Mistral Large 3 675B Base 2512

From our family of large models, Mistral Large 3 is a state-of-the-art general-purpose Multimodal granular Mixture-of-Experts model with 41B active parameters and 675B total parameters trained from scratch with 3000 H200s.

This model is the base pre-trained version, not fine-tuned for instruction or reasoning tasks, making it ideal for custom post-training processes.
Designed for reliability and long-context comprehension - It is engineered for production-grade assistants, retrieval-augmented systems, scientific workloads, and complex enterprise workflows.

Mistral Large 3 Instruct is deployable on-premises in:

  • FP8 on a single node of B200s or H200s.
  • NVFP4 on a single node of H100s or A100s.

Key Features

Mistral Large 3 consists of two main architectural components:

  • A Granular MoE Language Model with 673B params and 39B active
  • A 2.5B Vision Encoder

The Mistral Large 3 Base model offers the following capabilities:

  • Vision: Enables the model to analyze images and provide insights based on visual content, in addition to text.
  • Multilingual: Supports dozens of languages, including English, French, Spanish, German, Italian, Portuguese, Dutch, Chinese, Japanese, Korean, Arabic.
  • Frontier: Delivers best-in-class performance.
  • Apache 2.0 License: Open-source license allowing usage and modification for both commercial and non-commercial purposes.
  • Large Context Window: Supports a 256k context window.

Use Cases

With powerful long-context performance, stable and consistent cross-domain behavior, Mistral Large 3 is perfect for:

  • Long Document Understanding
  • Powerful Daily-Driver AI Assistants
  • State-of-the-Art Agentic and Tool-Use Capabilities
  • Enterprise Knowledge Work
  • General Coding Assistant

And enterprise-grade use cases requiring frontier capabilities.

Recommended Settings

We recommend deploying Large 3 in a client-server configuration with the following best practices:

  • System Prompt: Define a clear environment and use case, including guidance on how to effectively leverage tools in agentic systems.
  • Sampling Parameters: Use a temperature below 0.1 for daily-driver and production environments ; Higher temperatures may be explored for creative use cases - developers are encouraged to experiment with alternative settings.
  • Tools: Keep the set of tools well-defined and limit their number to the minimum required for the use case - Avoiding overloading the model with an excessive number of tools.
  • Vision: When deploying with vision capabilities, we recommend maintaining an aspect ratio close to 1:1 (width-to-height) for images. Avoiding the use of overly thin or wide images - crop them as needed to ensure optimal performance.

Known Issues / Limitations

  • Not a dedicated reasoning model: Dedicated reasoning models can outperform Mistral Large 3 in strict reasoning use cases.
  • Behind vision-first models in multimodal tasks: Mistral Large 3 can lag behind models optimized for vision tasks and use cases.
  • Complex deployment: Due to its large size and architecture, the model can be challenging to deploy efficiently with constrained resources or at scale.

Benchmark Results

We compare Mistral Large 3 to similar sized models.

image

image

image

Instruct Usage

The Instruct model can be used with the following frameworks;

vLLM

We recommend using this model with vLLM.

Installation

Make sure to install most recent vllm:

uv pip install -U vllm \
    --torch-backend=auto \
    --extra-index-url https://wheels.vllm.ai/nightly

Doing so should automatically install mistral_common >= 1.8.6.

To check:

python -c "import mistral_common; print(mistral_common.__version__)"

You can also make use of a ready-to-go docker image or on the docker hub.

Serve

The Mistral Large 3 Instruct FP8 format can be used on one 8xH200 node. We recommend to use this format if you plan to fine-tuning as it can be more precise than NVFP4 in some situations.

A simple launch command is:


vllm serve mistralai/Mistral-Large-3-675B-Instruct-2512 \
  --tensor-parallel-size 8 \
  --enable-auto-tool-choice --tool-call-parser mistral

Key parameter notes:

  • enable-auto-tool-choice: Required when enabling tool usage.
  • tool-call-parser mistral: Required when enabling tool usage.

Additional flags:

  • You can set --max-model-len to preserve memory. By default it is set to 262144 which is quite large but not necessary for most scenarios.
  • You can set --max-num-batched-tokens to balance throughput and latency, higher means higher throughput but higher latency.

Usage of the model

Here we asumme that the model mistralai/Mistral-Large-3-675B-Instruct-2512 is served and you can ping it to the domain localhost with the port 8000 which is the default for vLLM.

