metadata
base_model: Steelskull/L3.3-Nevoria-R1-70b
library_name: transformers
license: other
license_name: eva-llama3.3
tags:
- mergekit
- merge
- mlx
- mlx-my-repo
model-index:
- name: L3.3-Nevoria-R1-70b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 60.24
name: averaged accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 56.17
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 46.68
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 29.19
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 20.19
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.59
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b
name: Open LLM Leaderboard
mrtoots/Steelskull-L3.3-Nevoria-R1-70b-mlx-8Bit
The Model mrtoots/Steelskull-L3.3-Nevoria-R1-70b-mlx-8Bit was converted to MLX format from Steelskull/L3.3-Nevoria-R1-70b using mlx-lm version 0.26.4.
Toots' Note:
Please follow and support Steelskull's work if you like it!
Settings and how best to run found on the original model page.
🦛 If you want a free consulting session, fill out this form to get in touch! 🤗
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mrtoots/L3.3-Nevoria-R1-70b-mlx-8Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)