See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: TitanML/tiny-mixtral
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 1626557c75bc8215_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1626557c75bc8215_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 2
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: nttx/b279808d-b2c3-4b2c-a69a-9d224adb42fe
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 3000
micro_batch_size: 4
mlflow_experiment_name: /tmp/1626557c75bc8215_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7950e38d-4ae2-4e1f-a6a0-0107e2b31c7d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7950e38d-4ae2-4e1f-a6a0-0107e2b31c7d
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
b279808d-b2c3-4b2c-a69a-9d224adb42fe
This model is a fine-tuned version of TitanML/tiny-mixtral on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.8374
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 3000
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 0.0003 | 1 | 10.5753 |
| 8.3438 | 0.0492 | 150 | 8.0755 |
| 6.9827 | 0.0983 | 300 | 6.9109 |
| 6.5081 | 0.1475 | 450 | 6.4205 |
| 6.207 | 0.1966 | 600 | 6.1038 |
| 5.9758 | 0.2458 | 750 | 5.9017 |
| 5.7978 | 0.2950 | 900 | 5.7243 |
| 5.5757 | 0.3441 | 1050 | 5.5193 |
| 5.5036 | 0.3933 | 1200 | 5.3982 |
| 5.3336 | 0.4424 | 1350 | 5.2550 |
| 5.2624 | 0.4916 | 1500 | 5.1578 |
| 5.1754 | 0.5408 | 1650 | 5.0719 |
| 5.1936 | 0.5899 | 1800 | 5.0090 |
| 5.0071 | 0.6391 | 1950 | 4.9581 |
| 5.0504 | 0.6882 | 2100 | 4.9146 |
| 4.9615 | 0.7374 | 2250 | 4.8807 |
| 4.9688 | 0.7866 | 2400 | 4.8611 |
| 4.9255 | 0.8357 | 2550 | 4.8456 |
| 5.0045 | 0.8849 | 2700 | 4.8406 |
| 4.9882 | 0.9340 | 2850 | 4.8395 |
| 4.9035 | 0.9832 | 3000 | 4.8374 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for nttx/b279808d-b2c3-4b2c-a69a-9d224adb42fe
Base model
TitanML/tiny-mixtral