Based on Unsloth's original BF16 GGUF.
The real-world test problem is from https://www.mathe-wettbewerbe.de/fileadmin/Mathe-Wettbewerbe/Bundeswettbewerb_Mathematik/Dokumente/Aufgaben_und_Loesungen_BWM/2025/BWM_25_2_Aufgabenblatt.pdf (published in Sept. 2025, the answer is available in Oct. 2025. So I believe the LLM does not take this problem in the training set.)
./build/bin/llama-server -m /media/lovedheart/8EC4693CC46927A3/IQ1_M/Qwen3-VL-235B-A22B-Thinking-IQ1_M-00001-of-00039.gguf --mmproj /media/lovedheart/8EC4693CC46927A3/IQ1_M/mmproj-F16.gguf -c 262144 -ot "emb=Vulkan0"
ggml_vulkan: Found 1 Vulkan devices: ggml_vulkan: 0 = AMD Radeon Graphics (RADV PHOENIX) (radv) | uma: 1 | fp16: 1 | bf16: 0 | warp size: 64 | shared memory: 65536 | int dot: 1 | matrix cores: KHR_coopmat main: setting n_parallel = 4 and kv_unified = true (add -kvu to disable this) build: 6964 (22c8c3c6a) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu system info: n_threads = 8, n_threads_batch = 8, total_threads = 16 system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8080, http threads: 15
main: loading model
srv load_model: loading model '/media/lovedheart/8EC4693CC46927A3/IQ1_M/Qwen3-VL-235B-A22B-Thinking-IQ1_M-00001-of-00039.gguf'
llama_model_load_from_file_impl: using device Vulkan0 (AMD Radeon Graphics (RADV PHOENIX)) (0000:c7:00.0) - 119581 MiB free
llama_model_loader: additional 38 GGUFs metadata loaded.
llama_model_loader: loaded meta data with 48 key-value pairs and 1131 tensors from /media/lovedheart/8EC4693CC46927A3/IQ1_M/Qwen3-VL-235B-A22B-Thinking-IQ1_M-00001-of-00039.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen3vlmoe
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen3-Vl-235B-A22B-Thinking
llama_model_loader: - kv 3: general.finetune str = Thinking
llama_model_loader: - kv 4: general.basename str = Qwen3-Vl-235B-A22B-Thinking
llama_model_loader: - kv 5: general.quantized_by str = Unsloth
llama_model_loader: - kv 6: general.size_label str = 235B-A22B
llama_model_loader: - kv 7: general.license str = apache-2.0
llama_model_loader: - kv 8: general.repo_url str = https://huggingface.co/unsloth
llama_model_loader: - kv 9: general.base_model.count u32 = 1
llama_model_loader: - kv 10: general.base_model.0.name str = Qwen3 VL 235B A22B Thinking
llama_model_loader: - kv 11: general.base_model.0.organization str = Qwen
llama_model_loader: - kv 12: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen3-VL-...
llama_model_loader: - kv 13: general.tags arr[str,1] = ["unsloth"]
llama_model_loader: - kv 14: qwen3vlmoe.block_count u32 = 94
llama_model_loader: - kv 15: qwen3vlmoe.context_length u32 = 262144
llama_model_loader: - kv 16: qwen3vlmoe.embedding_length u32 = 4096
llama_model_loader: - kv 17: qwen3vlmoe.feed_forward_length u32 = 12288
llama_model_loader: - kv 18: qwen3vlmoe.attention.head_count u32 = 64
llama_model_loader: - kv 19: qwen3vlmoe.attention.head_count_kv u32 = 4
llama_model_loader: - kv 20: qwen3vlmoe.rope.freq_base f32 = 5000000.000000
llama_model_loader: - kv 21: qwen3vlmoe.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 22: qwen3vlmoe.expert_used_count u32 = 8
llama_model_loader: - kv 23: qwen3vlmoe.attention.key_length u32 = 128
llama_model_loader: - kv 24: qwen3vlmoe.attention.value_length u32 = 128
llama_model_loader: - kv 25: qwen3vlmoe.expert_count u32 = 128
llama_model_loader: - kv 26: qwen3vlmoe.expert_feed_forward_length u32 = 1536
llama_model_loader: - kv 27: qwen3vlmoe.rope.dimension_sections arr[i32,4] = [24, 20, 20, 0]
llama_model_loader: - kv 28: qwen3vlmoe.n_deepstack_layers u32 = 3
llama_model_loader: - kv 29: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 30: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 31: tokenizer.ggml.tokens arr[str,151936] = ["!", """, "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 32: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 33: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 34: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 35: tokenizer.ggml.padding_token_id u32 = 151654
llama_model_loader: - kv 36: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 37: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 38: tokenizer.chat_template str = {# Unsloth template fixes #}\n{%- set ...
