vi_mbart_en2amr
This model is a fine-tuned version of facebook/mbart-large-50-many-to-many-mmt on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3850
- Smatch Precision: 79.44
- Smatch Recall: 82.04
- Smatch Fscore: 80.72
- Smatch Unparsable: 49
- Percent Not Recoverable: 0.1248
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25
Training results
| Training Loss | Epoch | Step | Validation Loss | Percent Not Recoverable | Smatch Fscore | Smatch Precision | Smatch Recall | Smatch Unparsable |
|---|---|---|---|---|---|---|---|---|
| 0.2877 | 0.9995 | 1623 | 3.1858 | 0.0 | 8.07 | 4.39 | 50.65 | 1125 |
| 0.2046 | 1.9995 | 3246 | 2.4277 | 0.0 | 2.03 | 1.05 | 27.91 | 1560 |
| 0.144 | 2.9995 | 4869 | 2.0027 | 0.0 | 4.65 | 2.48 | 38.63 | 958 |
| 0.0958 | 3.9995 | 6492 | 1.4330 | 0.0 | 4.72 | 2.51 | 39.29 | 812 |
| 0.0833 | 4.9995 | 8115 | 1.1425 | 0.3743 | 13.28 | 7.41 | 63.63 | 107 |
| 0.0701 | 5.9995 | 9738 | 1.0069 | 0.2495 | 11.22 | 6.16 | 62.84 | 153 |
| 0.0545 | 6.9995 | 11361 | 0.9798 | 0.0 | 26.35 | 16.0 | 74.6 | 76 |
| 0.037 | 7.9995 | 12984 | 0.8805 | 0.9981 | 17.69 | 10.16 | 68.02 | 65 |
| 0.0328 | 8.9995 | 14607 | 0.6323 | 2.2458 | 30.35 | 19.02 | 74.99 | 33 |
| 0.0315 | 9.9995 | 16230 | 0.6267 | 5.4273 | 24.37 | 14.64 | 72.82 | 85 |
| 0.0315 | 9.9995 | 16239 | 0.6085 | 16.38 | 73.69 | 26.8 | 80 | 7.7979 |
| 0.0173 | 10.9995 | 17862 | 0.5898 | 31.48 | 78.39 | 44.92 | 72 | 6.0512 |
| 0.0155 | 11.9995 | 19485 | 0.5628 | 43.89 | 82.41 | 57.28 | 77 | 0.3119 |
| 0.0121 | 12.9995 | 21108 | 0.4881 | 52.89 | 82.32 | 64.4 | 92 | 0.1248 |
| 0.0131 | 13.9995 | 22731 | 0.4575 | 53.13 | 83.25 | 64.87 | 72 | 0.0 |
| 0.0136 | 14.9995 | 24354 | 0.4365 | 66.87 | 83.99 | 74.46 | 73 | 0.1248 |
| 0.0096 | 15.9995 | 25977 | 0.4532 | 69.72 | 82.86 | 75.72 | 65 | 0.0624 |
| 0.0144 | 16.9995 | 27600 | 0.4128 | 72.61 | 83.11 | 77.5 | 77 | 0.0624 |
| 0.0026 | 17.9995 | 29223 | 0.4037 | 74.81 | 82.73 | 78.57 | 63 | 0.1871 |
| 0.0027 | 18.9995 | 30846 | 0.3926 | 77.05 | 82.38 | 79.62 | 53 | 0.2495 |
| 0.0034 | 19.9995 | 32469 | 0.4063 | 77.24 | 82.05 | 79.57 | 53 | 0.1248 |
| 0.0013 | 20.9995 | 34092 | 0.3955 | 78.7 | 82.89 | 80.74 | 50 | 0.1871 |
| 0.0018 | 21.9995 | 35715 | 0.3949 | 78.73 | 82.47 | 80.55 | 49 | 0.1871 |
| 0.0013 | 22.9995 | 37338 | 0.3920 | 78.76 | 82.27 | 80.47 | 52 | 0.1248 |
| 0.0002 | 23.9995 | 38961 | 0.3856 | 79.55 | 82.23 | 80.87 | 50 | 0.1248 |
| 0.0003 | 24.9995 | 40584 | 0.3850 | 79.44 | 82.04 | 80.72 | 49 | 0.1248 |
Framework versions
- Transformers 4.57.2
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for myduy/vinai-vinai-translate-vi2en-v2-ckpt40584-061201
Base model
facebook/mbart-large-50-many-to-many-mmt