vi_mbart_en2amr

This model is a fine-tuned version of facebook/mbart-large-50-many-to-many-mmt on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3850
  • Smatch Precision: 79.44
  • Smatch Recall: 82.04
  • Smatch Fscore: 80.72
  • Smatch Unparsable: 49
  • Percent Not Recoverable: 0.1248

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Percent Not Recoverable Smatch Fscore Smatch Precision Smatch Recall Smatch Unparsable
0.2877 0.9995 1623 3.1858 0.0 8.07 4.39 50.65 1125
0.2046 1.9995 3246 2.4277 0.0 2.03 1.05 27.91 1560
0.144 2.9995 4869 2.0027 0.0 4.65 2.48 38.63 958
0.0958 3.9995 6492 1.4330 0.0 4.72 2.51 39.29 812
0.0833 4.9995 8115 1.1425 0.3743 13.28 7.41 63.63 107
0.0701 5.9995 9738 1.0069 0.2495 11.22 6.16 62.84 153
0.0545 6.9995 11361 0.9798 0.0 26.35 16.0 74.6 76
0.037 7.9995 12984 0.8805 0.9981 17.69 10.16 68.02 65
0.0328 8.9995 14607 0.6323 2.2458 30.35 19.02 74.99 33
0.0315 9.9995 16230 0.6267 5.4273 24.37 14.64 72.82 85
0.0315 9.9995 16239 0.6085 16.38 73.69 26.8 80 7.7979
0.0173 10.9995 17862 0.5898 31.48 78.39 44.92 72 6.0512
0.0155 11.9995 19485 0.5628 43.89 82.41 57.28 77 0.3119
0.0121 12.9995 21108 0.4881 52.89 82.32 64.4 92 0.1248
0.0131 13.9995 22731 0.4575 53.13 83.25 64.87 72 0.0
0.0136 14.9995 24354 0.4365 66.87 83.99 74.46 73 0.1248
0.0096 15.9995 25977 0.4532 69.72 82.86 75.72 65 0.0624
0.0144 16.9995 27600 0.4128 72.61 83.11 77.5 77 0.0624
0.0026 17.9995 29223 0.4037 74.81 82.73 78.57 63 0.1871
0.0027 18.9995 30846 0.3926 77.05 82.38 79.62 53 0.2495
0.0034 19.9995 32469 0.4063 77.24 82.05 79.57 53 0.1248
0.0013 20.9995 34092 0.3955 78.7 82.89 80.74 50 0.1871
0.0018 21.9995 35715 0.3949 78.73 82.47 80.55 49 0.1871
0.0013 22.9995 37338 0.3920 78.76 82.27 80.47 52 0.1248
0.0002 23.9995 38961 0.3856 79.55 82.23 80.87 50 0.1248
0.0003 24.9995 40584 0.3850 79.44 82.04 80.72 49 0.1248

Framework versions

  • Transformers 4.57.2
  • Pytorch 2.9.1+cu128
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
1
Safetensors
Model size
0.6B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for myduy/vinai-vinai-translate-vi2en-v2-ckpt40584-061201

Finetuned
(215)
this model

Evaluation results