Model Card: Starlight Unified Model 2025

Model Overview

  • Task: Detection / Extraction
  • Architecture: Unified CNN-based Encoder-Decoder with Residual Blocks
  • Input: 256x256 RGB/RGBA or metadata
  • Output:
    • Detector: sigmoid probability
    • Extractor: variable-length byte sequence

Training

  • Dataset: Combined submissions (grok, gemini, claude, chatgpt, sample)
  • Epochs: 50
  • Batch Size: 16
  • Optimizer: Adam
  • Loss: BCE + MSE (detector), CrossEntropy (extractor)

Performance

Metric Value
Accuracy 96.3%
AUC-ROC 0.996
F1 Score 0.982
Extraction BER 0.003

Steganography Coverage

  • lsb, alpha, dct, exif, eoi, palette

Inference Speed

  • CPU: 12 ms/image
  • GPU: 2.1 ms/image

License

  • Model: Apache 2.0
  • Code: MIT
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support