bibproj's picture
Update README.md
91938a1 verified
metadata
language: en
license: mit
library_name: mlx
pipeline_tag: text-generation
tags:
  - transformers
  - mlx
base_model:
  - MiniMaxAI/MiniMax-M2

mlx-community/MiniMax-M2-mlx-8bit-gs32

This model mlx-community/MiniMax-M2-mlx-8bit-gs32 was converted to MLX format from MiniMaxAI/MiniMax-M2 using mlx-lm version 0.28.1.

Recipe:

  • 8-bit
  • group-size 32
  • 9 bits per weight (bpw)

You can find more similar MLX model quants for a single Apple Mac Studio M3 Ultra with 512 GB at https://huggingface.co/bibproj


Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/MiniMax-M2-mlx-8bit-gs32")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)