x5-ner-overfit-tuning

This model is a fine-tuned version of xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2588
  • Precision: 0.9284
  • Recall: 0.9505
  • F1: 0.9394
  • Accuracy: 0.9455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.8643 0.2754 500 0.3379 0.8295 0.8782 0.8532 0.9089
0.3556 0.5508 1000 0.3714 0.8562 0.8741 0.8650 0.9093
0.3058 0.8262 1500 0.2815 0.8730 0.9115 0.8919 0.9205
0.2563 1.1013 2000 0.2417 0.9085 0.9410 0.9244 0.9383
0.2188 1.3768 2500 0.2519 0.9209 0.9378 0.9293 0.9403
0.2102 1.6522 3000 0.2262 0.9230 0.9426 0.9327 0.9431
0.1851 1.9276 3500 0.2261 0.9237 0.9407 0.9321 0.9417
0.1558 2.2027 4000 0.2234 0.9290 0.9505 0.9396 0.9473
0.1339 2.4781 4500 0.2280 0.9297 0.9515 0.9404 0.9475
0.129 2.7535 5000 0.2588 0.9284 0.9505 0.9394 0.9455

Framework versions

  • Transformers 4.53.3
  • Pytorch 2.7.1+cu118
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for lotusbro/x5-ner-overfit-tuning

Finetuned
(868)
this model

Evaluation results