AstroPT Euclid VIS Model
Pre-trained AstroPT model for single-band analysis using Euclid VIS imaging.
Overview
This is a pre-trained checkpoint for the AstroPT framework, trained on Euclid VIS band imaging from the Euclid Q1 dataset.
Citation: Euclid Collaboration: Siudek, M et al. 2025 (arXiv:2503.15312)
Quick Start
Load Model
import torch
from pathlib import Path
model_path = "astropt/090M/ckpt.pt"
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = torch.load(model_path, map_location=device)
Inference
from datasets import load_dataset
import torch
dataset = load_dataset(
"msiudek/astroPT_euclid_dataset",
split="train_batch_1",
streaming=True
)
model.eval()
with torch.no_grad():
for sample in dataset:
vis_image = sample['VIS_image']
vis_image = torch.tensor(vis_image, dtype=torch.float32)
vis_image = vis_image.unsqueeze(0).unsqueeze(0)
embeddings = model(vis_image)
Training Data
Related Models
Datasets
Code & Documentation
For inference code, training scripts, and tutorials, visit the AstroPT GitHub Repository.
Citation
@article{Siudek2025,
title={AstroPT: Astronomical Physics Transformers for Multi-modal Learning},
author={Siudek, M and others},
journal={Euclid Collaboration},
eprint={2503.15312},
archivePrefix={arXiv},
year={2025},
url={https://ui.adsabs.harvard.edu/abs/2025arXiv250315312E/abstract}
}
License
CC-BY-4.0
Last Updated: December 2025
Model Version: 1.0