x5-ner-overfit-tuning
This model is a fine-tuned version of xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2588
- Precision: 0.9284
- Recall: 0.9505
- F1: 0.9394
- Accuracy: 0.9455
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.8643 | 0.2754 | 500 | 0.3379 | 0.8295 | 0.8782 | 0.8532 | 0.9089 |
| 0.3556 | 0.5508 | 1000 | 0.3714 | 0.8562 | 0.8741 | 0.8650 | 0.9093 |
| 0.3058 | 0.8262 | 1500 | 0.2815 | 0.8730 | 0.9115 | 0.8919 | 0.9205 |
| 0.2563 | 1.1013 | 2000 | 0.2417 | 0.9085 | 0.9410 | 0.9244 | 0.9383 |
| 0.2188 | 1.3768 | 2500 | 0.2519 | 0.9209 | 0.9378 | 0.9293 | 0.9403 |
| 0.2102 | 1.6522 | 3000 | 0.2262 | 0.9230 | 0.9426 | 0.9327 | 0.9431 |
| 0.1851 | 1.9276 | 3500 | 0.2261 | 0.9237 | 0.9407 | 0.9321 | 0.9417 |
| 0.1558 | 2.2027 | 4000 | 0.2234 | 0.9290 | 0.9505 | 0.9396 | 0.9473 |
| 0.1339 | 2.4781 | 4500 | 0.2280 | 0.9297 | 0.9515 | 0.9404 | 0.9475 |
| 0.129 | 2.7535 | 5000 | 0.2588 | 0.9284 | 0.9505 | 0.9394 | 0.9455 |
Framework versions
- Transformers 4.53.3
- Pytorch 2.7.1+cu118
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 8
Model tree for lotusbro/x5-ner-overfit-tuning
Base model
FacebookAI/xlm-roberta-large