See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Meta-Llama-3-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 77ba6d73fd94c922_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/77ba6d73fd94c922_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 2
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: luckjsg/fb623698-1171-4f16-b312-34e7e1621495
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_bias: none
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 128
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/77ba6d73fd94c922_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 2
sequence_len: 512
special_tokens:
pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0655973e-32fe-419c-b1dd-ea3a9cf3a099
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0655973e-32fe-419c-b1dd-ea3a9cf3a099
warmup_steps: 50
weight_decay: 0.01
xformers_attention: false
fb623698-1171-4f16-b312-34e7e1621495
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7086
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 100
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 0.0006 | 1 | 1.5952 |
| 0.7627 | 0.0099 | 17 | 1.5819 |
| 0.7747 | 0.0198 | 34 | 0.8150 |
| 0.9702 | 0.0298 | 51 | 0.7884 |
| 0.7416 | 0.0397 | 68 | 0.7375 |
| 0.6675 | 0.0496 | 85 | 0.7086 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for luckjsg/fb623698-1171-4f16-b312-34e7e1621495
Base model
NousResearch/Meta-Llama-3-8B