binary-tokenizer-001-32k
A cross-platform BPE tokenizer for binary executables and machine code. Trained on 13 GB of diverse binaries spanning Linux, Windows, macOS, and Android platforms.
π Model: mjbommar/binary-tokenizer-001-32k
π Dataset: mjbommar/binary-30k-tokenized
π Paper: Binary BPE: Cross-Platform Tokenization for Binary Analysis (arXiv preprint coming soon)
Overview
- Vocabulary Size: 32,768 tokens (2^15)
- Token Composition: 256 base bytes + 32,505 learned merges + 7 special tokens
- Average Token Length: 3.812 bytes
- 3-byte Instructions: 19.5% of vocabulary (6,380 tokens)
- Compression Ratio: ~2.7 bytes/token on typical binaries
Training Configuration
Training Corpus:
- Source:
mjbommar/binary-30k-tokenized - Size: ~13 GB
- Files: 30,738 binary files
- Platforms: Linux (ELF), Windows (PE), macOS (Mach-O), Android (APK)
- Architectures: x86-64, x86, ARM64, ARM, MIPS, RISC-V
Training Parameters:
- Vocabulary size: 32,768 (including 7 special tokens)
- Min frequency: 10
- Chunk size: 8,192 bytes
- Allowed lengths: DEFAULT (1-16 bytes)
- Training duration: ~6-7 hours
Vocabulary Statistics
Composition:
- Base bytes (0-255): 256 tokens
- Learned merges: 32,505 tokens
- Special tokens: 7 tokens (
<|start|>,<|end|>,<|pad|>,<|unk|>,<|cls|>,<|sep|>,<|mask|>) - Total: 32,768 tokens
Quality Metrics:
- All tokens reachable: β Yes
- Valid merges: 32,505 / 32,505
- Power-of-2 size: β Yes (2^15)
Token Length Distribution
| Length | Count | Percentage | Description |
|---|---|---|---|
| 1 byte | 256 | 0.8% | Base bytes |
| 2 bytes | 13,428 | 41.0% | Byte pairs |
| 3 bytes | 6,380 | 19.5% | Complete x86-64 instructions |
| 4 bytes | 6,236 | 19.0% | Instructions with operands |
| 5 bytes | 1,763 | 5.4% | Complex patterns |
| 6 bytes | 1,395 | 4.3% | Complex patterns |
| 7 bytes | 676 | 2.1% | Complex patterns |
| 8 bytes | 963 | 2.9% | Complex patterns |
| 9+ bytes | 1,467 | 4.5% | Long patterns |
Average Token Length: 3.812 bytes
Byte Content Analysis
Content Categories:
- Contains NULL byte (0x00): 8,350 tokens (25.5%)
- ASCII printable (0x20-0x7E): 6,460 tokens (19.7%)
- All ASCII (<0x80): 13,796 tokens (42.1%)
- High bytes (β₯0x80): 18,964 tokens (57.9%)
Most Common Bytes in Tokens:
0x00(NULL): 20,462 occurrences - Padding and alignment0xFF: 3,502 occurrences - Sentinel values0x48(REX.W): 2,883 occurrences - x86-64 REX prefix0x8B(MOV): 1,934 occurrences - x86-64 MOV opcode0xCC(INT3): 1,366 occurrences - Debug breakpoint padding
Sequence Coverage
N-byte Sequence Diversity:
| Length | Learned Tokens | Possible Sequences | Coverage |
|---|---|---|---|
| 1-byte | 256 | 256 | 100.00% |
| 2-byte | 13,428 | 65,536 | 20.49% |
| 3-byte | 6,380 | 16,777,216 | 0.038% |
| 4-byte | 6,236 | 4,294,967,296 | 0.00015% |
Files
tokenizer-32768.json- Trained tokenizer model (2.5 MB)analysis_results.json- Detailed analysis statisticstraining.log- Training output log (if available)training_stats.txt- Training summary (if available)
Usage
Load from HuggingFace Hub:
from tokenizers import Tokenizer
# Load directly from HuggingFace
tokenizer = Tokenizer.from_pretrained("mjbommar/binary-tokenizer-001-32k")
Load from local file:
# With bbpe CLI
bbpe encode --tokenizer tokenizer-32768.json /path/to/binary
bbpe info tokenizer-32768.json
Complete Python Example:
from tokenizers import Tokenizer
# Load from HuggingFace or local file
tokenizer = Tokenizer.from_pretrained("mjbommar/binary-tokenizer-001-32k")
# OR: tokenizer = Tokenizer.from_file("tokenizer-32768.json")
# Read binary file and decode as latin-1 (preserves all byte values 0-255)
with open("/usr/bin/ls", "rb") as f:
data = f.read()
data_str = data.decode("latin-1")
# Encode the binary data
encoding = tokenizer.encode(data_str)
print(f"File size: {len(data)} bytes")
print(f"Total tokens: {len(encoding.ids)}")
print(f"Compression: {len(data) / len(encoding.ids):.3f} bytes/token")
# First 10 tokens
for i, (token_id, token) in enumerate(zip(encoding.ids[:10], encoding.tokens[:10])):
token_bytes = token.encode("latin-1")
print(f" Token {i}: ID={token_id:5d} hex={token_bytes.hex():20s} ({len(token_bytes)} bytes)")
# Decode tokens back to bytes
decoded_str = tokenizer.decode(encoding.ids)
decoded_bytes = decoded_str.encode("latin-1")
assert decoded_bytes == data # Perfect reconstruction
Example output for /usr/bin/ls (142,312 bytes):
File size: 142312 bytes
Total tokens: 53184
Compression: 2.676 bytes/token
First 10 tokens:
Token 0: ID= 127 hex=7f (1 bytes)
Token 1: ID= 3732 hex=454c (2 bytes)
Token 2: ID= 4707 hex=4602 (2 bytes)
Token 3: ID= 392 hex=0101 (2 bytes)
Token 4: ID= 662 hex=000000000000000000 (9 bytes)
Token 5: ID= 265 hex=0300 (2 bytes)
Token 6: ID= 1369 hex=3e00 (2 bytes)
Token 7: ID= 279 hex=01000000 (4 bytes)
Token 8: ID= 48 hex=30 (1 bytes)
Token 9: ID= 109 hex=6d (1 bytes)
Decoded: 7f454c4602010100000000000000000003003e0001000000306d...
(ELF header: 7f 45 4c 46 = ELF magic bytes)
Citation
If you use this tokenizer in your research, please cite:
@article{bommarito2025binarybpe,
title={Binary BPE: Cross-Platform Tokenization for Binary Analysis},
author={Bommarito II, Michael J.},
journal={arXiv preprint},
year={2025},
note={Preprint coming soon}
}
Author: Michael J. Bommarito II (michael.bommarito@gmail.com)
Generated: November 13, 2025
Training Script: train_tokenizers.sh
Analysis Script: analyze_tokenizer.py