medical-qa-anatomy-v5
Fine-tuned BioMistral-7B for medical Q&A, specializing in anatomy and clinical reasoning.
Model Details
- Base Model: BioMistral/BioMistral-7B
- Training Data: 60K medical Q&A samples
- Training Method: LoRA (rank 64, alpha 128)
- Final Eval Loss: 0.960
- Token Accuracy: 74.8%
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
"medcoterie/medical-qa-anatomy-v5",
device_map="auto",
torch_dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained("medcoterie/medical-qa-anatomy-v5")
prompt = '''<s>[INST] You are an expert medical educator. Answer the following medical question with accurate, detailed information.
What is human anatomy? [/INST]'''
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=600,
temperature=0.3,
top_p=0.85,
top_k=50,
repetition_penalty=1.15,
do_sample=True,
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(answer.split("[/INST]")[-1].strip())
Recommended Settings
- temperature: 0.2-0.3 (factual)
- top_p: 0.7-0.85
- top_k: 40-50
- repetition_penalty: 1.15
Training Details
- LoRA rank: 64, alpha: 128
- Learning rate: 1e-4
- Batch size: 2 (gradient accumulation: 8)
- Training steps: 3200
- GPU: 1x 40GB
Limitations
- Trained on custom dataset
- Specializes in anatomy
- Not validated on standardized benchmarks
- Not for clinical decision-making
License
Apache 2.0
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support