llama_model_loader: - kv 39: general.quantization_version u32 = 2
llama_model_loader: - kv 40: general.file_type u32 = 31
llama_model_loader: - kv 41: quantize.imatrix.file str = E:\LLM\Qwen3-VL-235B-A22B-Thinking-GG...
llama_model_loader: - kv 42: quantize.imatrix.dataset str = unsloth_calibration_Qwen3-VL-235B-A22...
llama_model_loader: - kv 43: quantize.imatrix.entries_count u32 = 752
llama_model_loader: - kv 44: quantize.imatrix.chunks_count u32 = 79
llama_model_loader: - kv 45: split.no u16 = 0
llama_model_loader: - kv 46: split.tensors.count i32 = 1131
llama_model_loader: - kv 47: split.count u16 = 39
llama_model_loader: - type f32: 471 tensors
llama_model_loader: - type q2_K: 55 tensors
llama_model_loader: - type q4_K: 295 tensors
llama_model_loader: - type q6_K: 65 tensors
llama_model_loader: - type iq2_xxs: 36 tensors
llama_model_loader: - type iq3_xxs: 14 tensors
llama_model_loader: - type iq1_m: 160 tensors
llama_model_loader: - type bf16: 35 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = IQ1_M - 1.75 bpw
print_info: file size = 67.02 GiB (2.45 BPW)
load: printing all EOG tokens:
load: - 151643 ('<|endoftext|>')
load: - 151645 ('<|im_end|>')
load: - 151662 ('<|fim_pad|>')
load: - 151663 ('<|repo_name|>')
load: - 151664 ('<|file_sep|>')
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch = qwen3vlmoe
print_info: vocab_only = 0
print_info: n_ctx_train = 262144
print_info: n_embd = 16384
print_info: n_layer = 94
print_info: n_head = 64
print_info: n_head_kv = 4
print_info: n_rot = 128
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 16
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 12288
print_info: n_expert = 128
print_info: n_expert_used = 8
print_info: n_expert_groups = 0
print_info: n_group_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 40
print_info: rope scaling = linear
print_info: freq_base_train = 5000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 262144
print_info: rope_finetuned = unknown
print_info: mrope sections = [24, 20, 20, 0]
print_info: model type = 235B.A22B
print_info: model params = 235.09 B
print_info: general.name = Qwen3-Vl-235B-A22B-Thinking
print_info: n_ff_exp = 1536
print_info: vocab type = BPE
print_info: n_vocab = 151936
print_info: n_merges = 151387
print_info: BOS token = 151643 '<|endoftext|>'
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: PAD token = 151654 '<|vision_pad|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 94 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 95/95 layers to GPU
load_tensors: Vulkan0 model buffer size = 68627.51 MiB
..................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 4
llama_context: n_ctx = 262144
llama_context: n_ctx_seq = 262144
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = auto
llama_context: kv_unified = true
llama_context: freq_base = 5000000.0
llama_context: freq_scale = 1
llama_context: Vulkan_Host output buffer size = 2.32 MiB
llama_kv_cache: Vulkan0 KV buffer size = 48128.00 MiB
llama_kv_cache: size = 48128.00 MiB (262144 cells, 94 layers, 4/1 seqs), K (f16): 24064.00 MiB, V (f16): 24064.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context: Vulkan0 compute buffer size = 816.02 MiB
llama_context: Vulkan_Host compute buffer size = 512.02 MiB
llama_context: graph nodes = 5929
llama_context: graph splits = 1
common_init_from_params: added <|endoftext|> logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: added <|fim_pad|> logit bias = -inf
common_init_from_params: added <|repo_name|> logit bias = -inf
common_init_from_params: added <|file_sep|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 262144
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
clip_model_loader: model name: Qwen3-Vl-235B-A22B-Thinking
clip_model_loader: description:
clip_model_loader: GGUF version: 3
clip_model_loader: alignment: 32
clip_model_loader: n_tensors: 352
clip_model_loader: n_kv: 31
