lotusbro's picture
End of training
b76eb0f verified
metadata
library_name: transformers
license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: x5-ner-with-augmentation-in-flight
    results: []

x5-ner-with-augmentation-in-flight

This model is a fine-tuned version of xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3224
  • Precision: 0.9316
  • Recall: 0.9553
  • F1: 0.9433
  • Accuracy: 0.9453

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.3995 1.0 3631 0.9135 0.8831 0.3011 0.8761 0.8903
0.3472 2.0 7262 0.9312 0.9173 0.2802 0.9080 0.9267
0.318 3.0 10893 0.9385 0.9325 0.2597 0.9174 0.9480
0.2956 4.0 14524 0.9401 0.9387 0.2870 0.9262 0.9515
0.2837 5.0 18155 0.9401 0.9374 0.2796 0.9271 0.9480
0.2601 6.0 21786 0.9423 0.9393 0.2723 0.9266 0.9524
0.2482 7.0 25417 0.9458 0.9464 0.2683 0.9361 0.9569
0.2364 8.0 29048 0.3210 0.9310 0.9550 0.9429 0.9432
0.2077 9.0 32679 0.3160 0.9349 0.9572 0.9459 0.9455
0.1616 10.0 36310 0.3224 0.9316 0.9553 0.9433 0.9453

Framework versions

  • Transformers 4.53.3
  • Pytorch 2.7.1+cu118
  • Datasets 3.6.0
  • Tokenizers 0.21.4