After training 𝐒𝐦𝐨𝐥𝐋𝐌𝟑 on 𝟑𝟖𝟒 𝐇𝟏𝟎𝟎𝐬 for nearly a month, I've come to realize something most people overlook: 𝐢𝐧𝐟𝐫𝐚𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞 𝐢𝐬 𝐭𝐡𝐞 𝐦𝐚𝐤𝐞-𝐨𝐫-𝐛𝐫𝐞𝐚𝐤 𝐟𝐚𝐜𝐭𝐨𝐫 𝐢𝐧 𝐋𝐋𝐌 𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠. 🔥
Everyone talks about model architecture and data quality. And yes, those matter immensely. But here's what nobody tells you: when your training run fails at 2 AM because of mysterious 𝐍𝐂𝐂𝐋 𝐞𝐫𝐫𝐨𝐫𝐬, or when your expensive GPU cluster is running at 𝟔𝟎% 𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲, the problem isn't your model. It's most probably a 𝐦𝐢𝐬𝐮𝐬𝐞 𝐨𝐟 𝐭𝐡𝐞 𝐡𝐚𝐫𝐝𝐰𝐚𝐫𝐞. 🛠️
Questions that seemed simple but had no clear answers: Why is 𝐌𝐨𝐄 𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐬𝐥𝐨𝐰𝐞𝐫 𝐭𝐡𝐚𝐧 𝐝𝐞𝐧𝐬𝐞 𝐦𝐨𝐝𝐞𝐥𝐬? Which 𝐍𝐂𝐂𝐋 𝐟𝐥𝐚𝐠𝐬 should we actually set? How often should we checkpoint without killing throughput?
That's why we built 𝐓𝐡𝐞 𝐒𝐦𝐨𝐥 𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐏𝐥𝐚𝐲𝐛𝐨𝐨𝐤 📖: a complete guide covering everything from model architecture and data curation to the SmolLM3 training marathon, post-training techniques, and crucially, the 𝐢𝐧𝐟𝐫𝐚𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞 𝐥𝐚𝐲𝐞𝐫 that most teams get wrong.
We validated real vs theoretical bandwidth across the entire stack: 𝐇𝐁𝐌𝟑 𝐡𝐢𝐭𝐭𝐢𝐧𝐠 𝟑 𝐓𝐁/𝐬, 𝐍𝐕𝐋𝐢𝐧𝐤 𝟒.𝟎 𝐫𝐞𝐚𝐜𝐡𝐢𝐧𝐠 𝟕𝟖𝟔 𝐆𝐁/𝐬, 𝐏𝐂𝐈𝐞 𝐆𝐞𝐧𝟒 𝐚𝐭 𝟏𝟒.𝟐 𝐆𝐁/𝐬. Then we ran collective operations across 𝟏𝟐𝟖 𝐆𝐏𝐔𝐬 (16 nodes, 8xH100s each) and measured how performance degrades at scale: all-reduce drops from 𝟒𝟖𝟎 𝐆𝐁/𝐬 on a single node to 𝟑𝟐𝟎-𝟑𝟓𝟎 𝐆𝐁/𝐬 across 16 nodes.
If you've ever wondered why your training runs are slower than they should be, or you're planning to scale up and want to avoid expensive mistakes, this guide might save you weeks of debugging.
If you've ever trained a VLM, you know this problem: nobody shares their data mixtures. It's a black box, making replicating SOTA work impossible. We wanted to change that.
FineVision unifies 200 sources into 24 million samples. With 17.3 million images and 9.5 billion answer tokens, it's the largest open resource of its kind.
In the paper, we share how we built it: 🔍 finding and cleaning data at scale 🧹 removing excessive duplicates across sources 🤗 decontaminating against 66 public benchmarks
My favorite part is Figure 6 (in the video!). It's our visual diversity analysis. It shows that FineVision isn't just bigger; it's more balanced and conceptually richer than other open datasets. NVIDIA's Eagle 2 paper highlighted just how critical this visual diversity is, and our results confirm it: models trained on FineVision consistently outperform those trained on any other open dataset on 11 benchmarks!
🎉 To celebrate the paper, I’m also releasing a concatenated and shuffled version of the full dataset! 👉HuggingFaceM4/FineVision_full_shuffled
It’s ready to stream, so you can start training your own models right away:
from datasets import load_dataset d = load_dataset("HuggingFaceM4/FineVision_full_shuffled", split="train", streaming=True) print(next(iter(d)))
A big shoutout to the first authors: Luis Wiedmann and Orr Zohar. They are rockstars!
Tremendous quality of life upgrade on the Hugging Face Hub - we now have auto-complete emojis 🤗 🥳 👏 🙌 🎉
Get ready for lots more very serious analysis on a whole range of topics from yours truly now that we have unlocked this full range of expression 😄 🤔 🗣 🙊
Smol course has a distinctive approach to teaching post-training, so I'm posting about how it’s different to other post-training courses, including the llm course that’s already available.
In short, the smol course is just more direct that any of the other course, and intended for semi-pro post trainers.
- It’s a minimal set of instructions on the core parts. - It’s intended to bootstrap real projects you're working on. - The material handsover to existing documentation for details - Likewise, it handsover to the LLM course for basics. - Assessment is based on a leaderboard, without reading all the material.
To start the smol course, follow here: smol-course
The course builds on smol course v1 which was the fastest way to learn to train your custom AI models. It now has:
- A leaderboard for students to submit models to - Certification based on exams and leaderboards - Prizes based on Leaderboards - Up to date content on TRL and SmolLM3 - Deep integration with the Hub’s compute for model training and evaluation
We will release chapters every few weeks, so you can follow the org to stay updated.
The open source AI community is just made of people who are passionate and care about their work. So we thought it would be cool to share our favourite icons of the community with a fun award.
Winners get free Hugging Face Pro Subscriptions, Merchandise, or compute credits for the hub.
This is a new initiative to recognise and celebrate the incredible work being done by community members. It's all about inspiring more collaboration and innovation in the world of machine learning and AI.
They're highlighting contributors in four key areas: - model creators: building and sharing innovative and state-of-the-art models. - educators: sharing knowledge through posts, articles, demos, and events. - tool builders: creating the libraries, frameworks, and applications that we all use. - community champions: supporting and mentoring others in forums.
Know someone who deserves recognition? Nominate them by opening a post in the Hugging Face community forum.