Vision Reasoning

Let's see if Mistral Large 3 knows when to pick a fight !

from datetime import datetime, timedelta

from openai import OpenAI
from huggingface_hub import hf_hub_download

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

TEMP = 0.15
MAX_TOK = 262144

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id


def load_system_prompt(repo_id: str, filename: str) -> str:
    file_path = hf_hub_download(repo_id=repo_id, filename=filename)
    with open(file_path, "r") as file:
        system_prompt = file.read()
    today = datetime.today().strftime("%Y-%m-%d")
    yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
    model_name = repo_id.split("/")[-1]
    return system_prompt.format(name=model_name, today=today, yesterday=yesterday)


SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438"

messages = [
    {"role": "system", "content": SYSTEM_PROMPT},
    {
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.",
            },
            {"type": "image_url", "image_url": {"url": image_url}},
        ],
    },
]


response = client.chat.completions.create(
    model=model,
    messages=messages,
    temperature=TEMP,
    max_tokens=MAX_TOK,
)

print(response.choices[0].message.content)
Function Calling

Let's solve some equations thanks to our simple Python calculator tool.

import json
from openai import OpenAI
from huggingface_hub import hf_hub_download

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

TEMP = 0.15
MAX_TOK = 262144

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id


def load_system_prompt(repo_id: str, filename: str) -> str:
    file_path = hf_hub_download(repo_id=repo_id, filename=filename)
    with open(file_path, "r") as file:
        system_prompt = file.read()
    return system_prompt


SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")

image_url = "https://math-coaching.com/img/fiche/46/expressions-mathematiques.jpg"


def my_calculator(expression: str) -> str:
    return str(eval(expression))


tools = [
    {
        "type": "function",
        "function": {
            "name": "my_calculator",
            "description": "A calculator that can evaluate a mathematical equation and compute its results.",
            "parameters": {
                "type": "object",
                "properties": {
                    "expression": {
                        "type": "string",
                        "description": "The mathematical expression to evaluate.",
                    },
                },
                "required": ["expression"],
            },
        },
    },
    {
        "type": "function",
        "function": {
            "name": "rewrite",
            "description": "Rewrite a given text for improved clarity",
            "parameters": {
                "type": "object",
                "properties": {
                    "text": {
                        "type": "string",
                        "description": "The input text to rewrite",
                    }
                },
            },
        },
    },
]

messages = [
    {"role": "system", "content": SYSTEM_PROMPT},
    {
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "Thanks to your calculator, compute the results for the equations that involve numbers displayed in the image.",
            },
            {
                "type": "image_url",
                "image_url": {
                    "url": image_url,
                },
            },
        ],
    },
]

response = client.chat.completions.create(
    model=model,
    messages=messages,
    temperature=TEMP,
    max_tokens=MAX_TOK,
    tools=tools,
    tool_choice="auto",
)

tool_calls = response.choices[0].message.tool_calls

results = []
for tool_call in tool_calls:
    function_name = tool_call.function.name
    function_args = tool_call.function.arguments
    if function_name == "my_calculator":
        result = my_calculator(**json.loads(function_args))
        results.append(result)

messages.append({"role": "assistant", "tool_calls": tool_calls})
for tool_call, result in zip(tool_calls, results):
    messages.append(
        {
            "role": "tool",
            "tool_call_id": tool_call.id,
            "name": tool_call.function.name,
            "content": result,
        }
    )


response = client.chat.completions.create(
    model=model,
    messages=messages,
    temperature=TEMP,
    max_tokens=MAX_TOK,
)

print(response.choices[0].message.content)
Text-Only Request

Mistral Large 3 can follow your instructions down to the letter.

from openai import OpenAI
from huggingface_hub import hf_hub_download

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

TEMP = 0.15
MAX_TOK = 262144

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id


def load_system_prompt(repo_id: str, filename: str) -> str:
    file_path = hf_hub_download(repo_id=repo_id, filename=filename)
    with open(file_path, "r") as file:
        system_prompt = file.read()
    return system_prompt


SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")

messages = [
    {"role": "system", "content": SYSTEM_PROMPT},
    {
        "role": "user",
        "content": "Write me a sentence where every word starts with the next letter in the alphabet - start with 'a' and end with 'z'.",
    },
]

response = client.chat.completions.create(
    model=model,
    messages=messages,
    temperature=TEMP,
    max_tokens=MAX_TOK,
)

assistant_message = response.choices[0].message.content
print(assistant_message)

License

This model is licensed under the Apache 2.0 License.

You must not use this model in a manner that infringes, misappropriates, or otherwise violates any third party’s rights, including intellectual property rights.

Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 2 Ask for provider support

Model tree for mistralai/Mistral-Large-3-675B-Base-2512

Finetunes
4 models

Collection including mistralai/Mistral-Large-3-675B-Base-2512