YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

MiniMax-M2 Model Repository

This is the official MiniMax-M2 model repository containing a 230B parameter MoE model with 10B active parameters, optimized for coding and agentic workflows.

Model Information

  • Model Type: Mixture of Experts (MoE)
  • Total Parameters: 230B
  • Active Parameters: 10B
  • Architecture: Transformer-based MoE
  • License: Modified MIT
  • Pipeline Tag: text-generation

Usage

This model can be used with various inference frameworks:

Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("your-username/MiniMax-M2")
tokenizer = AutoTokenizer.from_pretrained("your-username/MiniMax-M2")

vLLM

from vllm import LLM, SamplingParams

llm = LLM(model="your-username/MiniMax-M2")

SGLang

from sglang import function, system, user, assistant, gen, select

@function
def multi_turn_question(s, question):
    s += system("You are a helpful assistant.")
    s += user(question)
    s += assistant(gen("answer", max_tokens=256))
    return s["answer"]

Model Details

  • Context Length: 128K tokens
  • Thinking Format: Uses <think>...</think> tags for reasoning
  • Recommended Parameters:
    • Temperature: 1.0
    • Top-p: 0.95
    • Top-k: 40

Deployment Guides

See the docs/ directory for detailed deployment guides:

License

This model is released under the Modified MIT License. See the license file for details.

Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support