NewsScope LoRA Adapter
This repository contains a LoRA adapter fine-tuned for schema-grounded claim extraction from news articles.
It produces structured JSON outputs with:
- domain
- headline
- key_points
- whos_involved
- how_it_unfolded
- claims (2-3 verifiable claims with evidence)
Key Result (Human Evaluation)
- NewsScope: 89.4% accuracy
- GPT-4o-mini baseline: 93.7%
- Reported difference is not statistically significant (p=0.07)
Important: LLaMA License
You must accept the Meta LLaMA license for the base model on Hugging Face:meta-llama/Meta-Llama-3.1-8B-Instruct
Then either:
- run
huggingface-cli login, or - set
HF_TOKENin your environment.
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
base = AutoModelForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3.1-8B-Instruct",
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(base_model, "nidhipandya/NewsScope-lora")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
Training Details
- Base model: meta-llama/Meta-Llama-3.1-8B-Instruct
- LoRA rank: 16
- Training set size: 315 articles (URLs + annotations; article text not publicly redistributed)
- Notes: Training reproduction requires fetching article text from URLs due to copyright.
Links
- Code: https://github.com/nidhip1611/NewsScope
- Benchmark: GitHub Releases (benchmark.zip)
- Paper: arXiv (TBD)
Citation
@article{pandyaNewsscope,
title={NewsScope: Schema-Grounded Cross-Domain News Claim Extraction with Open Models},
author={Pandya, Nidhi},
journal={arXiv preprint arXiv:TBD},
year={TBD}
}
- Downloads last month
- 13
Model tree for nidhipandya/NewsScope-lora
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct