significant milestones: DeepSeek R1 & R1-Zero, Qwen 2.5 VL, OpenAI Deep Research, Gemini 2.5 Pro (experimental)
2οΈβ£ Q2 β Multimodality and Coding More LLMs embrace multimodality by default, and there's a surge in coding agents. Strong vision, audio, and generative models emerge.
Significant milestones: Llama 4, Qwen 3, Imagen 4, OpenAI Codex, Google Jules, Claude 4
3οΈβ£ Q3 β "Gold" rush, OpenAI opens up, the community goes bananas Flagship models get gold in Math olympiads and hard benchmarks. OpenAI releases strong open source models and Google releases the much anticipated nano-banana for image generation and editing. Agentic workflows become commonplace.
Significant milestones: Gemini and OpenAI IMO Gold, gpt-oss, Gemini 2.5 Flash Image, Grok 4, Claude Sonnet 4.5
4οΈβ£ Q4 β Mistral returns, leaderboard hill-climbing Mistral is back with updated model families. All labs release impressive models to wrap up the year!
Significant milestones: Claude Opus 4.5, DeepSeek Math V2, FLUX 2, GPT 5.1, Kimi K2 Thinking, Nano Banana Pro, GLM 4.7, Gemini 3, Mistral 3, MiniMax M2.1 π€―
Finally, the ground truth / AlexNetβs original source code is available to all. Context: AlexNet had a historic win in the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), reducing error rate from 26% (previous best) to 15.3%. Itβs a deep CNN with 8 layers (5 convolutional + 3 fully connected), pioneering the use of ReLU activations for faster training, dropout for regularization, and GPU acceleration for large-scale learning. This moment marked the beginning of the deep learning revolution, inspiring architectures like VGG, ResNet, and modern transformers. Code: https://github.com/computerhistory/AlexNet-Source-Code