YAML Metadata
Warning:
The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, image-text-to-image, image-text-to-video, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
t5e-mini-nl24-flan
25k steps on FLAN as an initial test/validation that code works. Not practically useful.
from transformers import pipeline
pipe = pipeline(
"text2text-generation",
model="pszemraj/t5e-mini-nl24-flan",
)
res = pipe(
"true or false: water is wet.",
top_k=4,
penalty_alpha=0.6,
max_new_tokens=128,
)
print(res[0]["generated_text"])
Quick eval
Quick eval for: pszemraj/t5e-mini-nl24-flan
hf (pretrained=pszemraj/t5e-mini-nl24-flan,trust_remote_code=True,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 8
| Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
|---|---|---|---|---|---|---|---|---|
| boolq | 2 | none | 0 | acc | ↑ | 0.4541 | ± | 0.0087 |
| openbookqa | 1 | none | 0 | acc | ↑ | 0.1300 | ± | 0.0151 |
| none | 0 | acc_norm | ↑ | 0.2700 | ± | 0.0199 | ||
| piqa | 1 | none | 0 | acc | ↑ | 0.6159 | ± | 0.0113 |
| none | 0 | acc_norm | ↑ | 0.6077 | ± | 0.0114 | ||
| social_iqa | 0 | none | 0 | acc | ↑ | 0.3705 | ± | 0.0109 |
| tinyArc | 0 | none | 25 | acc_norm | ↑ | 0.2913 | ± | N/A |
| tinyGSM8k | 0 | flexible-extract | 5 | exact_match | ↑ | 0.0269 | ± | N/A |
| strict-match | 5 | exact_match | ↑ | 0.0055 | ± | N/A | ||
| tinyHellaswag | 0 | none | 10 | acc_norm | ↑ | 0.3538 | ± | N/A |
| tinyMMLU | 0 | none | 0 | acc_norm | ↑ | 0.2551 | ± | N/A |
| winogrande | 1 | none | 0 | acc | ↑ | 0.5217 | ± | 0.0140 |
base model evals: click to expand
Quick eval for: google/t5-efficient-mini-nl24
hf (pretrained=google/t5-efficient-mini-nl24,trust_remote_code=True,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 8
| Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
|---|---|---|---|---|---|---|---|---|
| boolq | 2 | none | 0 | acc | ↑ | 0.3783 | ± | 0.0085 |
| openbookqa | 1 | none | 0 | acc | ↑ | 0.1280 | ± | 0.0150 |
| none | 0 | acc_norm | ↑ | 0.2660 | ± | 0.0198 | ||
| piqa | 1 | none | 0 | acc | ↑ | 0.5473 | ± | 0.0116 |
| none | 0 | acc_norm | ↑ | 0.5267 | ± | 0.0116 | ||
| social_iqa | 0 | none | 0 | acc | ↑ | 0.3536 | ± | 0.0108 |
| tinyArc | 0 | none | 25 | acc_norm | ↑ | 0.3101 | ± | N/A |
| tinyGSM8k | 0 | flexible-extract | 5 | exact_match | ↑ | 0.0145 | ± | N/A |
| strict-match | 5 | exact_match | ↑ | 0.0055 | ± | N/A | ||
| tinyHellaswag | 0 | none | 10 | acc_norm | ↑ | 0.2616 | ± | N/A |
| tinyMMLU | 0 | none | 0 | acc_norm | ↑ | 0.2839 | ± | N/A |
| winogrande | 1 | none | 0 | acc | ↑ | 0.4996 | ± | 0.0141 |
- Downloads last month
- 10
Model tree for pszemraj/t5e-mini-nl24-flan
Base model
google/t5-efficient-mini-nl24