mrtoots's picture
Update README.md
28d9f9e verified
metadata
base_model: Steelskull/L3.3-Nevoria-R1-70b
library_name: transformers
license: other
license_name: eva-llama3.3
tags:
  - mergekit
  - merge
  - mlx
  - mlx-my-repo
model-index:
  - name: L3.3-Nevoria-R1-70b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: wis-k/instruction-following-eval
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 60.24
            name: averaged accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: SaylorTwift/bbh
          split: test
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 56.17
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: lighteval/MATH-Hard
          split: test
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 46.68
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 29.19
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 20.19
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 49.59
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b
          name: Open LLM Leaderboard

mrtoots/Steelskull-L3.3-Nevoria-R1-70b-mlx-8Bit

The Model mrtoots/Steelskull-L3.3-Nevoria-R1-70b-mlx-8Bit was converted to MLX format from Steelskull/L3.3-Nevoria-R1-70b using mlx-lm version 0.26.4.

Toots' Note:

Please follow and support Steelskull's work if you like it!

Settings and how best to run found on the original model page.

🦛 If you want a free consulting session, fill out this form to get in touch! 🤗

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("mrtoots/L3.3-Nevoria-R1-70b-mlx-8Bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)