DeepLabXception: Optimized for Mobile Deployment

Deep Convolutional Neural Network model for semantic segmentation

DeepLabXception is a semantic segmentation model supporting multiple backbones like ResNet-101 and Xception, with flexible dataset compatibility including COCO, VOC, and Cityscapes.

This model is an implementation of DeepLabXception found here.

This repository provides scripts to run DeepLabXception on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.semantic_segmentation
  • Model Stats:
    • Model checkpoint: COCO_WITH_VOC_LABELS_V1
    • Input resolution: 480x520
    • Number of output classes: 21
    • Number of parameters: 41.26M
    • Model size (float): 158 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
DeepLabXception float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 113.083 ms 0 - 317 MB NPU DeepLabXception.tflite
DeepLabXception float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 113.025 ms 3 - 212 MB NPU DeepLabXception.dlc
DeepLabXception float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 46.39 ms 0 - 434 MB NPU DeepLabXception.tflite
DeepLabXception float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 50.98 ms 3 - 329 MB NPU DeepLabXception.dlc
DeepLabXception float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 21.884 ms 0 - 3 MB NPU DeepLabXception.tflite
DeepLabXception float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 21.772 ms 3 - 5 MB NPU DeepLabXception.dlc
DeepLabXception float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 21.042 ms 0 - 96 MB NPU DeepLabXception.onnx.zip
DeepLabXception float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 30.499 ms 0 - 319 MB NPU DeepLabXception.tflite
DeepLabXception float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 30.466 ms 0 - 209 MB NPU DeepLabXception.dlc
DeepLabXception float SA7255P ADP Qualcomm® SA7255P TFLITE 113.083 ms 0 - 317 MB NPU DeepLabXception.tflite
DeepLabXception float SA7255P ADP Qualcomm® SA7255P QNN_DLC 113.025 ms 3 - 212 MB NPU DeepLabXception.dlc
DeepLabXception float SA8295P ADP Qualcomm® SA8295P TFLITE 38.81 ms 0 - 315 MB NPU DeepLabXception.tflite
DeepLabXception float SA8295P ADP Qualcomm® SA8295P QNN_DLC 38.868 ms 0 - 213 MB NPU DeepLabXception.dlc
DeepLabXception float SA8775P ADP Qualcomm® SA8775P TFLITE 30.499 ms 0 - 319 MB NPU DeepLabXception.tflite
DeepLabXception float SA8775P ADP Qualcomm® SA8775P QNN_DLC 30.466 ms 0 - 209 MB NPU DeepLabXception.dlc
DeepLabXception float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 15.932 ms 0 - 440 MB NPU DeepLabXception.tflite
DeepLabXception float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 15.952 ms 3 - 334 MB NPU DeepLabXception.dlc
DeepLabXception float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 15.679 ms 3 - 304 MB NPU DeepLabXception.onnx.zip
DeepLabXception float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 12.31 ms 0 - 319 MB NPU DeepLabXception.tflite
DeepLabXception float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 12.284 ms 3 - 215 MB NPU DeepLabXception.dlc
DeepLabXception float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 12.273 ms 3 - 184 MB NPU DeepLabXception.onnx.zip
DeepLabXception float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen 5 Mobile TFLITE 9.179 ms 0 - 328 MB NPU DeepLabXception.tflite
DeepLabXception float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen 5 Mobile QNN_DLC 9.226 ms 3 - 236 MB NPU DeepLabXception.dlc
DeepLabXception float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen 5 Mobile ONNX 9.24 ms 3 - 200 MB NPU DeepLabXception.onnx.zip
DeepLabXception float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 22.62 ms 3 - 3 MB NPU DeepLabXception.dlc
DeepLabXception float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 21.775 ms 85 - 85 MB NPU DeepLabXception.onnx.zip
DeepLabXception w8a8 Dragonwing Q-6690 MTP Qualcomm® QCM6690 TFLITE 89.688 ms 0 - 270 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 Dragonwing Q-6690 MTP Qualcomm® QCM6690 QNN_DLC 112.359 ms 1 - 278 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 Dragonwing Q-6690 MTP Qualcomm® QCM6690 ONNX 240.789 ms 88 - 106 MB CPU DeepLabXception.onnx.zip
DeepLabXception w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 TFLITE 28.818 ms 0 - 58 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 QNN_DLC 30.262 ms 1 - 3 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 ONNX 310.37 ms 90 - 118 MB CPU DeepLabXception.onnx.zip
DeepLabXception w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 18.973 ms 0 - 257 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 20.382 ms 1 - 261 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 11.81 ms 0 - 338 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 14.937 ms 1 - 342 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 6.783 ms 0 - 3 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 8.067 ms 1 - 3 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 7.651 ms 0 - 51 MB NPU DeepLabXception.onnx.zip
DeepLabXception w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 7.358 ms 0 - 255 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 8.13 ms 1 - 258 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 18.973 ms 0 - 257 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 20.382 ms 1 - 261 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 11.583 ms 0 - 245 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 12.597 ms 1 - 251 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 7.358 ms 0 - 255 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 8.13 ms 1 - 258 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 4.997 ms 0 - 343 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 5.562 ms 1 - 349 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 5.295 ms 1 - 337 MB NPU DeepLabXception.onnx.zip
DeepLabXception w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 3.918 ms 0 - 240 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 4.362 ms 1 - 259 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 4.332 ms 1 - 230 MB NPU DeepLabXception.onnx.zip
DeepLabXception w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile TFLITE 11.013 ms 0 - 242 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile QNN_DLC 12.18 ms 1 - 250 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 227.149 ms 92 - 111 MB CPU DeepLabXception.onnx.zip
DeepLabXception w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen 5 Mobile TFLITE 2.886 ms 0 - 247 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen 5 Mobile QNN_DLC 3.234 ms 1 - 256 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen 5 Mobile ONNX 3.33 ms 0 - 235 MB NPU DeepLabXception.onnx.zip
DeepLabXception w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 8.697 ms 1 - 1 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 8.042 ms 44 - 44 MB NPU DeepLabXception.onnx.zip

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.deeplab_xception.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.deeplab_xception.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.deeplab_xception.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.deeplab_xception import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.deeplab_xception.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.deeplab_xception.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on DeepLabXception's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of DeepLabXception can be found here.

References

Community

Downloads last month
55
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/DeepLabXception