clip_model_loader: has vision encoder clip_ctx: CLIP using Vulkan0 backend load_hparams: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks load_hparams: if you encounter problems with accuracy, try adding --image-min-tokens 1024 load_hparams: more info: https://github.com/ggml-org/llama.cpp/issues/16842
load_hparams: projector: qwen3vl_merger load_hparams: n_embd: 1152 load_hparams: n_head: 16 load_hparams: n_ff: 4304 load_hparams: n_layer: 27 load_hparams: ffn_op: gelu load_hparams: projection_dim: 4096
--- vision hparams --- load_hparams: image_size: 768 load_hparams: patch_size: 16 load_hparams: has_llava_proj: 0 load_hparams: minicpmv_version: 0 load_hparams: n_merge: 2 load_hparams: n_wa_pattern: 0 load_hparams: image_min_pixels: 8192 load_hparams: image_max_pixels: 4194304
load_hparams: model size: 1105.32 MiB
load_hparams: metadata size: 0.12 MiB
alloc_compute_meta: warmup with image size = 1472 x 1472
alloc_compute_meta: Vulkan0 compute buffer size = 372.08 MiB
alloc_compute_meta: CPU compute buffer size = 24.93 MiB
alloc_compute_meta: graph splits = 1, nodes = 853
warmup: flash attention is enabled
srv load_model: loaded multimodal model, '/media/lovedheart/8EC4693CC46927A3/IQ1_M/mmproj-F16.gguf'
srv init: initializing slots, n_slots = 4
slot init: id 0 | task -1 | new slot, n_ctx = 262144
slot init: id 1 | task -1 | new slot, n_ctx = 262144
slot init: id 2 | task -1 | new slot, n_ctx = 262144
slot init: id 3 | task -1 | new slot, n_ctx = 262144
srv init: prompt cache is enabled, size limit: 8192 MiB
srv init: use --cache-ram 0 to disable the prompt cache
srv init: for more info see https://github.com/ggml-org/llama.cpp/pull/16391
srv init: thinking = 0
main: model loaded
main: chat template, chat_template: {# Unsloth template fixes #}
{%- set image_count = namespace(value=0) %}
{%- set video_count = namespace(value=0) %}
{%- macro render_content(content, do_vision_count) %}
{%- if content is string %}
{{- content }}
{%- else %}
{%- for item in content %}
{%- if 'image' in item or 'image_url' in item or item.type == 'image' %}
{%- if do_vision_count %}
{%- set image_count.value = image_count.value + 1 %}
{%- endif %}
{%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
<|vision_start|><|image_pad|><|vision_end|>
{%- elif 'video' in item or item.type == 'video' %}
{%- if do_vision_count %}
{%- set video_count.value = video_count.value + 1 %}
{%- endif %}
{%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
<|vision_start|><|video_pad|><|vision_end|>
{%- elif 'text' in item %}
{{- item.text }}
{%- endif %}
{%- endfor %}
{%- endif %}
{%- endmacro %}
{%- if tools %}
{{- '<|im_start|>system\n' }}
{%- if messages[0].role == 'system' %}
{{- render_content(messages[0].content, false) + '\n\n' }}
{%- endif %}
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within XML tags:\n" }}
{%- for tool in tools %}
{{- "\n" }}
{{- tool | tojson }}
{%- endfor %}
{{- "\n\n\nFor each function call, return a json object with function name and arguments within XML tags:\n\n{"name": , "arguments": }\n<|im_end|>\n" }}
{%- else %}
{%- if messages[0].role == 'system' %}
{{- '<|im_start|>system\n' + render_content(messages[0].content, false) + '<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
{%- for message in messages[::-1] %}
{%- set index = (messages|length - 1) - loop.index0 %}
{%- if ns.multi_step_tool and message.role == "user" %}
{%- set content = render_content(message.content, false) %}
{%- if not(content.startswith('') and content.endswith('')) %}
{%- set ns.multi_step_tool = false %}
{%- set ns.last_query_index = index %}
{%- endif %}
{%- endif %}
{%- endfor %}
{%- for message in messages %}
{%- set content = render_content(message.content, True) %}
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
{{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
{%- elif message.role == "assistant" %}
{%- set reasoning_content = '' %}
{%- if message.reasoning_content is string %}
{%- set reasoning_content = message.reasoning_content %}
