llama.cpp Mixed Precision Quant of DeepSeek-V3-0324

All quants made based on moxin-org/CC-MoE.

IQ1_M is based on recipes defined via the --tensor-type option.

IQ1_S is a more dynamic version intended for extreme compression.

Q2_K_L is a specialized version with only 2/4/8 bit quant designed for personalized deployment and experiments.

- IQ1_S : 137.66 GiB (1.76 BPW)
- IQ1_M : 151.25 GiB (1.94 BPW)
- Q2_K_L : 210.60 GiB (2.70 BPW)
👈 Download Guide
# !pip install huggingface_hub hf_transfer
import os
# os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
from huggingface_hub import snapshot_download
snapshot_download(
    repo_id = "moxin-org/DeepSeek-V3-0324-Moxin-GGUF",
    local_dir = "DeepSeek-V3-0324-Moxin-GGUF",
    allow_patterns = ["*IQ1_M*"], # Q2_K_L, IQ1_S, Mini
)

Download Available for huggingface_hub, huggingface-cli, snapshot_download, xet.

Benchmark Comparison

Benchmark (Metric) llamacpp
IQ1_M (140G)
llamacpp
Q2_K (230G)
Ours
IQ1_S (138G)
Ours
IQ1_M (152G)
Winogrande 73.00 77.74 78.69 79.48
MMLU (EM) 75.45 85.57 85.42 86.07
CMMLU 77.06 82.57 86.65 87.84
Hellaswag 78.70 86.46 85.39 85.94
gsm8k 83.40 93.40 93.93 94.39
BBH 24.68 69.19 84.95 86.87

Note: All models use MoE architecture with 37B activated and 671B total parameters.
Bold values mark the best performance per benchmark.

Usage

Example of runing gguf with local build of llama.cpp. (llama-cli/llama-server)

👈 Build llama.cpp locally
git clone https://github.com/ggml-org/llama.cpp.git
cd llama.cpp

cmake -B build -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=OFF -DLLAMA_CURL=OFF
cmake --build build --config Release -j --clean-first
build/bin/llama-cli -m DeepSeek-V3-0324-Moxin-GGUF/V3-IQ1_M/DeepSeek-V3-0324-Moxin-IQ1_M-00001-of-00006.gguf \
  -ngl 99 \
  --temp 0.3 \
  --min-p 0.01 \
  --ctx-size 8192 \ # 4096, 16384

Smallest Compression (CC-MoE)

For our smallest compressed version 105.58 GiB (1.79 BPW). Please refer to tflsxyy/DeepSeek-V3-0324-E192 and V3-Mini-Exp for more details.


Citation

If this work is helpful, please kindly cite as:

@article{chen2025collaborative,
  title={Collaborative Compression for Large-Scale MoE Deployment on Edge},
  author={Chen, Yixiao and Xie, Yanyue and Yang, Ruining and Jiang, Wei and Wang, Wei and He, Yong and Chen, Yue and Zhao, Pu and Wang, Yanzhi},
  journal={arXiv preprint arXiv:2509.25689},
  year={2025}
}

Acknowledgements

This repository builds upon the outstanding work of the following open-source authors and projects:

We sincerely thank them for their excellent contributions to the open-source community.

Downloads last month
1,941
GGUF
Model size
671B params
Architecture
deepseek2
Hardware compatibility
Log In to view the estimation

1-bit

2-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for moxin-org/DeepSeek-V3-0324-Moxin-GGUF

Quantized
(25)
this model

Collection including moxin-org/DeepSeek-V3-0324-Moxin-GGUF