msiudek commited on
Commit
bf43b82
·
verified ·
1 Parent(s): 3e5debf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -4
README.md CHANGED
@@ -1,8 +1,94 @@
 
1
 
2
- # Euclid astroPT: a Foundation Model for Astronomy
3
 
4
- Here we have the model files for the astroPT project trained on Euclid VIS images, the code to run inference
5
- with these models is found here:
6
- [https://github.com/smith42/astropt](https://github.com/smith42/astropt)
7
 
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AstroPT Euclid VIS Model
2
 
3
+ Pre-trained AstroPT model for single-band analysis using Euclid VIS imaging.
4
 
5
+ ## Overview
 
 
6
 
7
+ This is a pre-trained checkpoint for the **AstroPT** framework, trained on Euclid VIS band imaging from the Euclid Q1 dataset.
8
 
9
+ **Citation**: Euclid Collaboration: Siudek, M et al. 2025 ([arXiv:2503.15312](https://ui.adsabs.harvard.edu/abs/2025arXiv250315312E/abstract))
10
+
11
+ ## Quick Start
12
+
13
+ ### Load Model
14
+
15
+ ```python
16
+ import torch
17
+ from pathlib import Path
18
+
19
+ # Load model checkpoint
20
+ model_path = "astropt/090M/ckpt.pt"
21
+ device = "cuda" if torch.cuda.is_available() else "cpu"
22
+
23
+ # Load state dict
24
+ checkpoint = torch.load(model_path, map_location=device)
25
+ # Initialize your model architecture here
26
+ # model.load_state_dict(checkpoint)
27
+ ```
28
+
29
+ ### Inference
30
+
31
+ ```python
32
+ from datasets import load_dataset
33
+ import torch
34
+
35
+ # Load dataset
36
+ dataset = load_dataset(
37
+ "msiudek/astroPT_euclid_dataset",
38
+ split="train_batch_1",
39
+ streaming=True
40
+ )
41
+
42
+ # Run inference
43
+ model.eval()
44
+ with torch.no_grad():
45
+ for sample in dataset:
46
+ vis_image = sample['VIS_image'] # 224×224
47
+ vis_image = torch.tensor(vis_image, dtype=torch.float32)
48
+ vis_image = vis_image.unsqueeze(0).unsqueeze(0) # [1, 1, 224, 224]
49
+
50
+ # Get embeddings
51
+ embeddings = model(vis_image)
52
+ ```
53
+
54
+ ## Training Data
55
+
56
+ - **Dataset**: [AstroPT Euclid Dataset](https://huggingface.co/datasets/msiudek/astroPT_euclid_dataset)
57
+ - **VIS Band**: Euclid VIS (0.55–0.90 μm)
58
+
59
+ ## Related Models
60
+
61
+ - [AstroPT VIS+NISP Model](https://huggingface.co/msiudek/astroPT_euclid_VIS_NISP_model): Multi-band (VIS + NISP)
62
+ - [AstroPT VIS+NISP+SED Model](https://huggingface.co/msiudek/astroPT_euclid_VIS_NISP_SED_model): Multi-modal (imaging + photometry)
63
+
64
+ ## Datasets
65
+
66
+ - **Imaging**: [astroPT_euclid_dataset](https://huggingface.co/datasets/msiudek/astroPT_euclid_dataset)
67
+ - **Metadata**: [astroPT_euclid_metadata](https://huggingface.co/datasets/msiudek/astroPT_euclid_metadata)
68
+
69
+ ## Code & Documentation
70
+
71
+ For inference code, training scripts, and tutorials, visit the **[AstroPT GitHub Repository](https://github.com/Smith42/astroPT)**.
72
+
73
+ ## Citation
74
+
75
+ ```bibtex
76
+ @article{Siudek2025,
77
+ title={AstroPT: Astronomical Physics Transformers for Multi-modal Learning},
78
+ author={Siudek, M and others},
79
+ journal={Euclid Collaboration},
80
+ eprint={2503.15312},
81
+ archivePrefix={arXiv},
82
+ year={2025},
83
+ url={https://ui.adsabs.harvard.edu/abs/2025arXiv250315312E/abstract}
84
+ }
85
+ ```
86
+
87
+ ## License
88
+
89
+ CC-BY-4.0
90
+
91
+ ---
92
+
93
+ **Last Updated**: December 2025
94
+ **Model Version**: 1.0