{%- else %}
{%- if '' in content %}
{# Unsloth template fixes - must change to for loop since llama.cpp will error out if not #}
{%- set parts = content.split('') %}
{%- for part in parts %}
{%- if loop.index0 == 0 -%}
{%- set reasoning_content = part.rstrip('\n') %}
{%- set reasoning_content = (reasoning_content.split('')|last) %}
{%- set reasoning_content = reasoning_content.lstrip('\n') -%}
{%- else -%}
{%- set content = part.lstrip('\n') %}
{%- endif %}
{%- endfor %}
{%- endif %}
{%- endif %}
{%- if loop.index0 > ns.last_query_index %}
{%- if loop.last or (not loop.last and reasoning_content) %}
{{- '<|im_start|>' + message.role + '\n\n' + reasoning_content.strip('\n') + '\n\n\n' + content.lstrip('\n') }}
{%- else %}
{{- '<|im_start|>' + message.role + '\n' + content }}
{%- endif %}
{%- else %}
{{- '<|im_start|>' + message.role + '\n' + content }}
{%- endif %}
{%- if message.tool_calls %}
{%- for tool_call in message.tool_calls %}
{%- if (loop.first and content) or (not loop.first) %}
{{- '\n' }}
{%- endif %}
{%- if tool_call.function %}
{%- set tool_call = tool_call.function %}
{%- endif %}
{{- '\n{"name": "' }}
{{- tool_call.name }}
{{- '", "arguments": ' }}
{%- if tool_call.arguments is string %}
{{- tool_call.arguments }}
{%- else %}
{{- tool_call.arguments | tojson }}
{%- endif %}
{{- '}\n' }}
{%- endfor %}
{%- endif %}
{{- '<|im_end|>\n' }}
{%- elif message.role == "tool" %}
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
{{- '<|im_start|>user' }}
{%- endif %}
{{- '\n\n' }}
{{- content }}
{{- '\n' }}
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
{{- '<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|im_start|>assistant\n\n' }}
{%- endif %}
{# Copyright 2025-present Unsloth. Apache 2.0 License. #}, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://127.0.0.1:8080 - starting the main loop
srv update_slots: all slots are idle
srv log_server_r: request: GET / 127.0.0.1 200
srv log_server_r: request: GET /props 127.0.0.1 200
srv log_server_r: request: GET /props 127.0.0.1 200
srv log_server_r: request: GET /props 127.0.0.1 200
srv update_slots: all slots are idle
srv log_server_r: request: GET /slots 127.0.0.1 200
srv log_server_r: request: GET /props 127.0.0.1 200
srv log_server_r: request: GET /props 127.0.0.1 200
srv params_from_: Chat format: Content-only
slot get_availabl: id 3 | task -1 | selected slot by LRU, t_last = -1
slot launch_slot_: id 3 | task 1 | processing task
slot update_slots: id 3 | task 1 | new prompt, n_ctx_slot = 262144, n_keep = 0, task.n_tokens = 641
slot update_slots: id 3 | task 1 | n_tokens = 0, memory_seq_rm [0, end)
slot update_slots: id 3 | task 1 | prompt processing progress, n_tokens = 11, batch.n_tokens = 11, progress = 0.017161
slot update_slots: id 3 | task 1 | n_tokens = 11, memory_seq_rm [11, end)
srv process_chun: processing image...
encoding image slice...
image slice encoded in 1612 ms
decoding image batch 1/1, n_tokens_batch = 624
image decoded (batch 1/1) in 23441 ms
srv process_chun: image processed in 25053 ms
slot update_slots: id 3 | task 1 | prompt processing progress, n_tokens = 641, batch.n_tokens = 6, progress = 1.000000
slot update_slots: id 3 | task 1 | prompt done, n_tokens = 641, batch.n_tokens = 6
srv log_server_r: request: GET /props 127.0.0.1 200
srv log_server_r: request: GET /slots 127.0.0.1 200
srv log_server_r: request: GET /slots 127.0.0.1 200
slot print_timing: id 3 | task 1 |
slot release: id 3 | task 1 | stop processing: n_tokens = 10640, truncated = 0
srv update_slots: all slots are idle
srv log_server_r: request: POST /v1/chat/completions 127.0.0.1 200
Some screen shots:
Correct answer from https://www.mathe-wettbewerbe.de/fileadmin/Mathe-Wettbewerbe/Bundeswettbewerb_Mathematik/Dokumente/Aufgaben_und_Loesungen_BWM/2025/bwm_2025_ii_endgueltig.pdf
- Downloads last month
- 1,146
1-bit
Model tree for lovedheart/Qwen3-VL-235B-A22B-Thinking-GGUF
Base model
Qwen/Qwen3-VL-235B-A22B-Thinking



