OGBert-110M-Base

A 110M parameter ModernBERT-based masked language model trained on glossary and domain-specific text.

Related models:

Model Details

Property Value
Architecture ModernBERT
Parameters 110M
Hidden size 768
Layers 12
Attention heads 12
Vocab size 32,768
Max sequence 1,024 tokens

Training

  • Task: Masked Language Modeling (MLM)
  • Dataset: mjbommar/ogbert-v1-mlm - derived from OpenGloss, a synthetic encyclopedic dictionary with 537K senses across 150K lexemes
  • Masking: Standard 15% token masking
  • Training steps: 8,000 steps (selected for optimal downstream performance)
  • Tokens processed: ~4.5B
  • Batch size: 1,024
  • Peak learning rate: 3e-4

Performance

Word Similarity (SimLex-999)

SimLex-999 measures Spearman correlation between model cosine similarities and human judgments on 999 word pairs. Higher = better alignment with human perception of word similarity.

Model Params SimLex-999 (ρ)
OGBert-110M-Base 110M 0.345
BERT-base 110M 0.070
RoBERTa-base 125M -0.061

OGBert-110M-Base achieves 5x better word similarity than BERT-base with the same parameter count.

Document Clustering

Evaluated on 80 domain-specific documents across 10 categories using KMeans.

Model Params ARI Cluster Acc
OGBert-110M-Base 110M 0.941 0.975
BERT-base 110M 0.896 0.950
RoBERTa-base 125M 0.941 0.975

OGBert-110M-Base matches or exceeds RoBERTa-base on clustering tasks.

Usage

Fill-Mask Pipeline

from transformers import pipeline

fill_mask = pipeline('fill-mask', model='mjbommar/ogbert-110m-base')
result = fill_mask('The financial <|mask|> was approved.')

Direct Model Usage

from transformers import AutoModelForMaskedLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('mjbommar/ogbert-110m-base')
model = AutoModelForMaskedLM.from_pretrained('mjbommar/ogbert-110m-base')

inputs = tokenizer('The <|mask|> definition is clear.', return_tensors='pt')
outputs = model(**inputs)

For Sentence Embeddings

Use mjbommar/ogbert-110m-sentence instead, which includes mean pooling and L2 normalization for optimal similarity search.

Citation

If you use this model, please cite the OpenGloss dataset:

@article{bommarito2025opengloss,
  title={OpenGloss: A Synthetic Encyclopedic Dictionary and Semantic Knowledge Graph},
  author={Bommarito II, Michael J.},
  journal={arXiv preprint arXiv:2511.18622},
  year={2025}
}

License

Apache 2.0

Downloads last month
37
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train mjbommar/ogbert-110m-base

Evaluation results