|
|
---
|
|
|
license: apache-2.0
|
|
|
---
|
|
|
|
|
|
This is the Offical weights of ConFiDeNet
|
|
|
|
|
|
```python
|
|
|
from PIL import Image
|
|
|
import torch
|
|
|
from transformers import ConFiDeNetForDepthEstimation, ConFiDeNetImageProcessor
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
image = Image.open("<Image Path>").convert("RGB")
|
|
|
print(image.size)
|
|
|
# image.save("image.jpg")
|
|
|
|
|
|
image_processor = ConFiDeNetImageProcessor.from_pretrained("<Weight-Path>")
|
|
|
model = ConFiDeNetForDepthEstimation.from_pretrained("<Weigh-Path>").to(device)
|
|
|
|
|
|
inputs = image_processor(images=image, return_tensors="pt").to(device)
|
|
|
|
|
|
with torch.no_grad():
|
|
|
outputs = model(**inputs)
|
|
|
|
|
|
post_processed_output = image_processor.post_process_depth_estimation(
|
|
|
outputs, target_sizes=[(image.height, image.width)],
|
|
|
)
|
|
|
|
|
|
depth = post_processed_output[0]["predicted_depth_uint16"].detach().cpu().numpy()
|
|
|
depth = Image.fromarray(depth, mode="I;16")
|
|
|
depth.save("depth.png")
|
|
|
``` |